
PHYSICAL REVIEW A 97, 013838 (2018)
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We investigate different strategies suitable to generate pure heralded single photons through spontaneous
parametric down-conversion, comparing the counterpropagating geometry with more conventional copropagating
configurations which enhance the purity of the heralded photon state through the technique of group-velocity
matching. We derive general results for the Schmidt number associated to the temporal modes, which provide a
quantitative estimate of the purity. An analysis of the correlation of twin photons in the temporal domain provides
a more physical view of the mechanisms that permit to eliminate the temporal entanglement of the state and to
generate high-purity heralded photons. The efficiency of the various strategies and the individual properties of
the heralded photons thereby generated are then compared.
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I. INTRODUCTION

Single-photon states are of outstanding interest in modern
quantum optics, as the basis of fundamental tests of quantum
mechanics and of a variety of quantum technologies (see, e.g.,
[1,2] for recent surveys of single-photon techniques and appli-
cations). In order to generate truly single photons, one of the
most efficient methods is based on a conditional measurement,
where a two-photon state is generated and the presence of
a single photon is heralded by detection of its partner. To
this end, parametric processes such as spontaneous parametric
down-conversion (PDC) or four-wave mixing (FWM), where
one or two photons belonging to a high-energy pump laser
are occasionally converted into pairs of photons, are routinely
employed. The conservation laws ruling these microscopic
processes originate a quantum correlation in the spatial and
temporal degrees of freedom of the pair, which typically
extends over broad spectral and angular bandwidths. Such a
high-dimensional entanglement may represent a resource for
broadband quantum technologies, but is detrimental for the pu-
rity of heralded single photons because detection of the trigger
photon projects the state of its twin in a highly mixed state.
This represents a limitation for quantum communication and
information protocols where single photons are required to be
indistinguishable and capable of high-visibility interference.

The recent development of wave-guided PDC (see [3]
and references therein) and of FWM in single-mode fibers
[4] opened the possibility to control the spatial degrees of
freedom, and to generate the twin photons into a single or few
spatial modes. In order to eliminate also the spectrotemporal
correlation, a possibility is filtering hard enough that a single
spectral mode is selected, but then the efficiency of the source
is reduced. In order to achieve pure heralded photons with high
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fluxes, considerable effort has been devoted to find alternative
techniques, which directly reduce the degree of entanglement
of the source in order to produce uncorrelated twin photons
[5–13]. In such a way, a conditional measurement projects
the field in a pure single-photon state rather than in a mixed
state. In the standard copropagating geometry [Fig. 1(b)], this
task requires careful techniques of group-velocity matching,
which can be implemented only in some materials and tuning
conditions [5,8].

In recent years, the counterpropagating configuration of
PDC, where twin photons are emitted along opposite directions
[Fig. 1(a)], emerged as a promising source of heralded pure
single photons without the need of group-velocity matching
[14,15]. Proposed by Harris in the 1960’s [16] and imple-
mented in 2007 by Canalias et al. [17], this configuration
presents the challenge of requiring a very short poling of
the nonlinear material [18,19]. On the other hand, counter-
propagating twin photons and twin beams possess peculiar
and attractive features, such as their narrow-band character
[14,20–22] and the potential to generate in the high-gain regime
a robust continuous-variable entanglement [23,24]. In the
spontaneous regime, twin photons may be naturally generated
in either spectrally entangled or decorrelated states by simply
modifying the pump pulse duration (or crystal length), without
the need of special tuning conditions [14]. Similar features have
recently been described in counterpropagating FWM [25].

In this work we focus on the PDC process, and on the tempo-
ral correlation of twin photons thereby generated, making a par-
allel analysis of the two copropagating and counterpropagating
geometries (Fig. 1) as sources of heralded single photons. By
a systematic comparison of the two configurations, we aim at
providing an understanding of the physical mechanisms under
which temporal correlation emerges and can eventually be
eliminated, which may turn useful to optimize the existing
configurations and to design new ones. Even though our
analysis is restricted to the PDC process, some of our results
may qualitatively hold also for FWM.
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FIG. 1. (a) Scheme of twin-photon generation in the (a) coun-
terpropagating and (b) copropagating geometries. In the case (a)
quasi-phase matching at first order requires submicrometer poling
periods � ∼ λp of the nonlinear material.

Our analysis is partially based on the correlation of twin
photons in the temporal domain. Apart from pioneering
studies [26], this approach is not standard in the literature
[5–13,15], which mostly focused on their spectral correlation,
and provides, in our opinion, a more direct physical view. In
particular, it will show that the temporal correlation between
twin photons can be eliminated only creating conditions such
that the timing provided by the pump pulse is more precise
than that offered by detecting any of the twin photons. In
addition, this approach is probably the only useful one in the
counterpropagating geometry, where measurements are more
likely to be resolved in time than in frequency, because of
the narrow spectral bandwidth. From a quantitative point of
view, we will derive an approximated formula for the Schmidt
number, to our knowledge not present in the former literature,
which holds for both geometries and gives a simple means
for evaluating the degree of purity of the heralded photon
based only on two parameters of the source. Finally, the
individual spectrotemporal properties of the heralded photons,
which are of great importance in view of different applications,
will be investigated in parallel. In particular, we will see
that either narrow-band or broadband pure heralded photons
are characteristic of the two geometries, and that different
strategies of group-velocity matching lead to very different
efficiencies of pair production.

The paper is organized as follows: After introducing in
Sec. II the two geometries, Sec. III studies the Schmidt number,
while Sec. IV describes the temporal correlation of twin pho-
tons, in terms both of general analytic results and of numerical
calculations. Finally, Sec. V describes the spectrotemporal
properties of heralded photons and compares the efficiency
of heralding of the different strategies investigated.

II. COUNTERPROPAGATING AND COPROPAGATING
GEOMETRIES

As in most of the previous literature, our analysis is re-
stricted to the temporal domain, assuming either a single-mode

wave-guided configuration, or that a small angular bandwidth
is collected.

In the counterpropagating geometry shown in Fig. 1(a), a
coherent pump pulse of central frequency ωp and temporal
profile αp(t) impinges a χ (2) crystal of length lc from the left
face, and generates counterpropagating photon pairs with, say,
the idler photon back-propagating towards the laser source.
This process requires periodically poled structures with short
poling periods �, such that the momentum associated to
the nonlinear grating of the nonlinearity kG = 2πm

�
, m =

±1,±3 . . . , can approximately compensate the momentum
of the pump photon. The central frequencies of the down-
converted fields ωs and ωi = ωp − ωs are thus determined by
the quasi-phase-matching condition

ks − ki = kp − kG, (1)

where kj = ωj

c
nj (ωj ), j = s,i,p, are the wave numbers at the

central frequencies ωj .
In the copropagating geometry [Fig. 1(b)] all the three fields

propagate along the positive z direction. In this case, quasi-
phase matching requires

ks + ki = kp − kG, (2)

where the case kG = 0 corresponds to ordinary phase
matching.

The efficiency of down-conversion is described by a dimen-
sionless gain parameter g, proportional to the peak amplitude
of the pump laser, the crystal length, and the nonlinear
susceptibility. Considering the spontaneous regime g � 1, the
signal-idler state at the crystal output can be written as a power
series expansion in g (see, e.g., [14] for details). Retaining
terms up to first order in g, it takes the well-known form

|φ〉 = |0〉 + |φ2〉, (3)

|φ2〉 =
∫

d	sd	iψ (	s,	i)â
†
s (	s)â

†
i (	i)|0〉, (4)

corresponding to the superposition of the vacuum and the two-
photon state |φ2〉. Here, â†

s (	s) and â
†
i (	i) are signal and idler

photon creation operators in the frequency domain, 	j being
the offset from the reference frequency ωj , and

ψ (	s,	i) = g√
2π

α̃p(	s + 	i)sinc

[D±(	s,	i)lc
2

]
eiβ(	s,	i )

(5)
is the spectral biphoton amplitude, which gives the joint
probability amplitude of detecting a signal photon at frequency
ωs + 	s and an idler photon at frequency ωi + 	i . In formula
(5), α̃p(	) = ∫

dt√
2π

ei	tαp(t) is the pump spectral amplitude,
where the temporal profile αp(t) is normalized to its peak
value; D±(	s,	i)lc is the phase-mismatch function, where
here and in the following the indices + and − refer to the
counterpropagating and copropagating geometries in Figs. 1(a)
and 1(b), respectively:

D±(	s,	i) =
{
kp(	s + 	i) − ks(	s) + ki(	i) + kG,

kp(	s + 	i) − ks(	s) − ki(	i) + kG.

(6)
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Finally,

β(	s,	i) = lc

2
[ks(	s) + ki(	i) + kp(	s + 	i)] (7)

is a global phase, acquired during the propagation along the
crystal in the absence of any nonlinear effect by a pair of
photons generated at the crystal center z = lc/2. As described
in [14,22–24], the different sign in front of the idler wave
number in Eq. (6) is at the origin of the radically different
properties of PDC in the two geometries. This is best seen
by expanding the phase mismatch (6) at first order around the
reference frequencies (corresponding to 	j = 0)

D±(	s,	i)
lc

2
≈ lc

2
[(k′

p ± k′
i)	i + (k′

p − k′
s)	s]

≡ τ±
i 	i + τs	s, (8)

where k′
j ≡ v−1

gj = ( dkj

d	j
)
	j =0

is the inverse group velocity of

wave j and the characteristic times

τs = 1

2

(
lc

vgp

− lc

vgs

)
, (9)

τ±
i = 1

2

(
lc

vgp

± lc

vgi

)
(10)

involve either the difference or the sum of the group velocities
of the pump and the down-converted wave, depending whether
they copropagate or counterpropagate. These constants repre-
sent the characteristic temporal separations between the pump
and the down-converted wave packets, precisely the delays
between the exit time of the pump tAp = lc

vgp
and those of two

twin photons generated at the crystal center. In the coprop-
agating case τs and τ−

i are determined by the group-velocity
mismatch (GVM) with respect to the pump, and are typically on
the same order of magnitude, unless some particular strategy
of group-velocity matching is employed. In contrast, in the
counterpropagating case, the time constant associated to the
backward photon τ+

i involves the group-velocity sum (GVS)
and is on the order of the photon transit time across the crystal,
which largely exceeds the GVM time.

An analogous linear approximation of the global phase in
Eq. (7) gives

β(	s,	i) ≈ const + tAs	s + tAi	i, (11)

where

tAj = lc

2vgj

+ lc

2vgp

= tAp − τ−
j (j = s,i) (12)

are the exit times of the centers of the signal and idler wave
packets, and can be considered as the times at which two
twin photons down-converted from the pump peak at z = lc/2,
pictured as wave packets propagating without deformation,
arrive at the end faces of the crystal.

Finally, we notice that the linear approximation in Eqs. (8)
and (11) amounts to neglecting the temporal dispersion: this is
well justified in the counterpropagating configuration, which
involves narrow down-conversion spectra [14,17,22], but it is
less justified in the copropagating case because of the larger
bandwidths in play. In particular, it ceases to be valid in the
absence of a GVM between twin photons τs 	 τ−

i (e.g., for

type-I PDC close to degeneracy), a condition that, as we shall
see, is not relevant to our discussion because it prevents from
generating pure heralded photons.

III. ENTANGLEMENT QUANTIFICATION

The degree of entanglement of the state is here characterized
by the Schmidt number [27,28], which also estimates the
number of independent modes participating to the entangled
state [29]. It is defined as the inverse of the purity of the state
of each separate subsystem

K = 1

Tr
{
ρ̂2

s

} = 1

Tr
{
ρ̂2

i

} , (13)

where ρ̂s , ρ̂i are the reduced density matrix of the signal
and idler when the PDC state (3) is conditioned to a photon
count. For example, for the signal ρ̂s = 1

〈φ2|φ2〉Tri{|φ2〉 〈φ2|}.
The inverse of the Schmidt number thus straightforwardly
gives the degree of purity of the heralded photon state, via
a single parameter that can be calculated without resorting to
the explicit Schmidt decomposition.

In this work, the Schmidt number K is calculated in two
ways:

(i) “Exact” results are obtained by numerical calculation
of the integral formula [30]

K = N 2

B
, (14)

N =
∫

d	s

∫
d	i |ψ(	s,	i)|2, (15)

B =
∫

d	s . . .

∫
d	′

i[ψ(	s,	i)ψ(	′
s ,	

′
i)

×ψ∗(	s,	
′
i)ψ

∗(	′
s ,	i)] (16)

valid for any biphoton state of the form (4). The biphoton
amplitude ψ appearing under the integrals is calculated by
using the complete Sellmeier dispersion formula in [31–33].

(ii) Approximated analytical results are derived within the
“Gaussian approximation” of the spectral amplitude exten-
sively used in former studies of copropagating PDC [5,6]. This
consists in replacing the sinc function in Eq. (5) by a Gaussian
of its argument, and then using the linear approximations (8)
and (11), obtaining thereby

sinc
D±(	s,	i)lc

2
→ e

−γ
[
D±(	s ,	i )lc

2

]2

≈ e−γ (τs	s+τ±
i 	i)2

,

(17)

where, e.g., γ = 1
6 if one equates the leading order of the Taylor

expansions of the sinc and the Gaussian, or γ = 0.193 if one
requires that they have the same full width at half maximum. In
addition, one has to consider a Gaussian pump pulse αp(t) =
e−t2/2T 2

p , of duration Tp and spectral width �	p = 1/Tp, so

that α̃p(	) = Tpe− T 2
p

2 	2
p . The spectral amplitude (5) takes then

the Gaussian form

ψ (	s,	i) → gTp√
2π

ei[tAs	s+tAi	i ]e− ∑
i,j=s,i cij 	i	j , (18)
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FIG. 2. Schmidt number K in the Gaussian approximation
[Eq. (22)], as a function of the pump duration for (i) counterpropagat-
ing PPKTP, (ii) copropagating KDP η = 0, (iii) copropagating BBO
η = −1 (parameters in Table I). In case (i) separability is achieved in
a much broader range of pump durations and for longer pulses.

where constant phase terms have been omitted and the real
coefficients cij (see also [6]) are

css = T 2
p

2
+ γ τs

2, (19)

cii = T 2
p

2
+ γ τ±

i

2
, (20)

cis = T 2
p

2
+ γ τsτ

±
i . (21)

The approximation (18) allows to extract analytical results,
providing a straightforward comparison between the two cases.
Inserting Eq. (18) inside Eqs. (15) and (16), and performing
the Gaussian integrals involved, we find a single formula that
holds for any PDC configuration:

KGauss =
√

csscii

csscii − c2
si

=
⎡
⎣1 +

(
1 + 2γ τsτ

±
i

T 2
p

)2
T 2

p

2γ |τ±
i − τs |2

⎤
⎦

1/2

. (22)

This result gives a simple way of estimating the degree of
purity 1/K of heralded single photons for any crystal length
and dispersion relation in the medium. We notice that in this
formula the various parameters that characterize the PDC
process (crystal length, dispersion relations for the three waves)
have been condensed in only two parameters, i.e., in the two
time constants τs and τ±

i that rule the relative propagation of
the three waves in a crystal of length lc.

The Gaussian result (22), seen as a function of the pump
duration Tp, presents for long-pump pulses a linear asymptote
(Fig. 2):

KGauss → Tp√
2γ |τ±

i − τs |
for Tp 


√
2γ |τ±

i τs |. (23)

corresponding to an entangled state with K 
 1;

by shortening the pump it reaches a minimum, and then it
stays close to the curve

KGauss →
√

2γ |τsτ
±
i |

Tp|τ±
i − τs |

for Tp �
√

2γ |τ±
i τs |. (24)

KGauss takes its minimum (the purity takes its maximum) for

T min
p =

√
2γ |τsτ

±
i | (25)

which is basically the geometrical mean between the two time
constants |τs | and |τ±

i |. The minimum value of K is

Kmin
Gauss =

{
1 for τsτ

±
i � 0 → η � 0,

τ±
i +τs

τ±
i −τs

= 1+η

1−η
for τsτ

±
i > 0 → η > 0,

(26)

where for convenience of notation we introduced the parameter

η = τs

τ±
i

, (27)

which can be positive or negative, and without loss of general-
ity, we choose the signal and idler such that |τs | � |τ−

i | in the
copropagating case. Thus,

−1 � η � 1. (28)

As well known, the Gaussian approximation (18) predicts
complete separability K = 1 for η � 0, as can be immediately
recognized by inspection of the mixed term cis in Eq. (21). For
η = 0, the ideal value K = 1 is reached only asymptotically
for Tp → 0, while for η < 0 a separable state can be in
principle obtained for a finite pump duration Tp = T min

p .
Alternatively, for positive η, the two-photon state can be made
almost separable by choosing a configuration for which η is
sufficiently small because

Kmin
Gauss = 1 + η

1 − η
	 1 + 2η for 0 < η � 1. (29)

Remarkably, this last condition is naturally fulfilled in the

counterpropagating case, where |η| = |k′
p−k′

s |
k′
p+k′

i

= |τs |
τ+
i

� 1 for

any choice of material and phase-matching conditions.
Figures 2 and 3 plot the Schmidt number K as a function

of the pump duration, for three examples chosen as represen-
tatives of the two geometries (see Table I for parameters, and
Appendix B for details), namely, (i) a generic counterpropagat-
ing configuration, not specifically optimized for separability,
where η 	 0.01, and two copropagating configurations opti-
mized for separability, with (ii) η = 0 and (iii) η = −1. Con-
dition (ii) is referred to as asymmetric group-velocity matching
and requires that the signal photon propagates with the same
group velocity as the pump (τs = 0) [6,7]. Condition (iii)
corresponds to the symmetric group-velocity matching, and can
be realized only in the copropagating case, requiring τs = −τ+

i

[5,6]. They are usually difficult to satisfy in the visible range,
but can be achieved in some χ (2) material in the near infrared
and at telecom wavelengths [2,5–8]. Experimental evidence
of frequency decorrelated photon pairs through this technique
was first reported in [7].

Figure 2 superimposes the three Schmidt numbers in the
Gaussian approximation (22), while Fig. 3 (notice here the
horizontal logarithmic scale) shows, for each example, a
comparison between the Gaussian result and the exact one,
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FIG. 3. Schmidt number K: comparison of the Gaussian result
(dashed blue lines) and the exact one (solid red lines) (i) counterprop-
agating PPKTP, (ii) copropagating KDP, (iii) copropagating BBO
(parameters in Table I). In (i) the state is nearly separable for Tp

intermediate between τs = 0.67 ps and τ+
i = 63 ps. In (ii) and (iii),

separability is achieved only for subpicosecond pulses with Tp � τ−
i .

The inverse of Kmin is the achievable degree of purity. The hollow red
dots correspond to the plots in Figs. 4 and 5.

obtained by numerical integration of Eqs. (14)–(16). The
Schmidt number curves show the same qualitative behavior
in the three cases: for long-pump pulses the state is entangled,
by shortening the pump pulse K reaches a minimum close
to the ideal value Kmin = 1, and then it grows again in the
two examples with η �= 0, while it stays close to the minimum

in the example (ii) with η = 0. However, evident from these
figures are the different ranges of pump durations Tp in which
separability is achieved: the counterpropagating case displays
a broad plateau with K 	 1 for Tp in the range 2–10 ps, while
in the copropagating case separability requires subpicosecond
pulses, of duration Tp � 100 fs � τ−

i = 720 fs in case (ii),
and Tp 	 T min

p = 147 fs in case (iii).
Figure 3 also shows some discrepancy between the Gaus-

sian results and the exact ones, especially for short-pump
pulses. In particular, the minimum ofK is always slightly larger
than the Gaussian result (26), and never reaches the ideal value
K = 1 even for η � 0. Clearly, these discrepancies have to be
ascribed both to the replacement of the sinc by a Gaussian
and to the effect of dispersion, which becomes relevant only
for short-pump pulses and/or long crystal. Because of this,
the degree of purity achievable in the counterpropagating
configuration with η = 0.01 is comparable to that obtained
in the two cases with η � 0, which require much shorter pump
pulses and stringent phase-matching conditions.

IV. TIME-DOMAIN VIEW: THE TEMPORAL
CORRELATION OF TWIN PHOTONS

An alternative and perhaps more intuitive view of the
problem is offered by the joint amplitude in the temporal
domain, which is obtained by back Fourier transforming the
joint spectral amplitude

φ(ts ,ti) =
∫

d	s√
2π

∫
d	i√

2π
e−i(	sts+	iti )ψ(	s,	i). (30)

In terms of this function, the two-photon state (4) becomes

|φ2〉 =
∫

dtsdtiφ(ts,ti)â
†
s (ts)â

†
i (ti)|0〉, (31)

where â
†
s (ts), â

†
i (ti) are photon creation operators in the time

domain, and for example â
†
s (ts)|0〉 ≡ |ts〉 represents the state

with exactly one signal photon at time ts at the crystal output
face. Thus, φ(ts ,ti), which was extensively analyzed in [14] in
the counterpropagating case, represents the joint probability
amplitude that a signal and an idler photon exit the crystal
slab at times ts and ti , respectively, and describes the temporal
correlation between the twin photons. The rate of coincidence
counts at the crystal exit faces is then given by

G
(2)
si (ts,ti) ≡ 〈â†

s (ts)âs(ts)â
†
i (ti)âi(ti)〉 ≈ |φ(ts ,ti)|2. (32)

Several plots of this correlation function are shown in Fig. 4,
where the three columns correspond to the three examples in
Table I. These plots were calculated from Eq. (30) without re-
sorting to any approximation, by using the complete Sellmeier
dispersion formula in [31–33]. If the linear approximations (8)
and (11) are instead employed, the Fourier transform (30) can
be explicitly calculated [14], obtaining

φ(t̄s ,t̄i) = g

2|τ±
i − τs |

αp

(
t̄s − ηt̄i

1 − η

)
Rect

(
t̄s − t̄i

|τ±
i − τs |

)
, (33)
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TABLE I. Phase-matching conditions and characteristic time constants for the three crystals taken as examples: (i) periodically poled
potassium titanyl phosphate (PPKTP), with 800 nm poling period for the counterpropagating configuration, (ii) potassium dihydrogen phosphate
(KDP), and (iii) beta-barium triborate (BBO) crystals for the two copropagating configurations (Appendix B for details). τs , τ

±
i , T min

p are defined
in Eqs. (9), (10), and (25), respectively.

Crystal lc (mm) Phase matching (θp) λp (nm) λs (nm) λi (nm) τs (ps) τ±
i (ps) T min

p (ps) η

(i) PPKTP 10 Type 0 e-ee (90◦) 821.4 1141 2932 0.67 63 4.05 0.01
(ii) KDP 10 Type II e-oe (67.8◦) 415 830 830 0 0.72 0 0
(iii) BBO 10 Type II e-oe (28.8◦) 757 1514 1514 −0.237 0.237 0.147 −1

where constant phase factors have been omitted. The barred
arguments

t̄j = tj − tAj , j = s,i (34)

are the exit times of the twin photons measured relative to the
central exit times tAj of their wave packets, defined in Eq. (12);

αp(t) is the the pump temporal profile, and

Rect

(
t

�τ

)
=

{
1 for tε [−�τ,�τ ],
0 elsewhere (35)

is the box function of width 2�τ and unitary height, where

�τ := |τ±
i − τs | = lc

2

∣∣∣∣ 1

vgs

± 1

vgi

∣∣∣∣ (36)

FIG. 4. Temporal correlation |φ(t̄s ,t̄i)|2, representing the joint probability of finding a signal and an idler photon at times ts = t̄s + tAs and
ti = t̄i + tAi at the crystal exit faces, where the reference times tAj are defined in Eq. (12). In each column, the pump duration Tp decreases
from top to bottom, in correspondence of the hollow red dots in Fig. 3. The plots identified by sublabels (a), (b), (f) correspond to the minima
of K in Fig. 3, and represent the most separable conditions for each example.
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represents the typical delay occurring between the exit times
of two twin photons.

The result in Eq. (33) generalizes the expression found in
[14] for the counterpropagating case to a generic geometry of
PDC. Notice that it relies on linearizing the propagation phases,
and in the copropagating case fails to be valid for τs → τ−

i .
Some of the mathematical findings in [14] apply then to

both configurations. In particular, in the limit of a long-pump
pulse Tp � |τ±

i | � |τs|,

φ(t̄s ,t̄i) −→
Tp
|τ±

i |
g

2|τ±
i − τs |

αp(t̄s)Rect

(
t̄s − t̄i

|τ±
i − τs |

)
, (37)

and the correlation exhibits a a sharp maximum along the
diagonal t̄s = t̄i , of width �τ (see the three upper plots in
Fig. 4). In this limit, the joint temporal amplitude is not
factorable in its arguments, and the two-photon state (31) is
entangled. As detailed in Appendix A, the twin photons appear
temporally correlated because they can be generated at any
time along the long-pump pulse, but they are always generated
together and the exit time of one photon can be predicted from
that of its twin as t̄s = t̄i within the narrower spread of their
delays �τ . Accordingly, the number of entangled modes in
this regime is K ∝ Tp

�τ
, as predicted by the Gaussian formula

in Eq. (23). Notice that the box shape of the correlation function
in Eq. (37) is typical of the long-pump regime, where no
information on the point where PDC occurred is available, so
that the correlation reflects the flat distribution of the mutual
time delays of the twins.

In the opposite limit of an ultrashort-pump pulse
Tp � |τs| � |τ±

i |,

φ(t̄s ,t̄i) −→
Tp�|τs |

g

2|τ±
i − τs |

αp

(
t̄s − ηt̄i

1 − η

)
Rect

[
t̄s

τs

]
, (38)

and the correlation function has a peak along the line t̄s = ηt̄i ,
of width ∼(1 − η)Tp, as approximately shown by Figs. 4(c)
and 4(j). Thus, for η �= 0, in this ultrashort-pump limit the state
is again entangled: temporal correlation arises in this case not
from the simultaneity of the twins, but from the information on
the point where PDC occurred, which is now available, because
both photons separate from the localized pump pulse during
propagation. As explained in Appendix A, this knowledge
permits to predict the arrival time of the signal from that of
the idler as t̄s = ηt̄i , within an uncertainty ∼Tp(1 − η). This
is much smaller than the uncertainty ∼|τs | in the arrival time
of the signal when the idler is not detected. Accordingly, the
number of entangled modes is K ∝ |τs |

Tp(1−η) as predicted by
Eq. (24). Notice the opposite signs of η in Figs. 4(c) and 4(j),
reflecting the fact that the exit times of the twins relative to the
pump are correlated for η > 0, while they are anticorrelated
for η < 0 because in the latter case one photon is slower than
the pump while the other is faster. For example, for η = −1,
the correlation is peaked at t̄s = −t̄i , which for the original
time arguments means (ts − tAp) = −(ti − tAp).

As discussed more in detail Appendix A, eliminating the
correlation between twin photons requires that the timing
gained by detecting the other member of the pair is not better
than that offered by not detecting it, i.e., by only relying on the
timing offered by the pump pulse. In this way, detection of one
photon does not give any better information on the exit time

of its twin than by not detecting it, and the two-photon state
appears uncorrelated. This clearly requires a localized pump
pulse and can be achieved in two ways:

(i) One photon (say the signal) propagates locked under
the pump pulse but the other separates from it after some short
propagation length. In these conditions, the pump provides a
timing of the signal with a precision∼Tp similar as by detecting
the idler. Mathematically, it corresponds to the intermediate
pump limit |τ±

i | � Tp � |τs|, in which (as already shown in
[14])

φ(t̄s ,t̄i) −→
|τ±

i |
Tp
|τs |
g

2|τ±
i − τs |

αp(t̄s)Rect

(
t̄i

|τ±
i − τs |

)
.

(39)

The biphoton correlation becomes separable in its arguments,
as approximately shown by Figs. 4(b) and 4(f), implying that
the two-photon state (31) is separable. This limit naturally
arises in the counterpropagating case, where the two scales
are separated, but needs not to exist in the copropagating case,
where it basically requires that one of the two time constant
vanishes, τs → 0.

(ii) Twin photons become displaced far enough away in
time during propagation, still remaining close to the pump
pulse. This can be achieved when one photon is faster than
the pump while the other is slower, and for a pump duration
Tp 	 |τs |,|τ−

i |, as in the symmetric group-velocity matching
of the example (iii). In these conditions, twin photons are
more simultaneous with the pump than between themselves,
so that again the timing provided by the pump is better than
that offered by the other twin (Appendix A). Notice that the
purity of the heralded photons generated in this way [Fig. 4(h)]
is somehow lower than in the other cases, and rather far
from the ideal result Kmin = 1 predicted by the Gaussian
approximation. Such imperfect separability is a consequence
of the sharp boundaries of the nonlinear medium, at the origin
of the rectangular box function in Eq. (33) and of the sinc
function in Eq. (5). The crystal boundaries have less impact on
the separability when |η| � 1 because of the elongated shape
of the temporal correlation [Figs. 4(b) and 4(f)]. These effects
might be eliminated and the purity of the heralded photons
increased by engineering a Gaussian nonlinearity profile of a
poled crystal, as demonstrated by Branczyk et al. [12].

Remarkably, even though the temporal correlation φ(ts,ti)
changes completely its shape in different pump regimes, when
considered only as a function of the time difference ti − ts ,
it always retains a box-function shape. This means that if
the coincidence count rate (32) at the crystal exit faces is
registered only as a function of the delay between the twins, no
information is gained about the entanglement or separability
of the state. Indeed, if we rewrite the temporal correlation in
Eq. (33) as a function of δt = ti − ts , we have

φ(ts ,ts + δt) ∝ αp

(
t̄s − η

1 − η
δt̄

)
Rect

(
δt̄

�τ

)
,

φ(ti − δt,ti) ∝ αp

(
t̄i + 1

1 − η
δt̄

)
Rect

(
δt̄

�τ

)
.

Then, if coincidence counts are measured only as a function
of the delay δt , without detecting the absolute arrival time of
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FIG. 5. Joint spectral probability |ψ(	s,	i)|2 plotted for pump pulse durations decreasing from top to bottom, for the same parameters
of Fig. 4 and in correspondence of the hollow red dots in Fig. 3. (b), (f), (h) Represent nearly separable situations. The red ellipses are the
isoprobability curves of the Gaussian formula (18). Notice that in (c) the idler scale 	i is zoomed by a factor 10 with respect to the signal scale.

the signal or of the idler,

Ḡ
(2)
si (δt) =

∫
dts |φ(ts ,ts + δt)|2 =

∫
dti |φ(ti − δt,ti)|2

= N
2�τ

Rect

(
δt̄

�τ

)
, (40)

where N = g2
√

πTp

2�τ
is the total number of photon pairs (see

Sec. V). Therefore, the coincidence counts as a function of
ti − ts always reproduce the flat distribution of time delays
characteristic of the spontaneous process, regardless whether
the state is temporally entangled or separable.

It is also interesting to see how the results above de-
scribed reflect in the shape of the joint spectral probability
|ψ(	i,	s)|2, plotted in Fig. 5 for the same parameters as in
Fig. 4. The red ellipses here represent the curves c11	

2
s +

c22	
2
i + 2c12	s	i = 1 where according to the Gaussian

formula (18) |ψ |2 reduces by 1/e2, and permit to estimate

visually the validity of the Gaussian approximation. The
spectral correlation in this figure gives the complementary
view with respect to the temporal correlation in Fig. 4, but
obviously displays the same amount of entanglement: For
long-pump pulses (top raw) the state is highly entangled in
all the three examples, with the biphoton amplitude peaked
along the diagonal 	s = −	i where energy conservation takes
place. For short enough pump pulses [Figs. 5(c) and 5(i)] the
state is again entangled, with the biphoton amplitude peaked
along the line 	s = −η	i where momentum conservation,
i.e., phase matching, is realized. Figures 5(b), 5(f), and 5(h)
correspond to the optimal conditions for separability, and we
see that in these cases the biphoton probability is a nearly
factorable function of its arguments, being approximately an
ellipse with its principal axes aligned along 	s and 	i . Notice,
however, that in the example (iii) of symmetric group-velocity
matching, the corresponding joint temporal probability in
Fig. 4(h) exhibits a diamondlike shape, which gives much less a
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geometrical evidence of separability, and indeed Kmin = 1.18
is slightly higher than in the other two cases. In contrast, the
biphoton probability in the spectral domain in Fig. 5(h) has a
nearly circular shape, and deviations from factorability are only
indicated by the side lobes of the sinc functions. This confirms
the usefulness of taking the two complementary views in the
temporal and spectral domains.

V. SPECTROTEMPORAL PROPERTIES
OF HERALDED PHOTONS

Once assessed the conditions under which pure single
heralded photons can be obtained, it is clearly important to
study their individual properties in view of their use in quantum
communication and metrology protocols (coupling with atoms,
interferometry, etc.).

For spontaneous PDC, the marginal statistics of individual
photons is described by their first-order coherence functions.
In the temporal domain, for example, these functions are

G(1)
s (ts ,t

′
s) = 〈â†

s (ts)âs(t
′
s)〉

=
∫

dtiφ
∗(ts ,ti)φ(t ′s ,ti), (41)

G
(1)
i (ti ,t

′
i ) = 〈â†

i (ti)âi(t
′
i )〉

=
∫

dtsφ
∗(ts ,ti)φ(ts ,t

′
i ) (42)

with analogous definitions in the spectral domain. In terms of
its temporal G(1), the reduced state of the heralded photon takes
the form

ρ̂j = 1

N

∫
dt

∫
dt ′G(1)

j (t ′,t) â
†
j (t)|0〉 〈0|âj (t ′)

= 1

N

∫
dt

∫
dt ′G(1)

j (t ′,t) |t〉j j 〈t ′|, (43)

which in general represents a mixed state, unless the coherence
function G

(1)
j (t,t ′) is factorable in its arguments. For equal

times, G
(1)
j (t,t) = 〈â†

j (t)âj (t)〉 = Ij (t) gives the temporal in-
tensity profile of the j th wave, i.e., the probability distribution
of detecting the photon at time t at the crystal exit face. The
spectral distribution of the heralded photon can be obtained via

Sj (	) = 〈â†
j (	)âj (	)〉 =

∫
dt dt ′

2π
ei	(t−t ′)G

(1)
j (t,t ′). (44)

Finally, the second-order coherence function in each signal or
idler arm can be written as

G
(2)
jj (t,t ′) = 〈â†

j (t)âj (t)â†
j (t ′)âj (t ′)〉

= Ij (t)δ(t − t ′) + Ij (t)Ij (t ′) + ∣∣G(1)
j (t,t ′)

∣∣2

= Ij (t)δ(t − t ′) + O(g4). (45)

At leading order in g it describes a delta-correlated Poisson
statistics. The corrective terms on the order O(g4) can be
calculated only within a quantum field formalism (see, e.g.,

[14]), but are exactly zero in the biphoton state formalism (3),
in which there are never two photons in the same arm (see the
discussion in [14]). As recognized in [34], a measurement of
this intensity autocorrelation may provide a direct information
on the Schmidt number.

For the sake of brevity, we limit our analysis to the cases of
(a) long-pump pulses, where the state is highly entangled, and
(b) conditions where nearly separable states can be realized.

A. Long-pump pulses, high entanglement

According to the previous results, when Tp 
 |τ±
i | � |τs |

the two-photon state is highly entangled in any configuration.
We can, for example, use the asymptotic form (37) of the
joint temporal amplitude (33), and insert it into formulas
(41) and (42). The coherence functions of the signal and the
idler obtained in this way are identical (apart from negligible
delays), and have the form

G(1)
s (t,t ′) = G

(1)
i (t,t ′) → g2

2�τ

∣∣αp(t)
∣∣2

Tri

(
t ′ − t

2�τ

)
, (46)

where �τ = |τ±
i − τs |, and

Tri

(
δt

2�τ

)
=

{
1 − |δt |

2�τ
, δtε(−2�τ, + 2�τ )

0, elsewhere
(47)

is the triangular function, which has the shape of a triangle of
base 4�τ and unitary height. This result is the generalization
of formula (46) in Ref. [22]. Actually, it holds for any PDC
configuration provided that the bandwidths in play are not too
broad because it makes only use of the linear approximations
(8) and (11). It shows that when the pump pulse is much longer
than the two characteristic time scales, the twin photons have
identical properties. The width �τ of G(1)(t,t ′) as a function of
the time difference t ′ − t is their coherence time, which in this
limit is equal to their mutual correlation time [see Eq. (A1)].
Conversely, the temporal distributions of twin photons follow
the profile of the much longer pump pulse:

Is(t) = Ii(t) = g2

2�τ
|αp(t)|2. (48)

Notice that from the point of view of classical statistics of light,
this behavior of the G(1), with the peak at t = t ′ much narrower
of the intensity distribution is typical of multimode incoherent
light. On the other hand, in the quantum description, the state
of the heralded photon in Eq. (43) is in this case mixed because
G

(1)
j (t,t ′) in Eq. (46) is not factorable in its arguments.
The spectra of the photons have the usual sinc2 shape

characteristic of spontaneous processes

Ss(	) = Si(	) = g2

√
4π

Tpsinc2(	�τ ), (49)

and their spectral bandwidths �	j = 1
�τ

are the inverse of the
correlation-coherence times. Clearly, this explains why coun-
terpropagating twin photons are narrow band (order 10 GHz),
while copropagating twin photons are in general broadband
(order Thz or more)
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FIG. 6. Spectra of the signal (top) and of the idler (bottom) for the three examples in Table I, in conditions of separability of the state,
corresponding to panels (b), (f), and (h) of Figs. 4 and 5. Red lines: signal or idler spectra, numerically calculated. Gray areas: pump spectra.
Notice in columns (i) and (ii) the Gaussian profiles of the signal, matching the pump, and the narrower sinc2 profiles of the idler spectra as
predicted by Eqs. (52) and (55).

B. Nearly separable regime

We start from the case η � 1, including both the coun-
terpropagating and the copropagating cases with asymmetric
group-velocity matching. We remind that for a pump pulse
intermediate between the two time scales |τ±

i | 
 Tp 
 |τs |,
one photon propagates locked under the pump while the other
separates from it after being generated. For this reason, the
properties of the two photons are strongly asymmetric as, e.g.,
shown by the spectra in columns (i) and (ii) of Fig. 6. By using
the asymptotic limit (39) of the joint temporal amplitude, and
inserting it into formulas (41) and (42), we obtain for the signal
photon

G(1)
s (t̄s ,t̄

′
s) = g2

2�τ
α∗

p(t̄s)αp(t̄ ′s), (50)

which implies that

Is(t) = g2

2�τ
|αp(t − tAs)|2, (51)

Ss(	) = g2

2�τ
|α̃p(	)|2, (52)

i.e., the photon that propagates locked under the pump entirely
inherits the spectrotemporal properties of the coherent pump
laser.

Conversely, for the idler photon

G
(1)
i (t,t ′) = g2

2�τ

√
πTp

2�τ
Rect

(
t̄i

�τ

)
Rect

(
t̄ ′i

�τ

)
, (53)

and its properties depend on the dispersion properties of the
crystal and on its length, through the parameter �τ = |τ±

i −
τs |. In particular,

Ii(t) = g2

2�τ

√
πTp

2�τ
Rect

(
t − tAi

�τ

)
, (54)

Si(	) = g2

√
4π

Tpsinc2(	�τ ). (55)

The temporal distribution of the idler photon is a rectangular
pulse of duration 2�τ because for such a short pump, the
idler photon distribution reflects simply the fact that it can be
generated anywhere in the crystal with uniform probability.
Remarkably, since �τ 	 |τ±

i | 
 Tp, the idler wave packet
has a longer duration than the pump itself. In particular, in
the counterpropagating case, its duration roughly corresponds
to the transit time of the pump along the crystal. The idler
spectrum retains the same sinc2 shape as in the long-pump
limit, with a bandwidth �	i = 1/�τ � �	p. Hence, when
the state is approximately separable, the heralded idler photon
is not only pure, but also more monochromatic than the pump
laser that drives the process. However, only in the counter-
propagating case this result really means that the generated
idler photon is narrow band, as shown by Fig. 6(d), while
in the copropagating case it is anyway quite broadband [see
Fig. 6(e)] because separability requires ultrabroadband pump
pulses. Interestingly, in the counterpropagating case, the strong
asymmetry between the twin photons, and the fact that the
idler is more narrow band than the pump, reflect the unusual
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coherence properties of the classical signal and idler field
generated above the MOPO threshold, described in [35,36].

The forms of the coherence functions of the signal and
idler,G(1)(t,t ′) = √

I(t)
√
I(t ′), is typical of single-mode light,

which possesses classical temporal coherence: indeed, it means
that the average length of a temporal fluctuation (the coherence
time) is equal to the duration of the wave packet, implying
that the statistics is a sort of frozen in time. In the quantum
description the states of the heralded signal and idler photon
are pure ρ̂j = |ψj 〉 〈ψj |, with

|ψs〉 = 1

(
√

πTp)1/2

∫
dtsαp(ts − tAs

) â†
s (ts)|0〉, (56)

|ψi〉 = 1√
2�τ

∫
dtiRect

(
ti − tAi

�τ

)
â
†
i (ti)|0〉. (57)

Finally, we consider the alternative technique for reaching
separability, i.e.. the configuration with τs = −τi (η = −1),
in which the two photons copropagate symmetrically delayed
with respect to the pump center. As can be intuitively un-
derstood, in this case the properties of the twin photons are
completely symmetric. The mere linear approximation does
not give particularly expressive results, so that we have to
resort to the stronger Gaussian approximation. According to
it, separability is reached at Tp = T min

p = √
2γ |τ−

i |, where
(calculations not reported here) the state of each heralded
photon becomes pure, G

(1)
j (t,t ′) = √

Ij (t)
√
Ij (t ′), with the

temporal and spectral distributions of the two waves given by

Is(t̄s) = Ii(t̄i) ∝ e
− (t−tAj )2

2T 2
p =

∣∣∣∣αp

(
t̄j√

2

)∣∣∣∣
2

, (58)

Ss(	) = Si(	) ∝
∣∣∣αp

(√
2	

)∣∣∣2
, (59)

i.e., the two waves have similar properties as the pump, but with
a slightly longer duration and a slightly narrower spectrum. As
shown by panel (iii) of Fig. 6, these Gaussian results are rather
close to the exact ones.

C. Mean number of down-converted pairs efficiency

Another important point in view of applications is the
efficiency by which heralded pure photons can be generated by
the various strategies. Assuming that the state is approximately
separable, the efficiency ultimately depends on the probability
that at least a photon pair is generated by a pump pulse crossing
the crystal.1 This can be easily calculated from the state (5) as
N

1+N ≈ N for N � 1, where N is the mean number of photon
pairs per pulse. Within the linear approximation, making, e.g.,
use of Eq. (33) we obtain

N =
∫

dts

∫
dti |φ(ts ,ti)|2 = g2

√
πTp

2�τ
. (60)

This formula is valid for any geometry and any value of Tp,
provided that �τ �= 0. Incidentally, since g2 is proportional
to the pump peak intensity Ip, it implies that the number of

1Precisely, the emission rate would depend on both the probability of
generating a pair in each pulse and the repetition rate of the laser, but
the latter in turn depends on the specific experimental implementation.

down-converted photons is proportional to the energy Ep =
IpTp

√
π of the pump pulse.

Notice that in the long-pump regime, where the state is
highly multimode, the number of down-converted pairs can be
rewritten as

N 	 g2

2
K 
 g2, (61)

where we used the asymptotic expression of the Gaussian

Schmidt number in Eq. (23), KGauss = Tp√
2γ�τ

	
√

πTp

�τ
, since

2γπ 	 1. Thus, the total number of pairs can be seen as the
mean number of pairs per mode g2

2 , multiplied by the Schmidt
number K. When some strategy is used to decrease the number
of modes towards K → 1, the maximum that can be expected
is on the order N 	 g2

2 . However, different strategies lead to
different efficiencies.

According to the Gaussian result (25), the best condition
for separability corresponds to Tp = T min

p =
√

2γ |τsτ
±
i |. Sub-

stituting into Eq. (60), in these conditions we have

N → g2

2

√
2πγ |η|

(1 − η)
	

{
g2

4 for η = −1,

g2

2

√|η| for |η| � 1.
(62)

Therefore, the symmetric group-velocity matching leads to
a down-conversion efficiency close to its maximum value.
Conversely, in the asymmetric case |η| � 1 (counterpropa-
gating or copropagating case with asymmetric group-velocity
matching) the efficiency is strongly reduced, N � g2

2 . This
result is quite natural because in the first case, both photons
propagate close to the pump, and the three wave packets remain
at least partially superimposed along the entire crystal length.
In the latter case, the idler wave packet rapidly separates from
the pump because Tp � |τ±

i |. Since g ∝ lc, it effectively works
as if the interaction length were reduced to a shorter length

lc −→ lc

√
Tp

|τ±
i | . (63)

According to these results, one may then wonder whether
group-velocity matching is really more efficient with respect
to filtering the spectral or temporal modes from a multimode
state, whereN ∝ K [Eq. (61)]. Indeed, in this case the maximal
efficiency N = g2/2 could be achieved by some form of
“clever” filtering, which manages to project the state onto
a single Schmidt mode. Even in the worst case that all the
modes have the same weight, at least a fraction 1/K of the
total photon number would be transmitted. However, practical
considerations, which are outside the scope of this work, may
lead to conclude that it is anyway better to directly generate a
factorable state.

VI. SUMMARY AND CONCLUSIONS

In this work, we provided a systematic study of the gen-
eration of pure heralded single photons through spontaneous
PDC, comparing different configurations. We developed a
general formalism, where all the properties of the source are
condensed in two time scales τs,τ

±
i characteristic of the relative

propagation of the three waves inside the medium.
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On the one side, we derived a simple formula for the
Schmidt number of entanglement, that permits to evaluate the
degree of purity of the heralded photon via a single parameter.
On the other side, the less standard analysis in the temporal
domain clarifies the role of the two characteristic time scales,
and may permit to understand the mechanism under which the
temporal correlation between twin photons can be eliminated.
We found that one way of eliminating the correlation relies
on creating a strong asymmetry between the velocities of
the two down-converted waves relative to the pump wave, so
that one photon propagates under the pump pulse while the
other, for a pump pulse sufficiently localized inside the crystal,
separates from it. In these conditions, the timing provided by
the pump pulse may be more precise than that offered by
detecting any of the twin photons, and the arrival times of
the two photons appear uncorrelated. Such an asymmetry in
the relative propagation velocities is naturally present in the
counterpropagating geometry because of the natural separation
of the GVM and the GVS time scales, but requires particular
tuning conditions in the copropagating geometry. Because of
this unique feature, pure single photons can be in principle
heralded from a counterpropagating pair at any frequency
by choosing the required poling period. Moreover, they are
naturally narrow band, especially the one propagating opposite
to the pump, and separability is achieved for a broad range of
pump pulse durations.

Another way of eliminating the correlation requires that the
twin photons propagate symmetrically delayed with respect to
the pump pulse, and can be implemented only for coprop-
agating photons. Also in this case, the timing information
which can be gained from a localized pump can be better
than from any of the twins, but the required pump duration is
ultrashort, and the generated photons are broadband. Although
the purity of heralded photons generated in this way appears
somehow lower, symmetric group-velocity matching has the
advantage of a higher efficiency of pair production because
both twin photons propagate close to the pump. Conversely,
the asymmetric group-velocity matching and the counterprop-
agating geometry are characterized by a low efficiency because
purity requires that one photonic wave packet separates from
the pump pulse, so that the effective interaction length is
reduced.

In conclusion, our systematic study may turn useful for
optimizing the existing configurations in view of different
applications. For example, when narrow-band single photons
are required, the choice should be the counterpropagating
configuration, which moreover offers more flexibility since
it can be virtually implemented for any wavelength, once
the technical challenges for the fabrication of crystals with
submicrometer poling periods are overcome. In contrast, twin
photons emitted in the common copropagating geometry are
naturally broadband and can be generated in a separable state
only for very short pulses, under particular tuning conditions.
Thus, this is the good choice when broadband photons and or
high repetition rates are required. Finally, if efficiency is the
main issue, the symmetric group-velocity matching can be the
best choice.

We also hope that our general analysis, by providing a
deeper and more intuitive understanding of the mechanism
through which the temporal correlation of twin photons con be

eliminated, may stimulate new strategies of heralded photon
generation.

APPENDIX A: INTERPRETATION AND DISCUSSION

In order to understand the results of Secs. III and IV, we
resort to the very notion of temporal correlation, which relies
on the possibility of predicting the arrival time of one photon by
detecting the arrival time of its twin, with a precision better than
what would be obtained with an unconditional measurement.

Referring for definiteness to the signal photon (the one that
in any case copropagates with the pump), we first wonder what
is the uncertainty in its arrival time conditioned to detection of
the idler. Then, we will compare it with the uncertainty in its
arrival time not conditioned on the detection of the idler.

There are actually two distinct mechanisms by which the
exit time of one photon can be ascertained by detecting its twin:
one is simply based on their simultaneity, the other relies on
the possibility to gain information on the point where down-
conversion took place.

The first one prevails for long-pump pulses
Tp 
 |τ±

i | � |τs |. In these conditions, the idler and signal
wave packets propagate under the pump pulse, and detection
of neither photon gives information on the point of the crystal
where the pair was generated. Thus, our ability to infer the
arrival time of one photon by detection of its twin is limited
by the degree to which they arrive simultaneously at their end
faces, i.e., by the spread of the distribution of their mutual
time delays. This is described by the box function in Eq. (33),
characteristic of the spontaneous PDC processes, where a
photon pair can be generated at any point along the crystal with
uniform probability. Accordingly, the delay between the exits
of the twins has a flat distribution in the interval [−�τ,+�τ ]2

where �τ := lc
2 | 1

vgs
± 1

vgi
|. Notice that counterpropagating

photons (+sign) can be delayed up to their transit time along
the sample. Conversely, copropagating twins (−sign) exit
from the same face, and appear with a small delay ruled by
their GVM, the extreme case being when they propagate
exactly at the same velocity, in which case the width of the
box function vanishes. According to this mechanism, the exit
time of the signal can be deduced from that of the idler as

t̄s = t̄i within (δts)cond 	 �τ = |τ±
i − τs |(Tp 
 |τ±

i |),
(A1)

where (δts)cond indicates the spread of the distribution of the
signal arrival time conditioned to detection of the idler, i.e., the
correlation time.

The second mechanism, described by the factor αp( t̄s−ηt̄i
1−η

)
in Eq. (33), prevails for ultrashort-pump pulses Tp � |τs | �
|τ±

i |. In this case, both photons separate from the pump
during propagation, and detection of any of them provides an
indication of the point where the pair was generated. By using a
rough picture of photons as wave packets propagating without
deformation with their group velocities, one can imagine that

2For the original time arguments, ts − ti = t̄s − t̄i + (tAs − tAi). In
the copropagating case, the box function is then shifted to the interval
[0,2�τ ] while in the copropagating case the shift is negligible.
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if a photon pair were generated at a point z0, and conversion
occurred from a pump photon delayed by δtp from the center
of the pulse, then the idler photon would arrive at its end face
at time

ti =
{

z0
vgp

+ z0
vgi

+ δtp, counterprop. case
z0

vgp
+ lc−z0

vgi
+ δtp, coprop. case

(A2)

i.e., for the barred time argument t̄i = ti − 1
2 ( lc

vgp
+ lc

vgi
):

t̄i =
(

z0 − lc

2

)
2

lc
τ±
i + δtp. (A3)

The same argument gives the arrival time of its twin signal
photon as

t̄s =
(

z0 − lc

2

)
2

lc
τs + δtp, (A4)

where in the above formulas δtp can be considered as a
Gaussian stochastic variable with variance Tp/

√
2 because a

pump photon can be down-converted at any time along the
pump pulse, with a probability proportional to the Gaussian
pump intensity. Then, by comparing Eqs (A3) and (A4),

t̄s = t̄i
τs

τ±
i

+ δtp

(
1 − τs

τ±
i

)
= ηt̄i + (1 − η)δtp. (A5)

Thus, according to these arguments, the arrival time of the
signal conditioned to detection of the idler is

t̄s = ηt̄i within (δts)cond 	 Tp(1 − η) (Tp � |τs |).
(A6)

These conditional uncertainties have to be compared with
the corresponding unconditional uncertainties, i.e., with the
spread of the distribution of the exit times of the signal when
the idler is not detected. Also here there are two sources of
uncertainty, one is the width Tp of the Gaussian distribution
of the pump, because the photon can be down-converted from
any portion of the pump pulse, the other one is the point of the
crystal where down-conversion took place. Depending on the
latter, the delay of the signal photon with respect to the center
of the pump pulse ranges in the interval [0, 2|τs |] with uniform
probability. Clearly, the first mechanism dominates for Tp 

|τs |, as shown by Eqs. (37) and (39), the second mechanism
for Tp � |τs | [see Eq. (38)]. A more precise analysis, based
on the temporal correlation (33), gives

(δts)uncond =
√

T 2
p

2
+ τs

2

3
→

⎧⎨
⎩

Tp√
2
, Tp 
 |τs |

|τs |√
3
, Tp � |τs |

(A7)

where (δts)uncond is the variance of the distribution of the arrival
times of the signal when the idler is not detected.

Summarizing the results, we have the following situation:
(1) For a long-pump pulse Tp � |τ±

i | � |τs|, comparing
the unconditional and conditional uncertainties in the arrival
time of the signal, in Eqs. (A7) and (A1), we see that for such
long pumps Tp 
 |τ±

i |, the state is in general highly entangled

because3

(δts)uncond

(δts)cond
	 Tp

|τ±
i − τs |

= Tp

|τ±
i |(1 − η)


 1. (A8)

Heuristically, the above ratio also gives an estimate of the
number of entangled modes, well in accordance with the
asymptotic behavior of the Schmidt number in Eq. (23) for
long-pump pulses.

(2) For an ultrashort-pump pulse Tp � |τs| � |τ±
i |, the

state is again highly entangled because

(δts)uncond

(δts)cond
	 |τs |

Tp(1 − η)
= |τsτ

+
i |

Tp|τ±
i − τs |


 1 (A9)

for Tp � |τs |. Also in this case, the ratio in Eq. (A9) can be
considered an estimate of the number of entangled modes,
and indeed reproduces the asymptotic behavior of the Schmidt
number in Eq. (24).

Following the above arguments, in particular the results
(A8) and (A9), there is no chance that the state becomes
separable when τs 	 τ±

i . When the two photons propagate in
the same direction at similar velocities, in fact, detection of one
photon will always provide an extremely precise information
about the arrival time of the other, basically because they exit
the crystal almost simultaneously. This is the typical situation
that occurs in the copropagating case, in the absence of any
velocity-matching strategy, and explains why copropagating
photons in general display high temporal entanglement.

Conversely, in the counterpropagating geometry the exit
times of the twins lack simultaneity because they follow
different paths, and this case is naturally characterized by a
strong asymmetry between the twins, in particular, τ+

i 
 |τs |.
Because of that, the separable limit (39) can be always realized
for intermediate pump durations τ+

i 
 Tp 
 |τs | which need
not be ultrashort because τ+

i is a long time scale. This limit
physically corresponds to a situation where the forward signal
photon always propagates below the pump pulse, but the
pump pulse is short enough that the backward photon rapidly
separates from it. In these conditions, the temporal localization
of the pump provides an absolute timing information on the
exit time of the signal, as precise (∼Tp) as the information
that can be gained by detecting the idler ∼Tp(1 − η) ≈ Tp,
and the exit times of the twins appear uncorrelated. Another
way of looking at the situation is that the forward photon
is locked to the pump so that it cannot provide any infor-
mation on the point where down-conversion occurred, and
by detecting the signal one does not gain any more precise
information on the exit time of the backward idler than by not
detecting it.

In the copropagating configuration, the same limit can
be reached only by creating a strong asymmetry between
the propagation velocities of the two photons relative to the
pump |τs | � |τ−

i |, which in practice requires that the signal is
velocity matched to the pump [5,7,8] as in the example (ii).
However, in order that the idler separate from the pump pulse

3Notice that 0 < (1 − η) � 2, because of Eq. (28).
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FIG. 7. Comparison between the Gaussian approximation and exact results. Solid lines: minima of the Schmidt number Kmin and relative
pump durations T min

p as a function of λs , obtained with the Gaussian approximation from Eqs. (26) and (25). Blue dots: exact values calculated
at the minima of K in Fig. 3, numerically evaluated. The top horizontal scale shows the conjugate idler wavelength λi .

along a finite propagation length, the pump pulse must be in
this case ultrashort [Fig. 4(f)]. As a consequence, the generated
twin photons are broadband.

An alternative strategy, which can be realized only in the
copropagating case, is the symmetric group-velocity matching
[5,13] where twin photons are are symmetrically delayed with
respect to the pump center τs = −τ−

i and η = −1, as in the
example (iii). Negative values of η are in general favorable to
separability because then �τ = |τ±

i | + |τs | > |τ±
i |,|τs |, and

twin photons are more simultaneous with the pump than
between themselves. In these conditions, a properly localized
pump pulse may provide a timing of the exits of the twins more
precise than the information that can be inferred from detection
of any of them. Focusing on the case η = −1, when the pump
duration Tp approaches |τ−

i | = |τs |, the twin photons are not
enough separated from the pump and cannot provide sufficient
information on the point where generation occurred, but on
the other side they are no more simultaneous than the pump
duration �τ = 2|τ−

i | > Tp
4. As already remarked in Sec. IV,

the purity of heralded photons generated in this way is rather far
from the ideal result Kmin = 1 predicted by the Gaussian for-
mula (26), which seems rather an artifact of replacing the sinc
by a Gaussian. The Gaussian approximation (18) has indeed the
effect of smoothing the sharp boundaries of the medium at the
origin of the sinc function. When taken in the temporal domain
it consists in replacing the box function in Eq. (33) by a smooth
Gaussian of the same width: Rect( t̄s−t̄i

�τ
) → exp (− (t̄s−t̄i )2

4γ�τ 2 ). In

this way, the diamond-shaped correlation in Fig. 4(h) becomes
a symmetric factorable Gaussian:

φ(t̄s ,t̄i) ∝ αp

(
t̄s + t̄i

2

)
Rect

(
t̄s − t̄i

�τ

)

→ e
− t̄2s +t̄2

i

4γ (�τ )2 for Tp = T min
p =

√
2γ |τ−

i |. (A10)

APPENDIX B: SPECIFIC CONFIGURATIONS

We considered three configurations suitable for generating
pure heralded photons, and a specific example for each config-
uration:

(i) Counterpropagating geometry (|η| � 1). The peculiar-
ity of the counterpropagating geometry is that the condition
|η| � 1 is naturally fulfilled, so that any phase-matching
configuration has the potentiality to generate pure heralded
photons. As a specific example, we considered a 10-mm-
long periodically poled crystal of potassium titanyl phosphate
(PPKTP) in a type 0 (e-ee) phase-matching configuration: the
poling period is � = 800 nm, λp = 814.5 nm, λs = 1145 nm,
λi = 2932.4 nm, η = τs/τ

+
i = 0.01. Apart from the length of

the crystal, the parameters are those of the experiment reported
in [17], and are not particularly optimized for separability.
Notice that for the same crystal, the condition η = 0 can be
also realized, and would lead to a higher degree of purity, as
discussed in Ref. [14]. For the copropagating geometry, we
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considered two examples of asymmetric η = 0 and symmetric
group-velocity matching (η = −1), taken from the literature
[5–8], in particular the example (II) is that of the experiment
by Mosley et al. [7].

(ii) Copropagating geometry, asymmetric group-velocity
matching η = 0. We considered a 10-mm potassium dihydro-
gen phosphate (KDP) crystal cut for type-II collinear phase-
matching (e-oe) at degeneracy. When pumped at 415 nm with a
tuning angle θp = 68.7◦ with the crystal axis, the KDP crystal
has the peculiarity of displaying a vanishing GVM between
pump and the signal field (i.e., τs = 0, η = 0) and is therefore
well suited for the generation a separable two-photon state
provided that Tp � τ−

i = 0.72 ps [5,8].
(iii) Copropagating geometry, symmetric group-velocity

matching η = −1. The symmetric condition η = −1 can be
fulfilled only in the copropagating configuration, and is rather
difficult to meet because it requires that the pump inverse group
velocity falls exactly midway between the signal and the idler
inverse group velocities

τ−
i = −τs ←→ 1

2

(
1

vgs

+ 1

vgi

)
= 1

vgp

. (B1)

Provided this relation is satisfied, the two-photon correlation
ψ(	s,	i) in the Gaussian approximation displays a circular
shape for Tp = T min

p since c12 = 0 and c11 = c22 = 2γ τs
2. For

4Quantitatively, when the pump duration approaches |τ±
i | in

Eq. (A8), or |τs | in Eq. (A8), then the ratio (δts )uncond
(δts )|t̄i

→ 1
1+|η| < 1.

the optimized pump pulse duration, the generated twin photons
are thus not only uncorrelated but also indistinguishable.

As a specific example, we considered a 10-mm beta-barium
triborate (BBO) crystal both cut for type-II collinear phase
matching (e-oe) at degeneracy. When pumped at 757 nm with
a pump tuning angle θp = 28.8◦ the condition τs = −τ+

i =
0.237 ps, η = −1 is realized.

Table I summarizes the parameters for three examples
chosen as representative of the configurations (i), (ii), and
(iii). Figure 7 plots the results of the Gaussian approximation
for Kmin and T min

p [Eqs. (26) and (25)], as a function of the
signal central wavelength λs , for these three examples. The
phase-matched wavelengths λs and λi and the corresponding
characteristic times τs and τ±

i are evaluated using the Sellmeier
dispersion formula reported in [31–33]. For the PPKTP crystal,
different wavelengths correspond to different poling periods
�, not reported in the figure. For the KDP and BBO crystals,
the signal and idler wavelengths are varied by changing the
tuning angle θp between the pump direction and the crystal
axis (not reported in the figure). Notice that in the BBO case η

is always negative for λs > 1070 nm, so that according to the
Gaussian approximation (26), in this range the state should be
separable. Notice also that for λs = 1010 nm the signal and
idler group velocities become equal (η = 1) and the number
of modes predicted by the Gaussian formula (26) diverges. In
these conditions, K becomes indeed very large but not infinite,
as it is limited by group-velocity dispersion, a feature not taken
into account in the Gaussian model based on linearization (8)
and (11).
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