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We study exceptional points that occur in photonic crystal slabs due to cross-polarization (TE-TM) mode
coupling. To do this, we develop spatiotemporal coupled-mode theory that describes optical properties of photonic
crystal slabs supporting TE and TM modes in the case of conical mount. The developed theory suggests that by
tuning the in-plane wave numbers of the incident light one can make two modes of the structure coalesce, which
results in an exceptional point. The developed theory provides simple analytical expressions for the exceptional
point position and the line shape of the corresponding resonance. The parameters of the proposed model can be
rigorously estimated by a numerical calculation of the S-matrix poles of the structure. We show that the proposed
analytical model with the estimated parameters is in good agreement with the presented full-wave simulations.
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I. INTRODUCTION

In recent years much attention has been paid to studying ex-
ceptional points in optical structures [1–6]. Exceptional points
(EPs) occur when both eigenfrequencies and field distributions
of several modes of the structure coincide [7–9]. Exceptional
points of order 2 can be obtained by tuning two real-valued
parameters of the structure. The tuning of N independent
parameters allows one to make N eigenmodes of the structure
coalesce, which results in an EP of order N [5,10,11].

Exceptional points are studied in different branches of
physics, including acoustics [12], atomic physics [13,14],
and optics. In optics, various structures with EP behavior
were investigated, such as photonic crystal slabs [2], parallel
waveguides [10,11], optical cavities [5], metamaterials [15],
and different plasmonic [16,17] and graphene-based [18]
optical structures. Particular attention was paid to studying
PT -symmetric structures [1,5,11,19].

Structures with EPs exhibit intriguing optical effects such
as non-Lorentzian (and non-Fano) resonance line shape [9,20],
loss-induced transparency [1], and asymmetric light reflec-
tion and transmission [4,17,19,21]. Other applications of EP
structures include controlling light emission [3,22] and optical
sensing [5,6,23].

As a rule, exceptional points are studied through analyzing
the eigenvalues and eigenvectors of the Hamiltonian [8,9].
In Ref. [2] an effective Hamiltonian was used to write down
the temporal coupled-mode theory (CMT) describing EPs in
photonic crystal slabs [2]. Similar CMT was used to describe
coupled optical cavities in Ref. [5].

In this paper, we use the recently proposed spatiotemporal
coupled-mode theory [24,25] to study EPs in one-dimensional
(1D) photonic crystal slabs (PCSs) [see Fig. 1(a)]. In the
case of planar diffraction, a PCS supports TE and TM
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modes, which are uncoupled. However, in the case of conical
diffraction, polarization transformation occurs, which makes
cross-polarization mode excitation possible [25]. In this paper,
we study a similar effect—cross-polarization mode coupling.
This effect, as we show, can be described using the proposed
spatiotemporal coupled-mode theory. Additionally, this theory
predicts the emergence of an exceptional point in the consid-
ered structure. Comparing to Refs. [2,5] the proposed model
gives simple interpretation of the parameters of the CMT.
Moreover, we show that these parameters can be rigorously
calculated by finding the poles of the scattering matrix of the
structure.

The paper is organized in five sections. The Introduction is
followed by Sec. II that presents the spatiotemporal coupled-
mode theory of cross-polarization mode coupling in a 1D PCS.
In Sec. III we show that the considered structure supports
exceptional points and derive analytical estimations for the
EP conditions. In Sec. IV we calculate the parameters of the
proposed model and compare the CMT-based predictions with
full-wave simulations based on the rigorous coupled-wave
analysis. Section V concludes the paper.

II. SPATIOTEMPORAL COUPLED-MODE THEORY

Let us consider the diffraction of a TM-polarized plane wave
by a 1D photonic crystal slab shown in Fig. 1(a). The direction
of the incident wave is defined by the in-plane wave-vector
components, kx and ky . In the case of planar diffraction (ky =
0), the PCS supports TE and TM modes. The modes having
the same polarization (TM-TM or TE-TE) can couple with
each other, which results in the anticrossing of the dispersion
curves. In the case of conical mount (ky �= 0), the polarization
transformation takes place: the modes contain both TE and
TM field components. However, for small values of ky the
modes of the structure can still be referred to as (quasi-)TE and
(quasi-)TM modes. The quasi-TE modes have strong TE
components and “weak” TM components. Similarly, quasi-TM
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FIG. 1. (a) Geometry of a 1D PCS (parameters: period d =
1000 nm; height h = 800 nm; fill factor 4/5; surrounding medium
refractive index ns = 1; structure material permittivity εgr = 2). The
structure is invariant in the y direction. (b) Crossing of dispersion
curves of TE and TM modes at ky = 0. (c) Cross-polarization mode
coupling at ky �= 0.

modes have dominant TM components. Due to polarization
conversion, TE-TM coupling can occur in the case of conical
mount. In this section we develop a coupled-mode theory
which describes this effect.

Following the approach used in Refs. [24,25], we start our
analysis by considering not the modes of the PCS but the modes
of a slab waveguide with an effective refractive index. We will
assume that the waveguide supports TE- and TM-polarized
modes. Let us further assume that the TM mode has the group
velocity vTM

g at the angular frequency ω0. In this case, we can
write the following approximate dispersion law of the mode:

k − kTM = (ω − ω0)/vTM
g , (1)

where k and kTM are the wave numbers of the mode at
angular frequenciesω andω0, respectively. We will assume that

vTM
g > 0, so the mode propagates in the positive x direction.

Similarly, we define the dispersion law of the counterpropa-
gating TE mode as

k + kTE = −(ω − ω0)/vTE
g . (2)

If d is the period of the PCS, the diffraction orders have
the following x components of the wave vector: kx + mk1,
where k1 = 2π/d and m ∈ Z. We will assume that kTM = k2 +
k1, so the TM mode can be excited by the +1st diffraction
order when the incident light has angular frequency ω0 and x

component of the wave vector k2. We will further assume that
−kTE = k2 − k1; hence the TE-polarized mode can be excited
by the−1st diffraction order at ω = ω0, kx = k2, ky = 0. These
assumptions describe the crossing of the dispersion curves of
the TE and TM modes, as shown in Fig. 1(b).

The dispersion curves (1) and (2) intersect at the point
(k2,ω0). In what follows, we develop coupled-mode theory that
is valid in the vicinity of this point. We will further assume that
k2 �= 0, so the intersection of the TE and TM dispersion curves
will take place not in the center of the first Brillouin zone.
In this case, we can neglect the TM mode that propagates in
the negative x direction and the TE mode propagating in the
positive x direction.

To develop the coupled-mode theory let us first write
two paraxial unidirectional wave equations, which describe
the propagation of the modal wave packets inside the
waveguide [25]:

∂u

∂t
= −vTM

g
∂u

∂x
+ ivTM

g

2kTM

∂2u

∂y2
+ i

(
vTM

g kTM − ω0
)
u,

∂v

∂t
= vTE

g
∂v

∂x
+ ivTE

g

2kTE

∂2v

∂y2
+ i

(
vTE

g kTE − ω0
)
v. (3)

Here u(x,y,t) and v(x,y,t) are the complex amplitudes of the
TM and TE modes, respectively. By introducing the coupling
terms in the right-hand side of Eqs. (3), we obtain the following
set of coupled-mode equations, which describe light diffraction
by the periodically perforated slab waveguide that is the PCS
[24,25]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= −vTM

g
∂u

∂x
+ ivTM

g

2kTM

∂2u

∂y2
+ i

(
vTM

g kTM − ω0
)
u − cTM

1 u + ĉTM
2 e2ik1xv + cTM

e eik1xfI ,

∂v

∂t
= vTE

g
∂v

∂x
+ ivTE

g

2kTE

∂2v

∂y2
+ i

(
vTE

g kTE − ω0
)
v − cTE

1 v + ĉTE
2 e−2ik1xu + ĉTE

e e−ik1xfI ,

fT = t0fI + cTM
t e−ik1xu + ĉTE

t eik1xv.

(4)

Here fI = fI (x,y,t) is the incident field distribution, and
fT = fT (x,y,t) is the TM-polarized transmitted field. The
transmitted field is the sum of the light leaked out of the PCS
and the nonresonantly transmitted light, which is defined by the
nonresonant transmission coefficient t0 [24]. The exponentials
in Eq. (4) take account of the phase change due to scattering

into the diffraction order [24,26]. The coupling coefficients
cTM

1 and cTE
1 , which are real numbers, describe the leakage

of the mode out of the waveguide. The terms ĉTM
2 and ĉTE

2
describe coupling between the TM and TE modes; cTM

e and ĉTE
e

describe excitation efficiency of the modes by the incident TM-
polarized plane wave; cTM

t and ĉTE
t describe light outcoupling
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from the modes to the considered TM-polarized transmitted
diffraction order. The coupling coefficients typesetted as bold
letters with a hat describe cross-polarization scattering. Refer-
ence [25] suggests that these coefficients should be treated as
linear operators with the form defined by the symmetry of the
structure.

Coupled-mode equations (4) can be solved in the Fourier
domain. To do this, we define the Fourier transform as

Fu =
∫∫∫

R3
u(x,y,t)e−i(kxx+kyy−ωt)dkxdkydω (5)

and introduce the following notations: FI = FfI is the spec-
trum of the incident field, FT = FfT is the spectrum of the

transmitted field, and U = F(u e−ik1x) and V = F(v eik1x) are
the envelope spectra of the modes u and v.

In Ref. [25] it was shown that in the Fourier domain the cou-
pling operators used in Eq. (4) become coupling coefficients
that depend on ky . For example, the coupling operator ĉTE

e

takes the following form:

F
(
ĉTE
e f

) = kyc
TE
e Ff, (6)

where cTE
e is a number. We will use similar relations for

operators ĉTE
t , ĉTM

2 , and ĉTE
2 .

By applying the Fourier transform (5) to the coupled-mode
equations (4), we obtain the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−iωU = −ivTM
g (kx − k2)U − iηTMk2

yU − (
iω0 + cTM

1

)
U + cTM

2 kyV + cTM
e FI ,

−iωV = ivTE
g (kx − k2)V − iηTEk2

yV − (
iω0 + cTE

1

)
V + cTE

2 kyU + cTE
e kyFI ,

FT = t0FI + cTM
t U + cTE

t kyV ,

(7)

where ηTM = vTM
g

2kTM , ηTE = vTE
g

2kTE . The complex transmission coefficient of the PCS can be obtained from Eq. (7) as the ratio of the
transmitted and incident field spectra: T = FT /FI [24,25].

System (7) can be written in the following matrix form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A
[
U

V

]
= i

[
cTM
e

cTE
e ky

]
FI ,

FT = t0FI + [
cTM
t cTE

t ky

][U

V

]
,

(8)

where

A =
[
ω − ω0 + icTM

1 − vTM
g (kx − k2) − ηTMk2

y −icTM
2 ky

−icTE
2 ky ω − ω0 + icTE

1 + vTE
g (kx − k2) − ηTEk2

y

]
. (9)

By inverting the matrix A, one can solve Eq. (8) for the complex
transmission coefficient T = FT /FI :

T = t0 + q

det A
. (10)

The expression for the numerator q has a complicated form and
is not presented here, while the denominator is easily expressed
as

det A = [
ω − ω0 + icTM

1 − vTM
g (kx − k2) − ηTMk2

y

]
× [

ω − ω0 + icTE
1 + vTE

g (kx − k2) − ηTEk2
y

]
+ c2

2k
2
y, (11)

where

c2 =
√

cTM
2 cTE

2 .

By equating the determinant (11) to zero, we obtain the
dispersion equation of the modes of the structure:

det A = 0. (12)

Indeed, when Eq. (12) holds, the solution to coupled-mode
equations (8) exists in the absence of the incident field (at
FI = 0).

At ky = 0, the dispersion equation (12) describes two
intersecting lines, which correspond to the TE and TM modes
[see Fig. 1(b)]. In the case of conical diffraction mount, ky is
nonzero, and the two modes couple, which, starting from some
value of ky , results in the formation of a band gap, as it is shown
in Fig. 1(c). This effect can be called cross-polarization mode
coupling. In the next section we will consider the special case
separating the crossing of dispersion curves shown in Fig. 1(b)
from the anticrossing behavior shown in Fig. 1(c).

III. EXCEPTIONAL POINT

The dispersion equation (12) is a quadratic equation with
respect to ω, and it has two roots. It is easy to verify that these
two roots coincide if the following equality holds:

(
cTE

1 − cTM
1

) − i(kx − k2)
(
vTM

g + vTE
g

)
= i

[
(ηTM − ηTE)k2

y ± 2c2ky

]
. (13)

Equation (13) describes the borderline case between dispersion
of Figs. 1(b) and 1(c).

One can choose real values of kx and ky to satisfy Eq. (13).
Indeed, by assuming that η and vg are real numbers, we equate
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the real and imaginary parts of the left- and right-hand sides
of Eq. (13) and obtain the following values of ky and kx :

k̃y = ±cTM
1 − cTE

1

2 Im c2
, (14)

k̃x = k2 − k̃2
y(ηTM − ηTE) + 2|k̃y | Re c2

vTM
g + vTE

g

. (15)

If we choose the direction of the incident wave according to
Eqs. (14) and (15), the complex frequencies of the two modes
of the structure coincide. This, as we will prove further, results
in an emergence of the so-called exceptional point.

According to Eq. (14), the higher the difference between
the extinction rates of the TE and TM modes of the structure,
the higher the value of k̃y that should be used to obtain an
exceptional point. Besides, according to Eq. (15), the value of
k̃x , which allows us to obtain an exceptional point, is generally
different from the value of k2, which gives the intersection
point of the dispersion curves of the TM- and TE-polarized
modes at ky = 0 [see Fig. 1(b)].

Taking into account Eqs. (14) and (15), we can solve
Eq. (12) for ω = ωp to obtain the value of the complex
frequency of the structure eigenmode:

ωp = ω0 − i
cTM

1 + cTE
1

2
+ vTM

g − vTE
g

2
(k̃x − k2)

+ ηTM + ηTE

2
k̃2
y. (16)

Equations (14)–(16) allow us to rewrite Eq. (10) in the
following form:

T = t0 + a

ω − ωp
+ b

(ω − ωp)2
. (17)

Here a and b depend on the coupling coefficients; however,
the closed-form expressions for a and b are quite complicated
and are not presented in this paper. Nevertheless, we can infer
that the first two terms in Eq. (17) correspond to simple Fano
line shape, while the third term contains a second-order pole,
which is the evidence of an exceptional point [9,20].

Equation (17) can be rewritten in the following elegant form,
which immediately follows from Eq. (8):

T = t0 + i
[
cTM
t k̃yc

TE
t

]
(Iω − �)−1

[
cTM
e

k̃yc
TE
e

]
, (18)

where I is a 2 × 2 identity matrix and

� =
[
ωp − c2k̃y icTM

2 k̃y

icTE
2 k̃y ωp + c2k̃y

]
. (19)

Note that since ĉTE
t is an operator the value of k̃yc

TE
t can be

interpreted as the coupling coefficient, which is calculated for
the value of ky = k̃y .

The transmission coefficient T defined by Eq. (18) relates
the complex amplitudes of one incident and one transmitted
wave. In the framework of the coupled-mode theory one
can consider several incident waves and several scattered
diffraction orders. In this case, the right-hand sides of Eqs. (4)
will contain several terms corresponding to the incident waves
of different directions and polarizations. Additionally, for each

scattered diffraction order one should write a separate equation
similar to the third equation of system (4). As the result, the
coupled-mode theory gives the following form of the scattering
matrix:

S = S0 + B(Iω − �)−1C, (20)

where S0 is the nonresonant scattering matrix, C is the incident-
field-to-mode coupling matrix, B is the mode-to-scattered-field
coupling matrix, and � is defined by Eq. (19). Equation (20)
is similar to the representation of the scattering matrix in the
vicinity of resonances considered in Ref. [27]. The difference
is that � is no longer a diagonal matrix. Moreover, it is
nondiagonalizable: one can easily verify that the Jordan normal
form of � contains a Jordan block of size 2 × 2, which is the
evidence [28] of an exceptional point of order 2.

In this section we have shown that by choosing the direction
of the incident light one can make the complex frequencies
of the quasi-TE and quasi-TM modes coincide. This results
in a distinguishable line shape of the resonance and in the
emergence of an exceptional point.

IV. NUMERICAL VALIDATION

In this section, we compare CMT predictions with rigorous
simulation results. As an example, we consider the 1D PCS
shown in Fig. 1. The parameters of the structure are presented in
the caption of Fig. 1. We will study the optical properties of this
structure in the vicinity of kx = 0.5 μm−1, ky = 0, and ω =
1.665 × 1015 s−1. In Sec. IV A, we compare the dispersion
curves of the eigenmodes; in Sec. IV B, we investigate the
EP position and resonance line shape.

A. Mode dispersion comparison

To describe the dispersion of the modes within the CMT,
we need to estimate the parameters used in Eq. (11). We will
do this by calculating complex frequencies of the modes of
the structure using the method of Ref. [27]. This method is
based on finding the poles of the scattering matrix, which is
calculated using the rigorous coupled-wave analysis [29,30].
The method of Ref. [27] allows us to calculate the mode
frequency ωp(kx,ky) for the given in-plane wave numbers kx

and ky and initial approximation of the mode frequency.
First, we calculate k2 and ω0, which define the intersection

point of the dispersion curves of the TE and TM modes at
ky = 0 [see Fig. 1(b)]. One can do this by solving the equation

Re ωTM
p (k2,0) = Re ωTE

p (k2,0) (21)

for k2 using Newton’s method. After calculating k2, the value
of ω0 can be calculated as

ω0 = Re ωTM
p (k2,0) = Re ωTE

p (k2,0). (22)

Additionally, according to Eqs. (11) and (12), the imaginary
parts of the complex frequencies of the modes at kx = k2,ky =
0 give the values of cTM

1 and cTE
1 :

cTM
1 = − Im ωTM

p (k2,0), cTE
1 = − Im ωTE

p (k2,0). (23)

Second, the group velocities of the modes are easily cal-
culated by numerical differentiation of the modes complex
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frequencies with respect to kx :

vTM
g = ∂ωTM

p

∂kx

(k2,0), vTE
g = ∂ωTE

p

∂kx

(k2,0). (24)

Third, to estimate ηTE and ηTM, we choose a wave number
k3, which is rather far from k2. In this case, we can neglect
the last term in Eq. (11), which brings us to the following
estimations:

ηTE = 1

2

∂2ωTE
p

∂k2
y

(k3,0), ηTM = 1

2

∂2ωTM
p

∂k2
y

(k3,0). (25)

Finally, we differentiate Eq. (12) with respect to ky twice,
and, assuming kx = k2,ky = 0,ω = ωTE

p , we obtain the follow-
ing expression for c2:

c2
2 = i

cTE
1 − cTM

1

2

(
∂2ωTE

p

∂k2
y

(k2,0) − 2ηTE

)
. (26)

For the considered structure, Eqs. (21)–(26) give the fol-
lowing parameters of the CMT:

ω0 = 1.665830 × 1015 s−1,

k2 = 0.47570 μm−1,

cTE
1 = 2.497 × 1012 s−1,

cTM
1 = 8.941 × 1011 s−1,

vTE
g = 2.0260 × 1017 nm/s, (27)

vTM
g = 1.9783 × 1017 nm/s,

ηTE = 2.1995 × 1019 nm2/s,

ηTM = 1.5649 × 1019 nm2/s,

c2 = 7.73 × 1014 + 6.27 × 1015i nm/s.

We will use these parameters to calculate the dispersion of the
modes of the structure using Eq. (12).

Figure 2 shows the dispersion curves of the modes of the
structure. The red line (marked as “TE”) shows the dispersion
of TE-polarized mode at ky = 0, while the TM-polarized
mode is shown by the blue line (marked as “TM”). Since

kx ( m–1)

R
e 

 (
10

15
 s–1

)

1.65

1.66

1.67

1.68

0.40 0.45 0.50 0.55

ky ≠  0
TE

TM

FIG. 2. Rigorously calculated dispersion curves of the PCS at
ky = 0 and 0.3 μm−1 (circles); dispersion curves are calculated using
the CMT [Eqs. (11) and (12)] (solid lines).

no cross-polarization coupling occurs at ky = 0, these lines
cross. In the case of conical mount (ky = 0.3 μm−1, black
line), cross-polarization coupling occurs, as it is evident from
Fig. 2. The circles show the rigorously calculated dispersion
curves, while the solid lines show the analytical approximation
obtained using the CMT of Sec. II. Figure 2 suggests that
the proposed model is in good agreement with the rigorous
simulation results.

Let us discuss field distribution of the modes at different
points of the dispersion curves. As we mentioned in the
beginning of Sec. II, in the case of conical mount, modes have
both TE and TM field components. The mode field calculations
show that at kx = 0.40 μm−1, ky = 0.3 μm−1 the (quasi-)TE
modes have dominant TE components which are approxi-
mately ten times stronger than TM components. Similarly,
(quasi-)TM modes have strong TM components and order-
of-magnitude weaker TE components. However, when cross-
polarization mode coupling occurs (kx = 0.48 μm−1, ky =
0.3 μm−1) the TE and TM field components of the modes
have equal strength.

B. Exceptional point comparison

The exact position of the exceptional point in the considered
structure can be obtained with the following Newton-like
iterative approach. We start with some values of kx and ky .
First, we calculate the complex frequencies of two modes,
ωTE

p (kx,ky) and ωTM
p (kx,ky), and their derivatives with respect

to kx and ky . Second, we find a Newton approximation of the
exceptional point, k′

x and k′
y , by equating the real and imaginary

parts of the following linear equation:

ωTE
p + ∂ωTE

p

∂kx

× (k′
x − kx) + ∂ωTE

p

∂ky

× (k′
y − ky)

= ωTM
p + ∂ωTM

p

∂kx

× (k′
x − kx) + ∂ωTM

p

∂ky

× (k′
y − ky), (28)

where ωTE
p ,ωTM

p , and the derivatives are calculated at the
point (kx,ky). The left-hand side of this equation is the
Taylor series for ωTE

p (kx,ky), while the right-hand side
corresponds to ωTM

p (kx,ky). Therefore, this equation is
aimed at equating the complex frequencies of the two
modes. Finally, we replace the EP approximation (kx,ky)
with (αkx + (1 − α)k′

x,αky + (1 − α)k′
y), where α = 8/9 is a

damping coefficient. To start the next iteration, we calculate
the revised values of ωTE

p and ωTM
p using their previous

values as the initial approximations. The damping coefficient α
reduces the convergence rate of the Newton method, ensuring
that the previous values of ωTE

p and ωTM
p are good approxima-

tions for the consequent values of ωTE
p and ωTM

p , so the method
of Ref. [27] converges to the desired mode.

The following parameters of the EP were obtained using
the described approach:

kEP
x = 0.47647 μm−1,

kEP
y = 0.12905 μm−1,

ωEP = 1.666141 × 1015 − 1.7011 × 1012i s−1, (29)

013846-5



DMITRY A. BYKOV AND LEONID L. DOSKOLOVICH PHYSICAL REVIEW A 97, 013846 (2018)

FIG. 3. TM-transmission spectra at the EP: rigorously calculated
spectrum (circles), Fano line-shape approximation (dashed line), and
second-order-pole approximation (17) (solid line).

where ωEP = ωTE
p (kEP

x ,kEP
y ) = ωTM

p (kEP
x ,kEP

y ). These values are
the exact position of the EP, calculated using the rigorous
coupled-wave analysis. Alternatively, the position of the EP
can be estimated using Eqs. (14)–(16) and (27), which are
based on the CMT. These equations give the following estima-
tion of the EP parameters:

k̃x = 0.47494 μm−1,

k̃y = 0.12783 μm−1,

ωp = 1.666139 × 1015 − 1.6957 × 1012i s−1, (30)

which are close to the rigorously calculated parameters pre-
sented in Eq. (29). Therefore, the CMT with rigorously
estimated parameters (27) predicts the position of the EP with

high accuracy. As an illustration, the exact (kEP
x ,kEP

y ) and the
approximate (k̃x,k̃y) positions of the EP are shown in Fig. 4(c)
by the circle and point, respectively.

At the EP the line shape of the resonance is different from
the conventional Fano and Lorentz line shapes [9,20]. Figure 3
shows the TM-transmission spectrum of the considered struc-
ture at kx = kEP

x , ky = kEP
y . The circles show the rigorously

calculated spectrum, while the approximation (17) is shown
by the solid line. The parameters a and b of Eq. (17) were
obtained by the numerical calculation of the residues of the
transmission coefficient:

a = Res
ω=ωEP

T (ω), b = Res
ω=ωEP

(ω − ωEP)T (ω). (31)

The value of t0 was obtained by fitting the rigorously calculated
complex transmission coefficient T (ω) using the least-squares
method. As a comparison, the dashed line in Fig. 3 shows the
Fano approximation T = t0 + a/(ω − ωEP), where both t0 and
a were obtained using the least-squares method. Figure 3 sug-
gests that simple-pole Fano approximation does not describe
resonance line shape at the EP, while Eq. (17) provides a good
approximation of the transmission spectrum near the resonance
frequency.

Another intrinsic feature of EPs is the permutation behavior
of the modes complex frequencies when encircling an EP in the
parameter space [31]. To illustrate this, we choose the contour
in the kx–ky space, as shown in Fig. 4(a). The contour starts
at kx = kEP

x , ky = 0; encircles the EP counterclockwise; and
arrives to the starting point. At the starting point the structure
supports two modes with frequencies ωTE and ωTM, which are
the TE- and TM-polarized modes. The complex frequencies of
these modes are shown by the black dots in Fig. 4(b). When
changing the values of kx and ky in the described manner, the
two modes move in the complex ω plane, as shown in Fig. 4(b).

FIG. 4. Trajectories of the modes complex frequencies (b) and (d) when encircling EP in the kx–ky space as shown in subfigures (a) and
(c), respectively. Rigorously calculated trajectories are shown by circles, while the trajectories obtained using the CMT [Eqs. (11) and (12)] are
shown by solid lines. Inset: Direction of the incident light when encircling the EP direction.
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However, after encircling the EP in the parameter space once,
the eigenfrequencies return not to their initial positions but
interchange positions with each other. Similar behavior for a
different contour in the kx–ky space is shown in Figs. 4(c)
and 4(d). Thus, we have shown that encircling the EP in the
kx–ky space results in eigenfrequencies permutation which is
the evidence of an exceptional point [31].

The circles in Figs. 4(b) and 4(d) show the rigorously cal-
culated complex frequencies trajectories, while the solid lines
are obtained using the proposed analytical model [Eqs. (11)
and (12)]. According to Fig. 4, the proposed model provides
good agreement with the rigorous full-wave simulations.

V. CONCLUSION

We have shown that in the case of conical mounting
photonic crystal slabs exhibit cross-polarization mode cou-
pling. This effect—coupling of the dispersion curves of quasi-
TE and quasi-TM modes—has been described by means of
the developed spatiotemporal coupled-mode theory. We have
shown that by choosing the direction of incident light one
can obtain an exceptional point due to coalescence of the
two modes of the structure. The coupled-mode theory allowed
us to obtain a simple analytical expression for the scattering

matrix, the transmission spectrum at the exceptional point,
and the exceptional point condition. We have also obtained an
approximate dispersion relation of the modes of the structure,
which is in good agreement with the rigorous simulation
results.

Further calculations show that even better agreement can be
obtained if we assume that cTE

1 and cTM
1 in Eq. (7) depend on

kx and ky [25]. In this case, by expanding cTE
1 and cTM

1 into a
Taylor series up to kx and k2

y terms, we obtain the same Eq. (11)
where ηTE, ηTM, vTE

g , and vTM
g are complex numbers.

Let us note that cross-polarization mode coupling discussed
in this paper occurs due to breaking the reflection symmetry
(xz symmetry plane) by introducing nonzero ky . An alternative
approach to breaking this symmetry is magnetization of the
structure. Indeed, in Ref. [32] magnetization-induced cross-
polarization mode coupling was demonstrated in longitudi-
nally magnetized diffraction grating at ky = 0. We believe the
theory proposed in the current paper can be reformulated to
describe the effects predicted in Ref. [32].
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