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Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission
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For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal
emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been
experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation
noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary
for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships
are developed for systems with any number of modes and couplings to an observing space. The results are shown
to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss
physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples
include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise
theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance
because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared
and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime
where the current theory of thermal emission fluctuations and background noise, which was developed decades
ago for free-space or single-mode cavities, has no derived solutions.

DOI: 10.1103/PhysRevA.97.013844

I. INTRODUCTION

Fundamental treatments of photon noise indicate that ther-
mal emission noise follows Bose-Einstein (BE) statistics rather
than Poisson. It is often pointed out that BE behavior is lost or
reduced in systems where the thermal emission interacts with
many modes, which is a feature of almost every practical imple-
mentation. However, even after decades of advances in thermal
emitters and photon and thermal detectors, it is still not clear
that BE-like noise for thermal light has ever been observed
[1-4]. One difficulty with making such an observation is that a
thermally emitting (or detecting) cavity almost never perfectly
couples to just one single mode. Even the highest-finesse
cavities typically interact with a large number of free-space or
external cavity modes, which introduce loss and/or averaging
that creates a more Poisson-like statistical behavior. A second
difficulty is that systems with few interacting modes are
difficult to treat mathematically, and a general solution for
thermal statistics in a cavity with an arbitrary mode structure
and coupling has only been developed recently. In this paper,
we develop relationships describing radiation noise for free
space and internal to microcavities. We further analyze in
detail the possibility of observing BE-like photon statistics
in microcavities and resonators coupled to thermal emission
or detection systems with any arbitrary mode structure and
coupling.

The quantum thermal emission law developed by Planck
is one of the pillars of modern physics; however, it must be
modified when applied to micro- and nanosystems, where

“Present address: 4-174 Keller Hall, 200 Union St. SE, Minneapolis,
MN 55455, USA; joey @umn.edu

2469-9926/2018/97(1)/013844(11)

013844-1

the emitting or absorbing object has a size comparable to
or less than that of a wavelength [5,6]. For many devices
on this scale, such as detectors, fluctuations are even more
important than the base level of the emission, since fluctuations
set the ultimate ability of the device to distinguish a signal
from the thermal radiation background. The early work on
fluctuations [7-13] was performed decades ago on objects
and devices interacting with either idealized single modes
or the many modes of free space. For the former, photon
number fluctuations appear Poisson-like for wavelengths near
to and shorter than the thermal emission maximum, while
they follow BE-like statistics at very long wavelengths. As
discussed above, the presence of many modes averages the BE
contribution of each individual mode, resulting in Poisson-like
fluctuations.

A fraction of the early work on energy fluctuations and
background noise ignored the randomizing nature of many
mode systems and contained errors [7,9,11] that have prop-
agated into later treatments and textbooks down to the present
day [14-16]. Later treatments of photon statistics and radiation
noise [17-19] have handled thermal emission fluctuations for
a few additional special cases, most notably that of a system
with a number of uniform modes [11,12]. This work discussed
the difficulty of a obtaining a general solution for a system
with an arbitrary mode structure. Olson and Talghader [20]
developed a solution for photon number fluctuations for an
idealized arbitrary cavity mode structure, but did not analyze
the radiation background noise or the conditions under which
BE-like statistics might be observed.

Despite the progress of these many authors, there remains no
general treatment of thermal emission energy fluctuations and
radiation noise for objects interacting with an arbitrary mode
structure. In previous decades, this was an acceptable situation
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FIG. 1. Conceptual diagram of a resonator-based thermal emitter
that couples to a detector in (a) the same cavity and (b) an external
cavity.

since nearly all existing devices interacted with many modes.
However, there are currently many structures and devices that
have both high spectral selectivity and volumes comparable
to or smaller than A3, where A is the wavelength of light.
This combination of properties drives the number of cavity
modes downward and makes the relative coupling of each
mode to free space (or external cavity) modes of paramount
importance. Recent devices with both narrow spectrum and
small volume include microresonators [21,22], microcavity
detectors [23,24], microcavity emitters and lasers [25,26],
perfect absorbers [27,28], and others. Perhaps the most classic
example is a narrow-spectrum thermal emitter. This is shown
conceptually in Fig. 1 coupled to a detector in (a) the same
cavity, and (b) an external cavity, to measure the fluctuations.
While the physical devices shown in Fig. 1 ostensibly apply
to infrared systems, the physical treatment that we discuss
applies equally well to terahertz (THz) systems, and the
Fabry-Perot cavity in the diagram could be replaced with an
appropriate THz resonator. Indeed, BE noise becomes most
clearly dominant in the single-mode thermal THz regime.

We now turn to an analysis of the nature of the radiation
background noise that would be observed for a general system.

II. DERIVATION AND ANALYSIS OF THERMAL
EMISSION ENERGY FLUCTUATIONS WITH A
SPECTRALLY DEPENDENT MODE STRUCTURE

Thermal emission energy fluctuations result from time-
dependent variations in the number of photons emitted from or
absorbed by a physical object at a temperature above absolute
zero. Over a small frequency range, the square of the thermal
emission energy fluctuations of an object can be expressed by
multiplying the density of states, square of the photon energy,

photon number variance, and volume. For a blackbody in free

2
8 v~

space, the mode density is ~5-dv and the resulting equation

is

2 2v? 2 2
(AE?) = f/ 5 () (An*) Vdvd Q. (1)

where (A E?) represents the mean squared energy fluctuation
(variance), v is the photon frequency, c is the speed of light, &
is Planck’s constant, 2 is a solid angle, and (An?) represents
the total photon number variance. At this point, the only
restriction on the volume Vis that it is very large with respect to
wavelength. Also note that (An?) can be (and is) temperature
and frequency dependent.

At very small volumes, where V ~ A3, the distribution of
cavity modes deviates substantially from that of free space.
The exact mathematical treatment of the mode structure of
a microcavity will be highly geometry dependent, but in
principle one merely counts the number of modes of the cavity
in the spectral range of interest and sums the product of energy
squared and photon number variance over each one:

(AE?) =) (hvn)(An®),,. )

m

Since energy fluctuations increase linearly with volume,
plots of (AE?) will usually be normalized by this factor for
easier comparison across size scales.

For an object interacting with a single optical mode, the
photon number fluctuations satisfy Bose-Einstein statistics
[29], such that (An?),, = (n,) + (n,)*, where (n,,) is the
average photon number in the single mode, m, in the volume
of the system. At the opposite extreme is a system with many
modes, where thermal emission photons populate the system
so that the combined photon statistics become Poisson-like,
i.e., (An?) = (n), where (An?) and (n) are the photon number
variance and average number, respectively, for all modes
combined. Between these extremes is the general case of an
arbitrary number of modes, most commonly seen in micro- and
nanocavities.

Note that the variance represents the second statistical
moment. Two distribution functions could have identical vari-
ances but differ in higher-order moments, such as skewness or
kurtosis [29]. Therefore, we will use the terms “Poisson-like”
and “BE-like” in this paper to discuss systems with a variance
near (n) or (n) + (n)?, respectively.

To see how this develops, we note that the average total
number of photons must be equal to the sum of the averages for
all of the modes, (n) = ), (n,,). This is true for any general
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emitter or absorber (not necessarily a blackbody). For thermal
emission of ablackbody in equilibrium, we can use the standard
equation for the average number of photons in a mode found
in many thermodynamics texts [30,31]:

1
(nm)pB = ST 1 3

If a thermal emitter (or, equivalently, absorber) is not a
blackbody, then this equation will be modified by the emis-
sivity, i.e., the coupling strength of the graybody to a specific
mode. The expression then becomes

Em
(nm) = ST [ “)

or equivalently, (n,,) = &, (n,,) - If we use these expressions
of photon number in a Bose-Einstein probability distribution,
the photon number variance for a system with an arbitrary
mode structure takes the form [20]

(An?) = (n) +

(”’)2 2
M = Do) + (D, )

where

2
1 — Zm <nm ) (6)

MEff (Zm <n’"))2

Here M. is the effective number of modes. As one would
expect, M is a parameter that describes the number of
modes interacting with a thermal system, but it differs from
the simple mode number because it incorporates different
strengths of coupling between the thermal emitter or absorber
and each mode. For example, consider the discrete distribution
of modes in Fig. 2. In Fig. 2, the interaction strength of each
mode differs from the others. This means that the population
of thermally emitted photons into these modes will be less
than predicted from Planck’s law for that frequency and
temperature. However, if it has a uniform set of modes, each
mode has identical strength (for example, each mode with
strength equal to the blue dashed line) and M. is obtained
merely by counting each one.

We can draw several critical conclusions about thermal
emission from this analysis:

(1) As stated previously, a single-mode system will have
Bose-Einstein photon statistics while a many-mode system in
aggregate will have Poisson-like photon number fluctuations.
However, each individual mode of a multiple-mode system will
have Bose-Einstein statistics, regardless of the system statistics
in aggregate.

(2) Any random sample of the photons of a system with
Bose-Einstein statistics will also have Bose-Einstein statistics.
For example, consider a single-mode microresonator that
randomly scatters a small fraction of the photons propagating
within it out into free space. These scattered photons in
aggregate will also have BE statistics (but as will be discussed,
a low number density may make the distinction between
Poisson-like and BE-like photon number fluctuations difficult
to see).

<n >

Mode

FIG. 2. Conceptual diagram of a system of modes with different
couplings to a thermal emitter for each mode. The effective mode
number M.y must be calculated using an average photon number
that is weighted by the coupling, or emissivity, of each mode
[see Egs. (4) and (6)], or else theory will underestimate the magnitude
of BE noise. Blue dashed line shows a uniform coupling for each mode
with identical strength.

(3) Emissivity must be considered per mode prior to the
calculation of (An?). Often in the literature, one sees photon
number fluctuations calculated using a modified Eq. (5), where
(An?) for a blackbody is directly multiplied by (v, 2), but this
calculation is not correct. Granted, it has negligible errors at
wavelengths equal to or shorter than the peak thermal emission
wavelength, but it can have significant errors for individual
(or few) modes at wavelengths significantly longer than the
thermal emission peak. The proper expression is

(An%) =" () + ()’

m

. Em Em : 7
- Z eho/kT _ T eIkl — 1) | )

(4) The frequency spacing between modes does not affect
the photon number fluctuations except through the emissivity
(i.e., coupling) of each mode and the natural frequency depen-
dence of Planck’s law. In other words, two modes separated by
1 nm in wavelength would have the same number fluctuations
as two separated by 2 nm unless the emissivity or population
significantly changed over that wavelength range.

(5) The BE-like statistics of a single mode of a many-
mode system may be difficult to distinguish from Poisson-like
statistics. First, the spectral resolution necessary to see a single
mode is extremely high. Second, since (n,,) is only a small
fraction of (n), the magnitude of the (n,)> term will be
extremely small compared to (). This is particularly true
for common visible wavelength ranges, where the average
population of photons in a mode as given by Eq. (4) is much
less than 1 and distinguishing (n,,) + (n,,)? from (n,,) could be
impractical. Conversely, a few-mode system working at long
wavelengths and elevated temperatures could allow BE-like
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statistics to be seen by sampling a fraction of the spectral range
of the overall thermal system.

(6) The numbers of modes are not determined solely by
the isolated detector or emitter volumes (if they are separated
into different cavities), but rather by the total mode structure
of the coupled emitter-detector system. For example, a heated
single-mode cavity emitting toward a detector in free space
would not be single mode for purposes of photon statistics and
radiation noise since multiple free-space modes will couple
with the emitting cavity mode.

(7) Quantum vacuum fluctuations will contribute a large
part of the overall electric field at low temperatures since the
number of thermal photons will be very small. This is seen in
numerous cavity effects, such as the Jaynes-Cummings line
splitting [31]. However, an analysis of the thermal photon
statistics, by necessity, utilizes the fluctuations in detected
photon number. Since the vacuum fluctuations are virtual, they
cannot themselves contribute to the number of directly detected
photons. However, along with radiation reaction [32], these
same vacuum fluctuations play a major role in stimulating
thermal spontaneous emission transitions, which represent the
(n) term in the photon number variance (n) + (n)?. The (n)?
term represents stimulated thermal emission.

III. OBSERVING BOSE-EINSTEIN STATISTICS
IN THERMAL EMISSION

From the previous discussion, it is clear that only thermal
systems with a single mode or few modes will ever be observed
to be BE-like. This condition is usually extremely difficult to
produce in practice. Recall the simple case of a spectrally
narrow heated device emitting into free space, where the
radiation noise is measured by an ideal detector. The number
of modes in a spectral region in free space is given by

8”” dv. For atypical-size laboratory, where V = (3m)?, and an
emission wavelength and frequency of A = 5 um and 60 THz,
respectively, the spectral resolution of an emitting cavity would
have to be narrower than about 2.3x 107> Hz in order for the
emitted photons to be confined to a single free-space mode.
This corresponds to a microcavity finesse on the order of or
exceeding 10'®, which is many orders of magnitude beyond
experimentally achievable values [33-35].

Therefore, in order to have few modes, not only must
the emitter be confined to a small volume, but the detector
interactions with its enclosing volume, whether large or small,
must be considered as well. The emitter and detector can
either be confined to the same cavity (volume), or they can
be separated into two coupled volumes. We will consider each
case in turn below.

A. Observing Bose-Einstein radiation background
noise within a single cavity

A single cavity containing an emitter and detector was
shown in Fig. 1(a). The diagram is of an infrared Fabry-Perot
cavity, but for generality, it could be replaced with a THz
resonator also containing a detector and emitter. This cavity is
ideal, one dimensional, and lossless, having mirrors of 100%
reflectivity, and the space in which it resides has perfectly
absorbing walls and is held at absolute zero. This space can

have any volume but to place alower bound on the observability
of BE-like noise, it will be considered infinitely large. Smaller
volumes will confine the lateral dimensions and, because
of the smaller mode density will create fewer interactions
with non-cavity-axis modes. With perfectly reflective mirrors,
the finesse of the cavity is defined by the absorption of the
emitter and detector. The detector and emitter have been placed
between the two mirrors, for example, each at a different
intensity peak in the standing wave patterns within the cavity
for maximum coupling. Other positions within the cavity or as
part of the mirrors are possible with appropriate adjustments
of the coupling calculations. It is important to note that
the cavity system may have many modes in total; however,
the emitter and detector will interact most strongly through the
cavity modes defined along the cavity axis because radiation
emitted in other directions will be immediately absorbed by
the walls of the already-mentioned enclosing space held at
absolute zero.

Let the emitter have a single-pass absorption A/2, and a
temperature Tg, and the detector have the same absorption,
but temperature 7. The finesse of this cavity can be calculated

[36]tobe F = @. (Note that equal absorptions are merely
a simplification and not a necessary condition for the analysis
below.) In order to best identify energy fluctuations of the
emitter, the detector temperature must be low, assisted by
cryogenically cooling the entire cavity system to near absolute
zero. The emitter temperature must be raised to a high value by,
say, Joule or inductive heating. We note that in reality for a fully
confined, lossless cavity, it would be impossible to raise the
emitter temperature by external means because no connection
to the outside world would be allowed; however, for purposes
of this example we will assume that heating takes place, for
example, inductively via a frequency far from the resonance or
via Joule heating with wires aligned away from the cavity axis,
so that the system can be considered lossless along the cavity
axis over the (narrow) spectral absorption range of the detector.

Some sort of external attachment to the detector is also nec-
essary for both the logical reason that there must be some means
to hold it in place and read out the signal and the fundamental
reason that the detector must be cooled because in a system
solely limited by radiation heat transfer, radiation coupling
along the cavity axis will raise the temperature of the detector
to levels that would make seeing the energy fluctuations of
a single emitter mode impossible. Let us examine this latter
point in more detail.

The temperatures Tr and Tp are not independent because
they are coupled via thermal radiation emitted within the cavity
resonance, and the detector must absorb light of this frequency
and direction or else the noise characteristics cannot be de-
termined. If the cavity heat transfer is completely radiation
limited, the temperature of the detector can be written as a
function of the background and emitter temperatures as

ggphv 202 ephv
Z SholkTE — | / / —5 ghopir, — 452y
Qupace
egphv ephv
= Z ik, — | f _/ c3 ik, | dev

~pdce

®)

013844-4



OBSERVATIONAL LIMITATIONS OF BOSE-EINSTEIN ...

PHYSICAL REVIEW A 97, 013844 (2018)

1 cav i
Pl
1 1
1 1
’ 1 ﬂl ™%
/ 1 | \
/ 1 I \
U TR \
! il \
! 18] \
I 1 1
I 1 1
Q. :
space : : Qspace
| I '
! I
1 I
1 I
1 1
\ ' 1
\ li I !
\ il h !
\ il h /
A il /
Yo lUl ¢

FIG. 3. Diagram of the solid angles used in noise and radiation
heat transfer calculations of a single cavity containing a coupled
emitter and detector.

where T is the background temperature, probably 0 K; ep
is the emissivity of the detector into free space, which can be
a function of v and Q; egp is the coupling between emitter
and detector in the cavity; and Qgpace represents the solid
angle distribution of detector emission outside the cavity, (i.e.,
4w — Qcay, Where Qg represents the solid angle distribution
of the cavity modes). Note that we do not need to include the
emitter fluctuations to the background in the equation because
it is only the detector that is observing the fluctuations, so only
interactions that couple directly to the detector are relevant.
See Fig. 3 for a conceptual diagram of the cavity geometry.
The first term on the left-hand side represents the energy
emitted from the emitter to detector, the second term on the left
side represents the energy emitted from the background to the
detector, the first term on the right represents the energy emitted
from detector to emitter, and the second term on the right side
represents the emission from detector to background. Of these
terms, the emission from detector to emitter (Tp < Tg) and
the emission from the background (75 ~ 0K) to the detector
can be neglected in an idealized analysis, in which case we can

rewrite the above as
8EDhV EDhU
Z ehv/kTE -1 / / C3 ehu/kTD _ ldev (9)
Qqpace

We have assumed that the volume surrounding the open-
sided cavity is large enough to be considered free space.
This is not a necessary condition, but it does allow us to
maximize the peripheral mode number and therefore minimize
the equilibrium detector temperature in a radiation-limited
system.

From the above equation, if we select a temperature Tg
for the emitter, say, by introducing a Joule heating current
into the emitter plate, then we can calculate the steady-state
detector temperature. Once we have determined this, we can
estimate the energy fluctuations and radiation noise of the
system. The detector will have two dominant sources of
radiation noise: absorbed radiation from the emitter via the
fundamental cavity mode, and emitted radiation from the
detector itself due to its finite temperature 7. This latter noise
is emitted to all available modes, not merely those aligned
along the cavity axis, and since the number of peripheral
modes can be very high, they will usually dominate the
detector emission fluctuations. In order to measure only the
radiation noise in the few (or one) modes along the cavity
axis, the emitter radiation fluctuations must greatly exceed
the detector emitted fluctuations, (A E)emitter > (A E?) detector-
Calculating this condition involves integrating the energy
fluctuations for the detector (right-hand side) over all modes
and space and then solving for Tp for a given Tg such that
this is much less than the energy fluctuations of the emitter
(left-hand side) in the relevant cavity mode(s):

2
2 E€ED €ED
;(hv) |:ehu/kTE 1 + <ehv/kTE _ 1> ]m

20?2
> / / —-(hv)’
Qspace c

ED ED
X |:ehv/kTD -1 + <ehv/kT0 _

In the above expression, we have again neglected the
background emission everywhere and detector emission in the
main cavity modes because any practical solution to the above
condition will require T to be small and Tg > Tp; therefore,
the detector fluctuations in the cavity and the background
fluctuations elsewhere will be negligible. Note that the above
expression is a conservative estimate for measurability because
we have assumed that any emission outside the main cavity
axis occurs into free space; emission into a more limited
volume will involve a smaller mode density and thus a smaller
contribution to energy fluctuations, improving our prospects
of detecting BE-like noise.

InFig. 4, we show solutions for Eqs. (9) and (10) for a single-
mode half-wave cavity at various resonance wavelengths, using
the condition that the “much greater than” symbol refers to
exactly one order of magnitude. In this plot, we have changed
the emitter temperature 7 in the single-mode cavity by, for
example, introducing a controlled current to induce Joule
heating. The detector temperature is forced to a finite value
by radiation transfer from the emitter. For simplicity, the
background has been assumed to be at 7 = 0 K. At this point,
we know the temperature of both the emitter and detector for
purely radiation-limited heat transfer. We can now calculate

2
1) :|Vd§2dv. (10)

013844-5



Y.-J. LEE AND J. J. TALGHADER

PHYSICAL REVIEW A 97, 013844 (2018)

500

—a— AE?5um  F~300
—v— E 5um

—e— AE? 20pm

—<— E 20um

300 1—*— AE? 100um

—e— E 100um

400

Ty (K)

200

100

T T T T T T T T T T T T
0 100 200 300 400 500 600
Te (K)

FIG. 4. Plots of (E) the detector temperature versus emitter
temperature for a single isolated cavity and (A E?) the maximum
detector temperature such that overall detector energy fluctuations are
dominated by received power from the emitter (an order of magnitude
greater than other sources). When the emitter is heated, it gives off
radiation, some of which is absorbed by the detector. This raises the
temperature of the detector to an equilibrium temperature, 7. The
detector then has a radiation noise with contributions from fluctuations
in the received emitter energy and the fluctuations of its own emitted
energy. To observe BE noise, the former should dominate, and in
these plots, that is not the case if radiation heat transfer is the only
mechanism determining 7. Some external cooling mechanism must
be used to meet the condition of Eq. (10). The curves are solutions
for Egs. (9) and (10) for a single-mode half-wave cavity at various
resonance wavelengths with Az = 0.005and A = 0.005. The cavity
can be considered as similar to that in Fig. 1(a).

from the maximum detector temperature that will allow the
radiation background noise measured by the detector to be
dominated by received radiation from the emitter, as predicted
by Eq. (10). Domination by the emitter is crucial since, at
a given wavelength, higher-temperature objects will have a
stronger BE component to their photon statistics and the
emitter-detector coupling only covers one or a small number of
modes, making BE statistics observable. From these data, we
can see that at almost all elevated temperatures, the maximum
acceptable detector temperature is lower than can be achieved
in a radiation-limited system, which means that we must have
some degree of detector cooling via heat conduction. Note that
this conclusion is relatively independent of cavity finesse.

In addition to the above analysis, the solutions of Egs. (9)
and (10) in Fig. 4 actually meet at ultralow temperatures. Since
the number of thermal photons in this regime becomes negli-
gibly small, vacuum fluctuations would dominate. However,
the variance due to virtual photons can only be considered if
the detector sampling period is within the order of the lifetime
of virtual photons [37]. Their lifetime is upper limited by the
uncertainty principle [38],

h
AEAt =~ —, (11
2

where 4 is Planck’s constant, AE is the energy of virtual
photons, and At is the existing period of those photons. AE

25
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FIG. 5. Conceptual diagram of the modes of a single cavity
containing an emitter and detector of the type shown in Fig. 1(a).
The simulations of Figs. 6-9 are based on variations around this basic
cavity. Table I describes the layer structure in detail. The layers include
S5S5pairsof 3umn =2.5and 6 umn = 1.25, 135 um n = 1, 60 nm
n=2-2i,750 um n = 1 (A), another 60 nm n = 2—2i, 15.75 um
n =1, and 9.5 pairs of 3um n = 2.5 and 6 um n = 1.25. Here, a
nondispersive (constant) refractive index has been assumed for both
the emitter and detector. A frequency-dependent refractive index may
change the heights and/or spacings of the peaks slightly.

is around 0.248 eV if A =5 um, so the effective photon
“lifetime” At is around 0.25 fs. We will discuss this point
in relation to cavity lifetime later.

For a diagram of the modes of a single cavity, and a
description of the layers, see Fig. 5 and Table I. Figures 6-9
quantify the radiation background fluctuations for a single-
cavity system as a function of emitter temperature, finesse, cav-
ity resonant wavelength, and number of longitudinal modes.
In each case, the actual energy fluctuations are compared
to the case of a perfect Poisson system and an extreme BE
system (where (An?) ~ (n)?). The data above establish that,
for a cavity with total isolation in one dimension, the primary
criteria for observability for BE background noise in a single
cavity are (1) a high emitter temperature, (2) an extremely
long observation wavelength, and (3) a sufficiently low detector
temperature relative to the emitter.

TABLEI Layer structure for the five-mode single cavity of Fig. 5
at 30 um.

Thickness (;«m) Index
5.5 pairs 3/6 2.5/1.25
1 135 1
1 0.06 2-2i Detector
1 750 1 A
1 0.06 2-2i Emitter
1 15.75 1
9.5 pairs 3/6 2.5/1.25
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FIG. 6. Radiation background fluctuations as a function of emitter
temperature for an isolated single cavity containing an emitter and
detector. The plots for (n) and (n)? are merely to show the relative
importance of each term in the overall noise of the system, which is
based on (n) + (n)>. Table I describes the layer structure. Also, adjust
the length of A in Table I to obtain % and volume.

Interestingly, cavity finesse is essentially irrelevant in the
case of the isolated resonator because the average number of
photons is determined by the number of modes, not the spectral
width of any mode resonance. Spectral width is only involved
when there is another space with modes with which the cavity
could couple. However, cavity finesse plays a very important
role in determining the photon lifetime of a system. This is
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FIG. 7. Radiation background fluctuations as a function of finesse
for an isolated single-mode cavity containing an emitter and detector.
Since there is only one mode regardless of spectral width and the
detector is at a low enough temperature that it does not emit significant
radiation to the peripheral background, the fluctuations are constant.
The plots for (n) and (n)? are merely to show the relative importance
of each term in the overall noise of the system, which is based on
(n) + (n)*. Table I describes the layer structure. Also, adjust the length

of A in Table I to obtain % and volume.
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FIG. 8. Radiation background fluctuations for a single-cavity sys-
tem as a function of cavity resonant wavelength. Note that the actual
fluctuations ({n) + (n)?) are indistinguishable from Poisson statistics
for wavelengths less than about 10 um and only become clearly
differentiated above 20 pwm. Table I describes the layer structure. Also,
adjust the length of A in Table I to obtain % and volume.

important because any fluctuation in the mode energy is by its
nature very transient. Deviation of the number of photons from
average will exist on average for only a photon lifetime. This
means that any detector hoping to see these fluctuations must
operate with a response time on the order of the photon lifetime
or faster. Otherwise, the noise will be observed as an average
over many photon lifetimes, which will revert the statistics to

3.5X10_2 T T T T T T T T T T

Bose-Einstein

3.0x102 T.=1500 KA=30 um

—=— Nonuniform
—e— Uniform

2.5x107 .

(<AE2>/V)1/2 (pJ/m3/2)

2.0x107 — .
0 5 10 15 20 25
Number of Modes

FIG. 9. Radiation background fluctuations for a single-cavity
system as a function of longitudinal modes. In this plot, we have taken
the same cavity system from Figs. 68, except that the length has been
increased to introduce additional modes into the detector absorption
pass band. The “Nonuniform” curve represents the data of interest,
while the “Uniform” curve refers to a hypothetical system where all
modes couple equally to the emitter and is included for comparison.
Table I describes the layer structure. Also, adjust the length of A in

Table I to obtain % and volume.
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Poisson-like behavior. Additional discussion of detectors will
be delayed to later.

On a related note, vacuum fluctuations have a lifetime with
an upper bound given by the uncertainty principle, which
makes their “lifetime” enormously shorter than the lifetime
of real photons. This would make the vacuum variance in a
thermal cavity essentially impossible to see. However, if one
dispenses with low-energy microsystems (i.e., thermal cavities
as in this paper), and instead turns to an ultrafast, high-energy
system—a femtosecond laser—then one can actually see the
effects of the vacuum field variance. An interesting recent
work, Ref. [37], shows that the effects of the vacuum field vari-
ance can be observed through the extreme nonlinearities pro-
duced by a high-brightness femtosecond laser. Here, enormous
electric fields are produced in a tiny volume for a time period
much less than a single cycle of the emission wavelength.

We note that the wavelength needed to observe BE-like
noise is longer than would be expected from a simple calcula-
tion using Eq. (3). Instead, Eq. (4) must be used because of the
imperfect coupling between the emitter and detector, e p. The
required long wavelengths make the isolated single-cavity case
most compatible with a THz resonator, although differences
between Poisson and BE will be visible in the long-wavelength
infrared as well.

One additional question that deserves discussion is whether
it would be possible to see BE-like noise using outcoupled light
from a high-finesse resonator via a coupled waveguide or scat-
tering defect without the need to include a detector inside the
resonator. This is definitely possible, but will run into the issue
raised in conclusion 2 from our thermal emission discussion
earlier in Sec. II in the paper. As one samples a photon popu-
lation, one is reducing the number of observed photons to well
below the actual number in a mode. Since the BE component of
noise relies on (n)2, our ability to distinguish BE from Poisson
becomes much more difficult. On the other hand, a large sample
cannot be outcoupled (at least in steady state) from the primary
resonator mode because this loss will then limit the isolation
of the resonator, causing it to interact more strongly with the
modes of the environment—truly a conundrum!

Another issue with waveguide outcoupling is that an ex-
tremely long-length waveguide introduces many modes onto
the propagation axis, while a shorter waveguide develops tun-
neling modes as the length decreases, eventually approaching
near-free-space densities as the length becomes very short.

B. Observing Bose-Einstein radiation background
noise in coupled spaces

It is also possible to observe BE-like noise in two coupled
cavities as we will now argue. Consider the configuration
of Fig. 1(b). Here a single-mode cavity containing a heated
emitter is coupled to an external observing space containing a
cryogenically cooled detector. This detector will be assumed
to be cold shielded and filtered so that it is only responsive to
the spectral emission of the fundamental mode of the emitter
cavity. The detector cavity will contain many modes, the
number of which will be determined by the size of the cavity,
which is a variable that we will control. For simplicity, we
will assume a cavity that has lateral dimensions of % by %, but

with a length of % where 7 is an integer that we can control

18
—

s Emitter |
16 1

14 ¢
12

107 Detector |

Absorption(%)

EJ ‘‘‘‘‘ i T JL/,HJL_

192 194 196 198 20 202 204 206 208
Wavelength(zm)

FIG. 10. Conceptual diagram of the modes of two coupled cav-
ities as shown in the inset. The short cavity contains the emitter at
elevated temperature and the second cavity the detector. The photon
lifetime of this coupled cavity system is 0.14 ns. Table I describes the
layer structure in detail. The layers include 4.5 pairs of 2 um n = 2.5
and 4 um n = 1.25, 600 um n = 1 (A), 40 nm n = 2—2i, another
600 um n =1 (B), 2.5 pairs of 2um n = 2.5 and 4 um n = 1.25,
umn =1.25,1.5pairsof 2umn =2.5and4 umn = 1.25,5 um
n=1,20nmn = 2—2i, another Sum n = 1, and 9.5 pairs of 2 u m
n =2.5 and 4 um n = 1.25. Here, a constant refractive index with
frequency for both the emitter and detector is assumed. A dispersive
refractive index would alter the heights and/or spacing of the peaks
slightly.

to alter the volume of the cavity. In this system, the walls of
the detector cavity have perfect reflectivity, R; = 1, but the
detector itself has an absorption and is positioned as shown
in the inset of Fig. 10 and described in Table II. The emitter
cavity has a perfectly reflecting back mirror, R, = 1, but a
front mirror, that is, the mirror that couples the emitter and
detector cavities, that has a reflectivity, Ry < 1. In this way,
the two cavities are coupled to one another but completely
isolated from the outside world. The single-mode version of
this coupled cavity system has a photon lifetime of 0.14 ns.

TABLE II. Layer structure for the five-mode coupled cavity at
20 pm.

Thickness («m) Index
4.5 pairs 2/4 2.5/1.25
1 600 1 A
1 0.4 2-2i Detector
1 600 1 B
2.5 pairs 2/4 2.5/1.25
1 8 1.25
1.5 pairs 2/4 2.5/1.25
1 5 1
1 0.02 2-2i Emitter
1 5 1
9.5 pairs 2/4 2.5/1.25
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FIG. 11. Plot of energy fluctuations versus detector absorption
for a basic coupled-cavity system in the case where five modes
have been coupled to the detector. The emitter cavity parameters are
Ry =0.999, R, =1, A=0.001, L =10um, and T = 1500K. As
the detector absorption increases, the coupled resonances become
broader, effectively becoming uniform as A, approaches 1.

The volume (determined by length in our specific example)
of the detector plays a dominant role in how many modes
interact with the emitted photons and thus the amount of BE
behavior that will be seen in the noise. However, R and the
absorptions of the detector and emitter also have a large effect
since they help determine the width of the resonances within
the emission envelope, as shown in Fig. 10. In this figure,
a system is shown where approximately five detector cavity
modes couple at some level with the emitter resonance. In
Fig. 10, the resonances are shown as extremely narrow, but
these would widen if the single-pass absorption of the detector
A, could be hypothetically increased without affecting the
other parameters of the cavity. This concept is shown in
Fig. 11. As A, increases, coherent interactions decrease, and
the resonances widen. In the case of extremely high detector
absorption, where A, approaches 1, the width of the resonances
that originate with the detector widen towards infinity and the
coupling peak-to-valley difference (frequency dependence of
coupling) decreases as the valley minima move towards perfect
absorption. This effectively creates a uniform mode structure
in the cavity system. When the detector resonances are very
narrow compared to the emitter resonance, each mode couples
differently, and we must turn to the effective mode calcu-
lation discussed previously in order to calculate the noise
fluctuations, as shown in Fig. 12. Figure 13 shows the noise
fluctuations as a function of cavity volume for the ideal cases
of Poisson statistics, BE statistics, and uniform modes, and
the actual case of coupled modes. Figure 13 shows the plot for
Tg = 1500 K at A = 50 um. As with the single-cavity case, we
can see that distinguishing BE from Poisson statistics is still
difficult at short infrared wavelengths. At 5 um, a difference
of less than 3% is seen in a single-mode system. At longer
infrared wavelengths, however, as shown in Fig. 13, and into
the THz range, the distinction between BE and Poisson is very
clear if a single- or few-mode system can be created.

T T T T R — T
10Le_——________BoseEinstein  __ |
0.8+ —=— Non-Uniform i

—e— Uniform
0.6 i
5
=
= 041 i
0.2 1 -
0.0

T T T T T T T T T T T T
0 1x10™ 2x10™ 3x10™ 4x10™ 5x10™ 6x10™"
Cavity Volume (m®)

FIG. 12. Plot of inverse effective mode number versus cavity
volume for the basic coupled cavity of Fig. 10. For comparison, plots
of a perfect BE system (M = M. = 1), a perfect Poisson system
(M = Mg = 00), and a uniform mode system (M. = M) have been
made. Table II describes the layer structure. Also, adjust the length of
A and B in Table II to obtain % and volume.

Before concluding, it is useful to speculate on the chances of
observing BE-like statistics in thermal emission. This analysis
has shown that such observation is possible in theory. The
magnitudes of the differences between Poisson-like and BE-
like noise become quite significant under the right conditions.
However, there are significant practical difficulties. The first
involves the spectral regime. BE-like noise will only dominate
over Poisson-like noise for emitters at elevated temperatures
and systems operating at long wavelengths. For example, this
paper used A ~ 30 um and Tr = 1500K, and ranges with
temperatures and wavelengths scaled appropriately, or higher

8x1 0-3 T T T T T T

Bose-Einstein

7x107 1

T=1500 K 2=50 um b
\ —=— Non-Uniform
—e— Uniform

6x107 1

(SAEZ)' (pJ/m®?2

5x107 : .
0.0 2.5x10™"

T T
5.0x10"  7.5x10™  1.0x10™

Cavity Volume (m®)

FIG. 13. Energy fluctuations versus cavity volume for a coupled
cavity system with the basic structure of Fig. 10 for a center
wavelength of 50 um. For comparison, plots of a perfect BE system
(M = M = 1), a perfect Poisson system (M = M.y = 00), and a
uniform mode system (M. = M) have been made. Table II describes
the layer structure. Also, adjust the length of A and B in Table II to
obtain %2 and volume.
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or longer, are viable. Interestingly, the finesse requirements of
cavities or resonators are not a major factor in the success or
failure of BE-like noise detection. Unfortunately, though, the
materials and device technologies for the above wavelength
ranges are not nearly as advanced as in the visible and near-IR.
There are few materials that could be fabricated into modally
isolated far-IR cavities. Possibilities include diamond and ionic
solids such as KBr, but significant technological development
would be necessary to create low-loss high-reflectivity coatings
and resonators. Metallic or metamaterial resonators in the THz
perhaps provide a better path forward as they can be isolated
from the external world by the metal of the resonator itself.
Small metallic losses within the resonator are acceptable for
mode coupling as the finesse needs to be high enough to ensure
that the coupling of the system is dominated by the emitter
and detector, but not so high that finesses typical of near-IR
microresonators are necessary. However, there are significant
photon lifetime issues introduced by the finesse. As mentioned
previously, any detector must be able to sample the photon
number of the system with a response lifetime comparable to
or faster than the photon lifetime. Although the photon lifetime
varies wildly depending on the cavity design, a value on the
order of 100 ps is a reasonable working number. At infrared
frequencies, the number of photons in a mode dominated by
BE-like statistics will be slightly greater than 1. (There may
be several or more photons on average for a mode in the THz
range.) This means that detectors must be able to distinguish
individual photons in the infrared at speeds compatible with
the photon lifetime. This would be a difficult task even for
cryogenically cooled telecommunications-grade technology;
in the far-infrared and THz range, such detector technology is
not currently available.

IV. CONCLUSION

In this paper, we have developed relationships to describe
radiation background noise for micro- and nanoresonators

that apply to any arbitrary cavity mode structure, including
coupled systems. It is shown that the noise analysis of few-
mode systems differs substantially from ideal treatments in
prior art (free-space coupling, uniform mode structure, and
Poisson-only statistics). With this theory, it has been shown
that the photon statistics of a system of modes can be extracted
as a sum over the statistics of the individual modes of the
systems, weighted by coupling coefficients that turn out to be
the emissivities of each individual mode, as one would expect
from Kirchoff’s law.

The theory has been used to quantitatively analyze the
possibility of seeing Bose-Einstein noise behavior in ther-
mal emission, a process that has long been predicted for
single-mode systems but never experimentally observed. Both
single isolated cavities containing an emitter and detector
and coupled cavities with emitter and detector separated in
different cavities have been treated. It is concluded that for
emission into free space, the possibility of observing BE-like
noise from micro- and nanoresonators is very low because
a level of spectral purity is required that is far beyond
anything that has been experimentally demonstrated to date.
It is shown that BE-like noise can indeed be seen at high
temperatures and long wavelengths for isolated and coupled
cavities, but ironically, resonator finesse seems to barely play
a role in these cases, as it is primarily the mode isolation
that enables BE observability. The optimal wavelengths for
observing BE-like noise in isolated and coupled cavities
begin in the long-wavelength infrared towards the transition
region to THz; BE-like noise should be visible for single-
mode resonators and those with mode numbers less than
approximately 5.
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