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Parity-time (P7T)-symmetric wave devices, which exploit balanced interactions between material gain and
loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly
different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied
as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the
connection between P7 -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we
use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal
to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics
follows the Mathieu equation, can be described by a P7 -symmetric scattering matrix, whose P7T -breaking
threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated
out of phase, we create P7T -symmetric time-Floquet systems that feature exceptional scattering properties, such
as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties,
rare for regular P77 -symmetric systems, are related to a compensation of parametric amplification due to multiple

scattering between two parametric systems modulated with a phase difference.
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I. INTRODUCTION

The possibility to control and manipulate waves by ex-
ploiting tailored distributions of gain and loss is key in many
modern devices, leading to unique radiative and scattering
properties. A special case of such non-Hermitian systems is a
laser, which consists of a spatial distribution of gain in an open
resonant cavity. In laser oscillators, a certain intensity threshold
represents the maximum gain, which can be balanced by the
leakage losses provoked by radiation to the external space.
At threshold, the system radiates an amplified monochromatic
signal (lasing). In mathematical terminology, the threshold
value characterizes the solution of the linear wave equation
in terms of its stability. When the laser is operated below
this value, the solution is stable. Conversely, when the laser
is operated above this value, the linear solution is unstable,
and the laser output eventually saturates due to nonlinear
effects [1,2]. This threshold behavior is a common denominator
to many non-Hermitian systems in which gain and loss are
coupled to each other [3].

Among the large class of linear non-Hermitian systems that
can exhibit stable and unstable phases separated by a threshold,
those that are invariant under parity-time symmetry have
recently received particular attention. P77 -symmetric systems
are typically made from coupled individual non-Hermitian
components that provide a balanced P7 -symmetric distribu-
tion of gain and loss [4-8]. Below threshold, the coupling
rate between individual components is sufficiently strong com-
pared to the gain and loss rates, leading to power compensation
and PT-symmetric eigenmodes with real eigenfrequencies
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[9]. Above threshold, the coupling rate is too weak for this to
occur, forcing the eigenvalues to become complex, and creating
unstable states with spontaneously broken P77 symmetry [10].
On top of these exceptional spectral properties, P 7T -symmetric
systems also exhibit unique scattering properties such as uni-
directional or bidirectional invisibility, or concurrent coherent
perfect absorption (CPA) and lasing [11,12]. So far, non-
Hermitian P77 -symmetric devices have been observed in very
different physical systems, from optics to acoustics [13-22].
Different methods have been exploited to induce the required
gain, e.g., the use of optical gain media (in optics) [23,24],
amplifiers (in electronics and electroacoustics) [25-27], or
coupling with hydrodynamic instabilities or heat sources (in
flow acoustics and thermoacoustics, respectively) [28,29].

In this article, we explore another class of non-Hermitian
wave systems, namely, parametric time-Floquet systems, that
can exhibit P7 symmetry [30,31]. Indeed, another way to
impart gain is to use a periodic temporal modulation of the
physical properties of the medium, pumping the wave by gain
of parametric nature. Such parametric amplifying systems
are a special case of time-Floquet systems, in which wave
propagation is described by partial differential equations with
time-periodic coefficients [32—-38], which are theoretically an-
alyzed using the Floquet theorem [39]. Time-Floquet systems
have been used in electronics [40-43] and wave engineering
[44-49], leading to several interesting phenomena such as
nonreciprocity, nonreciprocal gain, frequency conversion, and
topologically protected wave transport [49-51].

In the following, we consider parametric time-Floquet
systems obtained by a refractive index modulation at twice
the incident wave frequency (w,, = 2w). We show that, under
some conditions, the scattering matrix of such time-Floquet
systems can exhibit P77 symmetry. In full agreement with
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PT scattering theory, we demonstrate examples of time-
Floquet parametric systems that exhibit CPA-laser points,
phase transitions, and anisotropic transmission resonances. We
also connect the lasing threshold of such systems with the
well-known stability chart of the Mathieu equation [36,52,48].

II. THEORY: PT-SYMMETRIC PARAMETRIC
AMPLIFIER AND INVISIBILITY

Imagine an LC circuit, where the capacitance can vary in
value by mechanically changing the plate separation. As is
well known, a time-periodic modulation of the capacitance of
the system at a frequency w,, = 2wy, where wy is the resonant
frequency of the circuit, results in parametric amplification
of the voltage (gain) [53]. The same thing happens in the
case of a person standing on a swing and flexing his or
her legs at twice the resonant frequency of the swing: the
induced effective modulation of the swing length amplifies
the amplitude of motion. Here, inspired by these phenomena,
we study parametric gain in non-Hermitian wave dynamical
systems provoked by time modulation of the refractive index
of the medium.

A. Infinite Mathieu medium

Let us consider a medium, first introduced in [48], which is
infinite and is subject to a uniform modulation of its refractive
index, periodic in time, such that the propagation velocity is
time periodic: u(t) = ug~/1 — 2m cos(2€2), where ug = w/k
is the velocity of the medium when it is not modulated, m the
modulation depth, and w,, = 2£2 is the modulation frequency.
In this scenario, the scalar one-dimensional wave equation
becomes

02 (x,t) _

821p(x,t)
ot? '

2
1-2 2Q
il m cos (292)] 02

6]

Applying the method of separation of variables, we con-
sider a general solution of the form ¥ (x,t) = X(x)T (¢). This
produces two coupled ordinary differential equations

d*X(x)
dx?

+k*X(x) =0, )

2
% + k2uo*[1 — 2m cos Q)T (¢) = 0, (3)
where k2 is a constant value (physically related to the square
of the wave number of the medium), that defines the Sturm-
Liouville problem [54]. This eigenvalue problem is well
known, and it provides the dispersion relation of the system,
i.e., k = k(w). The solution is a wave of the form

Wit = f W (x.ts K)dk. 4

Since we have differential equations with periodic coeffi-
cients, we can apply the Floquet theorem [32]. The Floquet
theorem forces the system to operate in discrete frequencies
o + n(2R2), forn € Z. This simplifies Eq. (4) since the disper-
sion relation is now discrete and for every nth Floquet harmonic

the solution corresponds to a wave number k,. We can write

Y0 =Y Yx, k). 5)

If we carefully look at Eq. (3), we recognize a Mathieu-type
differential equation, i.e., of the form [36]

d*w(z)
dz?

with z = Qf, a = kzu%/Q, and g = kzu(z)m/Q. The solution
of this equation is a hypergeometric function, which was first
reported by the French mathematician Emile Léonard Mathieu,
when solving the wave equation for an elliptical membrane
moving through a fluid [55]. This kind of differential equation
has been of great scientific interest since then. Indeed, it arises
in a wide class of physical problems including wave scattering
from elliptical bodies and parametric systems, including time-
dependent systems [56—62]. The fundamental solutions of
Eq. (6) [and consequently Eq. (3)] are we(z) = e/"?¢(z) and
wg(z) = e /"2 p(—z), where ¢(z) is a m periodic function
(also called “ganzperiodisch” in [52]), and v = 8 — ju is the
characteristic exponent, which depends on the other parameters
of the equation, namely, v = v(a,q). Taking this into account,
the general solution of Eq. (2) and (3) is

V(x,1) = Ajwe (e’ + Aywy (Qt)e 7+
+ Biwg(Q)e’™ + Bywg(Qt)e ™, (7)

+ [a — 2g cos (22)]w(z) = 0, (6)

where wy,wg correspond to the fundamental solutions of
the Mathieu equations transformed with the proper operators
to be consistent with the notations of our specific problem.
According to Eq. (7) and the classical analysis of such systems
[36,37,52,48], the medium allows as solutions plane waves
with time-periodically varying amplitudes or standing waves,
which exponentially increase in time, depending on the stabil-
ity of the Mathieu solutions, dictated by the imaginary part of
the characteristic exponent v, which depends on the parameters
a and g appearing in Eq. (6). A thorough analysis of Mathieu
functions and their stability can be found in an abundance of
textbooks, e.g., [36]. The purpose of this article is not to discuss
all possible Mathieu solutions, but to study the special case of
parametric amplification in relation with P77 symmetry, which
happens under a specific condition, which we now introduce.

Let us assume that the operating frequency w is fixed, and
tune the modulation frequency to satisfy the relation Q2 = w,
which corresponds to a modulation of the phase velocity at
twice the signal frequency. This frequency modulation results
in a Mathieu equation of the form

d*w(z)
dz?

where K = Q/ug and « = k/K = 1. The solution of this
Mathieu equation is unstable since it belongs to the first
unstable region of the stability chart ([36], Chap. III, p. 40).
This means that no matter how small the depth of modulation
m is, the dominant field solution is a standing wave with
exponentially increasing amplitude in time. The parametric
medium therefore behaves as an infinite space filled with
material gain: Due to the absence of dissipation, it supports
only unstable waves. To make it stable, one needs to balance the

+ k2[1 = 2m cos (22)]w(z) = 0, (8)
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FIG. 1. Scattering from a P7T-symmetric time-Floquet slab. (a)
Graphic representation of a Mathieu slab with uniform time modu-
lation of the refractive index, surrounded by free space; (b) diagram
of the reflection coefficient as the modulation depth increases; (c)
diagram of the transmission coefficient as the modulation depth
increases. Modulation is assumed to be at twice the incident signal
frequency.

amplifying effect with losses, for instance, of radiative nature,
by considering a Mathieu slab of finite thickness surrounded
by the unmodulated medium. In the next section, we show that
finite Mathieu slabs can be stable upon a threshold value, and
establish an explicit connection between this phenomenon and
the theory of P77 -symmetric scatterers.

B. Mathieu slab as a P77 -symmetric scattering system

To introduce a threshold, we now consider an already solved
problem [48] where the Mathieu medium is not infinite but
forms a slab of thickness /, subject to a fixed modulation
depth m « 1. The surrounding medium is not modulated and
is assumed to be free space [as shown in Fig. 1(a)].

Assuming an incident field ¥, from the left, the reflected
field v, the field inside the slab Vg, and the transmitted field
Y, can be found as

Vine = eI IHBIRA—x/10) )
v, = roel IHFIR+x/uo) 4 o | =i (=B +x/uo) (10)

Ystap = /ITFIU (Al KT 4 pomiK (oo

— COCejK(lff?K)x _ CODe—jK(l—(SK)x)

+e—j(1_,3')Qt(COAejK(1+5K)x + COBe—jK(H—SK)x

+CejK(175K)x +De*jK(178K)X)’ (11)
Uy = 1ol 1HBIR—x/u) y =i=B)R0=x/w) (]2

where v = 1+ v/, v/ = 8’ — ju is the exponential character-
istic with 8’ = ju, and S« is the necessary shift of the wave
number (see, e.g., [48], and the Appendix for details). We also
define the parameter ¢y = 2(8x — 8’)/m which connects the
0 and —1 Floquet harmonics. In the special case of ¢y = 1,
which we assume thereafter, the system operates at a unique
frequency. Under that condition, we note a; » as the complex
amplitudes of the signals incident on ports 1 and 2, and b »
the corresponding outgoing signals. Since these signals are all
at the same frequency w, we can define a scattering matrix So,

defined by

-

Note here that the definition of Sy involves the conjugated
complex signals, consistent with the fact that such a Mathieu
slab operates as a phase conjugating mirror [63]. Applying
proper boundary conditions to the general solution of Egs. (9)—
(12) yields [48]

rr IR
So = <lL ”R)
_ <— j tan [wlm/(2ug)]

sec [wlm /(2ug)]

sec [wlm /(2up)]
Jj tan [a)lm/(2u0)]) - 14

where r;, = Sy is the reflection from the left (port 1), rg = Sx»
is the reflection from the right (port 2), and t = 1,1tz = S =
S1» are the transmission coefficients from the left and the
right, respectively. The magnitudes of S;; and S,; versus the
modulation strength m are plotted in Figs. 1(b) and 1(c),
respectively. As a result of parametric amplification, reflection
and transmission reach very high values when the modulation
depth is increased away from zero. In particular, when the
system is critically modulated with m = “2%, both reflection
and transmission become infinite. This threshold value corre-
sponds to the limit of stability of the Mathieu solution. Past
this value, the system is unstable and scattering coefficients
are not well defined. We will interpret this threshold behavior
as a consequence of P7 -symmetry breaking.

Looking at the above equation, we notice that the scattering
matrix Sy satisfies several key properties. First, it describes a
reciprocal system since Sy(m,w) = SOT (m,w). Second, as ex-
pected of any physical system, it also satisfies the Stokes prin-
ciple of microscopic reversibility So(—m,w*) = [Sg(m,w)]‘l.
Finally, it fulfills the symmetry relation

(PT)So(PT) = Sp~ ", (15)

where P is the parity operator [0,1; 1,0] and 7 is time reversal.
By definition, the relation (15) proves that the Mathieu slab is
a PT-symmetric scatterer [64]. Consequently, the scattering
matrix is of the usual form,

L(jp 1
So = — ), 16
0 a(l ]c) (16)

where a = cos[wlm/(2uy)], b = —sin[wlm/(2ug)],
¢ = sin[wlm /(2u)] are the three coefficients parametrizing
the transfer matrix M of the system, introduced in previous
works by Longhi [65] and Ge et al. [64]:

M:(“f jb)
—jc a

_ ( cos [wlm/(2ug)]

—J sin[wlm/Quo)]
—Jj sin [wlm /(2uy)] ) 17)

cos [wlm /(2ug)]

Notice that we have bc = |a?| — 1, which is equivalent to
the reciprocity condition det(M) = 1. The CPA-laser condi-
tion, which is defined by a = 0 [63], is obtained for m =
+4T or ¢ =™ =42 which is precisely the Mathieu
condition of critical stability. For the detailed description of
this special condition, let us form the scattering matrix S,

013839-3



KOUTSERIMPAS, ALU, AND FLEURY

PHYSICAL REVIEW A 97, 013839 (2018)

which corresponds to the scattering matrix with permutated

outgoing channels:
[t R
S = (rL p ) (18)

It is easily checked that at the CPA-laser point, the eigen-
values of S, are A; = 0 and A, = oo, in full agreement with
the usual nomenclature of P7T -symmetric systems. At this
special point, an undriven Mathieu slab operates as a laser:
The system resonates and the bounded charges of the medium
cannot be considered macroscopically neutral anymore, as
their sway is significant and generates a positive feedback
unstable system, leading to parametric lasing. Hence, the time-
Floquet modulation becomes by itself the dominant generator
source for the field.

Following the notations and the analysis of [64], it is clear
that the following “generalized unitarity relation” [Eq. (19)]
and the conservation relation [Eq. (20)] also stand for our
parametric time-Floquet system:

1
rirg = t2<1 - T)’ (19)

IT — 1] = v/ RLRg, (20)

where Ry p = |rL,R|2 and T = |¢|?. Notice that the phase of
the phase-conjugated reflection is always shifted by £ /2 from
the phase of the transmission. In our time-Floquet system,

> 1 and R, = R = R, meaning that the phases of the
right reflection and the left reflection always have a phase
difference of 7 and the system has a similar behavior with
nonlinear three-wave mixing systems in the undepleted pump
approximation [66—68]. Instead of operating with frequency
conversions, the system operates at a single frequency, i.e.,
the one of the incident wave. Equation (20) for 7 > 1 implies
T — R =1, which corresponds to the conservation relation
imposed by P7 symmetry on the parametric time-Floquet
system.

Anisotropic transmission resonances (ATRs) correspond
to a condition for which the system conserves flux (T = 1).
Thus, Eq. (20) implies that an ATR is always associated with
zero reflection from at least one of the ports (i.e., ATRs are
associated with unidirectional or bidirectional invisibility). In
the case considered in this section, ATRs occur when b = 0 or
¢ = 0, implying directly that transparency requires m = 0, i.e.,
no modulation. Therefore, the simple Mathieu slab considered
in this section only supports one trivial ATR. However, in the

J

. (rL r) [~ tanlsgn(ma)(x — y)m/2]
0~ U seclsgn(ma)(x — y)/2]

t R

Notice that sgn(ms)(x —y) can be replaced with
sgn(mp)(y — x), since it will give the same result. This
observation is directly linked with a hidden symmetry of
the time-Floquet system: Due to the critically tuned time

b _
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FIG. 2. Anisotropic transmission resonance by pairing two out-
of-phase time-Floquet slabs. (a) Lasing Mathieu slab with length /4 at
its critical modulation depth. (b) Lasing Mathieu slab with length / at
its critical modulation depth. (c) Composite Mathieu slab obtained by
pairing a fraction of the two slabs in (a,b). (d) Reflection coefficient
and (e) transmission coefficient of the P77 -symmetric time-Floquet
system depicted in (c). Transparency occurs when x = y regardless
of the lengths /4 and /.

following we demonstrate that nontrivial ATRs can occur in
more complex scenarios, obtained by considering a parametric
time-Floquet system with more degrees of freedom.

C. Anisotropic transmission resonances in a time-Floquet
parametric system

In order to achieve nontrivial transparency we consider
a system with more degrees of freedom, composed of two
different slabs with lengths /4,/g, respectively operating with
a modulation depth m, = £%% and mp = F25*. We pair a
percentage of each slabs with 1engths xla,ylp where X,y €
[0,1] and x +y < 1 (as shown in Fig. 2), keeping their
modulation depths to the same value. Solving the scattering
problem, the system is found to be equivalent to a single slab
with effective length l,rr = |x — y|l4 p (inrespect to either the
first or the second slab), and the complete scattering matrix Sy
of the system shown in Fig. 2(c) is

sec[sgn(ma)(x — y)m/2] ) 1)

J tan[sgn(m)(x — y)m/2]

(

modulation of the slabs, the scattering matrix Sy again
satisfies the P7T-symmetry relation (P7)So(PT) =S, I
This is a somewhat counterintuitive result since it stands for
every possible value of x,y, where x,y € [0,1]and x + y < 1,
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FIG. 3. Graphic representation of the geometric loci of special
wave conditions of the scattering matrices Sp, S.. The CPA-laser points
correspond to bidirectional perfect absorption or lasing; the ATRs
correspond to bidirectional invisibility. For parameters outside the
shaded triangular region, the solution is unstable.

i.e., even when the composite slab is not mirror symmetric
(Ia # lp). Here, the parameters of the transfer matrix are a =
cos[sgn(ma)(x — y)w /2], b= —sin[sgn(ma)(x — y)7/2],
and ¢ = sin[sgn(m4)(x — y)m/2].

Contrary to the single critically modulated Mathieu slab, in
this more complex system a nontrivial ATR occurs; i.e., we find
a transparency condition when m is nonzero. More precisely,
here a double accidental degeneracy occurs, i.e., one for which
the reflectances from both sides vanish simultaneously. This is
obtained at a specific value of the tuning parameters x,y (the
frequency is fixed). To see this, we write the condition for no
reflection, i.e., tan[(x — y)m/2] = 0, which gives us

y =X. 22)

At these special points the structure becomes bidirection-
ally invisible (T = 1 and R;, = Ry = 0), a phenomenon that
proves that time-Floquet parametric systems can also support
ATRs. Here, bidirectional transparency arises because each
slab compensates the ‘“Mathieu” oscillations of the other,
making the system transparent from both sides at the same
frequency. A parametric study of the dependency of the
scattering parameters on x and y as we move away from the
ATR conditionis givenin Figs. 2(c)-2(e). In Figs. 2(d) and 2(e),
the conditions (x,y) = (1,0) or (x,y) = (0,1) correspond to the
CPA-laser points of a single Mathieu slab, which we already
discussed in the previous section. Figure 3 summarizes the loci
of the CPA-laser points and ATR points in the parameter space.

III. FULL-WAVE NUMERICAL SIMULATIONS

The above mathematical analysis relies on the assumption
that the modulation depth is always very small. In order to
validate the mathematical model and our findings, we provide
full-wave numerical simulations of the system of Fig. 2,
performed using the FDTD method (finite difference in time
domain). Such simulations do not involve any approximation
on the Mathieu equations.

Let us consider the special case where y = 1 — x, which
lies at the hypotenuse of the triangle of Fig. 3. The investigated
setup and the associated analytical predictions, which we aim
to validate, are depicted in Fig. 4.

x! (1-x)! .

(a) 1,15 2mcos(20t) 5 i (b)
uy1E 2mcos(2ar) ; :
g,
Incidence £
E 1
iform index| Trar ission L 1”7 |
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Reflection u u a =
W~ v 3 @
o 5 |
b~ |
g,
g 2
(S“) § !
[ .
0 12 1
/ Value of x

FIG. 4. System under numerical FDTD investigation. (a) We
simulate a special case of the P7T -symmetric Floquet system for y =
1 — x. (b) Analytically predicted reflection coefficient for 0 < x < 1.
(c) Analytically predicted transmission coefficient for 0 < x < 1.
These analytical curves will be compared to the results of the FDTD
simulations in Fig. 6.

Figure 5 shows the amplitude of the field oscillations at two
observation points located in the unmodulated medium on each
side of the slab. The blue curve corresponds to an observation
point on the incident side, and red on the transmission side.
Figures 5(a) and 5(b) correspond to the case of x = 1, for
which the system is a bidirectional laser: The amplitude grows
in time, consistent with unstable behavior. In Figs. 5(c) and
5(d), however, we pick x = %, which corresponds to the double
transparency condition (ATR). The full-wave FDTD simula-
tion demonstrates unambiguously the predicted transparency
effect, and the stable behavior of the field solution. Note that
in Figs. 5(a) and 5(b), the temporal envelope of the signal is of
the form ~ te/®', in complete agreement with the asymptotic
solution obtained from Mathieu functions.

Observation point
on the incident and reflected side
5 )

(a)

Observation point
on the transmitted side

")

5 ]
0 20 40 60
FDTD time steps, #/T

Field Oscillations (arb. units)
& 5

Field Oscillations (arb. units)
=]

=)

26 40 60
FDTD time steps, /T

Field Oscillations (arb. units)
Field Oscillations (arb. units)

60 60

26 40
FDTD time steps, #/T

20 40
FDTD time steps, #/T

FIG. 5. Stability of FDTD simulations. Wave dynamic oscilla-
tions at a point at the incidence or reflection side of the slab (red)
and at a point at the transmission side of the slab (blue). (a,b) show
the oscillations of the parametric amplification when x = 1 (unstable
lasing condition). (c,d) show the oscillations at the transparency
condition, when x = 1/2 (ATR).
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FIG. 6. Comparison between full-wave simulations and analyti-
cal model. Amplitude of (a) reflection and (b) transmission for the
PT-symmetric Mathieu slab of Fig. 4 as the value of x varies.
Full-wave simulations and analytical prediction agree perfectly.

The next step of the numerical investigation is to check if the
system operates indeed with the scattering matrix in Eq. (21). In
Fig. 6, we represent a direct comparison between the predicted
and simulated magnitude of the reflectance and transmission.
As evident, our numerical results are in perfect agreement with
the theory developed in Sec. IIC.

In order to get further insights into Mathieu wave dynamics,
we also provide in Fig. 7 chronophotographs of the “Mathieu”
wave pattern inside a P77 -symmetric bidirectional transparent
slab with total length of 10, where X is the wavelength and
the critical depth of modulation is m = —%-. The snapshots
cover a full period of the incident signal after steady state has
been reached. It is apparent that the Mathieu field profile inside
the slab undergoes a beating characteristic of Mathieu dynam-
ics (two beating cycles per incident period). The interested
reader will also find relevant movies showing the exotic time
dynamics of all the cases described in this section in the online
Supplemental Material [69].

IV. CONCLUSION

In this article, we unveiled the connection between para-
metric wave dynamics in time-modulated systems and P7T
symmetry. We have shown that P7 symmetry can arise in
a parametrically pumped time-Floquet system. This class of
PT-symmetric systems can have unusual properties, from
CPA-laser points to bidirectional invisibility. We have demon-

strated the possibility to induce parametric gain and loss
wave compensation in Mathieu slabs that are nonuniformly
modulated, for instance, built from two regions that are
pumped with an out-of-phase parametric dependence. This
opens a nonovert connection between parametric time-Floquet
dynamics and P7T-symmetric scattering theory. The theory
demonstrated in the present article could be implemented
on a large number of physical platforms that allow for time
modulation. For example, one could exploit electro-optic mod-
ulation in optics, modulated varactors at microwaves, external
magnetic bias for spin waves, piezoelectric effect for elastic
waves, or Faraday instability for water waves. We believe
that this theoretical investigation enriches the understanding
of the physics of P7T-symmetric non-Hermitian systems by
extending it to nonstatic systems, and may lead to the design
of alternative non-Hermitian devices exploiting the tunability
and reconfigurability of time-Floquet systems.
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APPENDIX: MATHIEU SLAB WAVE SOLUTION

For the purpose of completeness of the present work, we
reproduce in this Appendix a well-known treatment of the
Mathieu solutions, presented also in [48], which established
the notations used in this work and is applied to study the
time-Floquet P77 -symmetry phenomenon of this article.

We start with the specific problem of the Mathieu slab as
described in the main text and consider solutions of Eq. (8) of
the form

(AL)

w — Z l/frej(zr+1+v/)z,
r

FIG. 7. FDTD chronophotographs. We represent snapshots of the wave pattern at steady state for the P77 -symmetric Mathieu slab of Fig. 4
operating at the transparency condition. The time sequence of the snapshots is given by the arrows, and snapshots are separated by At = .
The overall sequence corresponds to one period of the incident signal. See Supplemental Material for movies [69].
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where v=1+v,v=8—ju, v =8 — ju, and o/Q =v.
Applying this solution directly to the differential equation we
get the recursive relation

41 + ¥ + ¢ Y1 =0, (A2)

where

mK2

K2—Qr+14+0v)*

qr = — (A3)

In the particular case considered in this article, we fix the
modulation frequency 2 = w and therefore k = 1 4 §«, and
v & 1. The only sufficient time harmonics are the 0 and —1
Floquet harmonics of the field. Equation (A3) gives us the
following system:

(1 ga\(¥a) _
A-C_(QO 1><1/f0)_0’ (A4

where
m(l + 8k)? m/2
G0 =~ i A2 (as)
(14+6c) —(1+0) 8k — v
m(1 + 8k)? m/2
q-1= A / (A6)

(k) — (=14 k4

For nonzero solutions det(A) = 0 which gives us the con-
dition

Skt —v? = (%)2 (A7)

For « real, 8« has to be real, which forces v? to be either
real or imaginary (but not complex). An imaginary value (v' =
Jj i) would mean an unstable solution of the Mathieu equation
located in the first unstable region at the stability chart [36,48].

s+t =(3), (A8)

A real solution (v = B’) gives the condition

Sk — B2 = (%)2 (A9)

The special case of v = 0 gives us the condition

Sk =+
K ==x—.
2

For the condition of (A10) the solutions correspond to cey,
and se; (even and odd) Mathieu functions, as proved in [48].
Surprisingly, when §x = 0 the system is unstable with u =
m/2. A complex §x canleadtoa u > m/2.

Taking into account the results of the equations (A3)-(A10)
we get

(A10)

_ Sk — v
E=2<" "):C, (A11)
Yo m
and, in the special case of v = 0,
Vo4, (A12)
Yo

Using the above equations, we derive the field distribution
of the Mathieu slab equations (9)—(12) in the main text.
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