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Nonlinear unitary transformations of space-variant polarized light fields from
self-induced geometric-phase optical elements
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We propose to couple the optical orientational nonlinearities of liquid crystals with their ability to self-organize
to tailor them to control space-variant-polarized optical fields in a nonlinear manner. Experimental demonstration
is made using a liquid crystal light valve that behaves like a light-driven geometric phase optical element. We
also unveil two original nonlinear optical processes, namely self-induced separability and nonseparability. These
results contribute to the advancement of nonlinear singular optics that is still in its infancy despite 25 years of effort,
which may foster the development of nonlinear protocols to manipulate high-dimensional optical information
both in the classical and quantum regimes.
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I. INTRODUCTION

In classical optics, the optical angular momentum of parax-
ial light fields can be separated into two independent contri-
butions, spin and orbital [1]. The former is associated with the
polarization state while the latter refers to the spatial degrees
of freedom. The superposition of generalized orthogonal states
both for the spin and orbital angular momentum of light leads to
a variety of space-variant polarization fields such as cylindrical
vector beams [2] or Poincaré beams [3]. Inhomogeneously
polarized optical fields have been deployed in many research
areas and a nonexhaustive set of examples can be given in
focusing [4,5], imaging [6,7], manipulation [8,9], material
processing [10,11], nanophotonics [12], laser acceleration
of charged particles [13,14], sensing [15,16], and metrology
[17,18].

A useful description of such fields in the paraxial limit
consists in combining the (spin) Poincaré sphere of polariza-
tion [19] with the orbital Poincaré spheres [20], thus lead-
ing to a two-dimensional basis constructed from generalized
orthogonal states [21–23]. Here we adopt the convention of
writing the complex amplitude of a paraxial field propagating
along the z axis as being proportional to the propagation factor
exp(−iωt ± ik0z) with ω the angular frequency, t the time,
and k0 the free-space wave vector. In addition, we introduce
the spin-orbit optical states �σ,� defined by the complex vector
space-variant polarized light fields

�σ,� = ei�φ cσ . (1)

In this equation, cσ = (x + iσy)/
√

2 with σ = ±1, refers
to the circular polarization unit vectors in the Cartesian
coordinate system that are associated with σ h̄ spin angular
momentum per photon [24]. On the other hand, exp(i�φ)
with φ = arctan(y/x) and integer �, refers to a light field
associated with �h̄ orbital angular momentum per photon [1].
Accordingly, we will consider space-variant polarized light
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fields described by a coherent linear superposition of two states
given by Eq. (1), namely,

�(α,β ; �+,�−) = α �+1,�+ + β �−1,�− , (2)

where (α,β) are complex numbers and |α|2 + |β|2 = 1. In
addition, the present formalism also applies for the arbitrary
paraxial radial envelope described by the function f�±(r) =∑

p αpL
|�±|
p (r) where αp are complex coefficients and L

|�±|
p

are the associated Laguerre polynomials.
Many techniques are available to create spatially engineered

polarization states. Some rely on simple and efficient schemes,
such as those based on interferometry [25], the modal structure
associated with fiber optics [26,27], or the use of uniaxial
crystals [28]. However, the advent of machining techniques
enabling the fabrication of structured optically anisotropic
elements has led to novel kinds of optical elements to generate
light beams with azimuthally varying linear polarization states
from either space-variant true birefringence [29] or space-
variant form birefringence [30]. Spatial light modulators are
another kind of device common today having the advantage
of remote-controlled operation [31,32]. Optical microcavities
have also been designed to support the emission of vector
vortex beams [33,34]. In fact, the possibility to generate
space-variant polarized beams directly from the source has
been investigated in laser physics since the early 1970s by
introducing homogeneous anisotropic crystals inside the cavity
[35] and nowadays polyvalent laser sources to control spatial
features of laser emission have been realized using intracavity
inhomogeneous anisotropic optical elements [36].

Remarkably, all the above approaches deal with linear
optical processes and, to date, only a few works have explored
the use of nonlinear optical processes to generate vector vortex
beams. Indeed, it has been shown that a slightly absorbing
cubic crystal exhibits self-induced spin-orbit interaction when
exposed to an incident linearly polarized continuous-wave
Gaussian beam [37]. However, the efficiency of the photoe-
lastic process involved scales quadratically with the incident
optical power and is of the order of 10−4 for 50-W incident
power. Also, it has been shown that vector fields can be
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generated by second-harmonic generation from semiconductor
nanoantennas by using a focused linearly polarized pulsed
Gaussian beam with mW power level as the incident field [38].
In that case, an efficiency of the order of 10−4 is obtained, which
is a record value for this area of research.

It is worth mentioning other studies dealing with nonlinear
optical phenomena involving spin and orbital angular momen-
tum although they do not deal with space-variant polarized
fields. Namely, the doubling of the orbital angular momentum
per photon by second-harmonic generation in homogeneous
nonlinear crystals has been reported [39,40]. Second-harmonic
generation of orbital angular momentum from a space-variant
nonlinear crystal has also been demonstrated [41]. Nonlin-
ear spin-orbit interaction driven by a dc electric field and
associated with the electrooptical Pockels effect has been
predicted and observed [42,43]. However, this effect has a
modest ∼10% spin-to-orbital angular momentum conversion
efficiency under an applied voltage of the order of 10 kV. The
case of ponderomotive optical forces is another example where
nonlinear generation of orbital angular momentum may occur
[44,45]. Types of nonlinearities other than those of electronic
origin can also be at work. Indeed, the long-range orientational
order and high birefringence of liquid crystalline media lead
to orientational optical nonlinearities that are several orders of
magnitude larger than electronic ones [46,47]. In practice, this
leads to vivid nonlinear phenomena under continuous-wave
radiation and modest power. In the recent years, several nonlin-
ear optics demonstrations involving orbital angular momentum
were reported [48–51].

Here we propose to exploit the giant orientational optical
nonlinearity of liquid crystals to achieve nonlinear unitary
transformations of vector vortex beams using light-driven liq-
uid crystal topological defects. Namely, the idea is to perform
optical transformations �(α,β ; �+,�−) → �(α′,β ′ ; �′

+,�′
−)

with (α,β ; �+,�−) �= (α′,β ′ ; �′
+,�′

−). By doing so, we extend
previous studies on the creation of vector vortex beams from
Gaussian beams with uniform linear polarization using linear
optics of natural nematic liquid crystal topological defects
[52]. Also, this generalizes previous demonstrations of the
generation of scalar vortex beams using spin-orbit cross-phase
modulation [48] and spin-orbit self-phase modulation [50,51]
in nematics. The experimental demonstration is made using
a so-called liquid crystal light valve [53] according to an
approach detailed in Sec. II, where the characterization and
optimization of the nonlinear geometric phase optical element
at play is documented. Experimental results are reported and
compared to simulations accounting for the nonideal nature of
the created nonlinear topological optical element in Sec. III.
Then, two specific situations that correspond to nonlinear op-
tical separability and nonseparability processes are discussed
in Sec. IV. In particular, we show that the radial degree of
freedom cannot be ignored in the reported experiments and its
consequences are addressed.

II. EXPERIMENTAL APPROACH

A. Principle

Originally, a q-plate (QP) refers to a type of geometric phase
optical element enabling the mappping of the two-dimensional
basis associated with the polarization state, (c+,c−), onto a

two-dimensional subspace for the orbital angular momentum.,
(e+i�φ,e−i�φ) [54]. In practice, a QP is a linear optical element
that consists of a space-variant flat retarder satisfying the
half-wave plate condition for the used wavelength and ideally
characterized by an orientation angle of its in-plane optical axis
θ = qφ, up to an unimportant constant. Neglecting diffraction,
it operates the following unitary transformation of an incident
circularly polarized plane wave:

�σ,�

QP−→ �−σ,�+2σq . (3)

Our approach consists in generating a QP in an initially
isotropic nonlinear material so that nothing happens at “low”
photon flux while a self-induced q-plate (SIQP) is created at
“high” photon flux. In the latter case, by combining Eqs. (2)
and (3) one gets that a SIQP enables the nonlinear unitary
transformation

�(α,β ; �+,�−)
SIQP−−→ �(β,α ; �− − 2q,�+ + 2q). (4)

With the aim at realizing the above nonlinear transformation,
the present study is based on the possibility to optically
induce a spin-dependent optical vortex generator made of a
liquid crystal slab associated with perpendicular orientational
boundary conditions at the cell walls that define a nematic
layer with the typical thickness ranging from 10 to 100 μm
[48,50,51].

Specifically, it has been shown that the use of liquid crystal
light valve [(LCLV), a nematic slab sandwiched between a
photoconductive substrate and a standard glass slab, both
provided with transparent electrodes] allows almost 100%
efficient self-conversion of an incident circularly polarized
Gaussian beam into a scalar optical vortex beam with contra-
circular polarization state [51]. The underlying phenomenon
is the light-driven electrical generation of an umbilical defect
with topological charge +1. Umbilics are electrically induced
nonsingular liquid crystal topological structures of charge
m = ±1 appearing in films of nematics having a negative
dielectric anisotropy [55]. It has been shown that umbilics
behave as a liquid crystal q-plate with q = m [56].

Here we exploit self-induced umbilic q-plates (SIUQPs)
created in a liquid crystal light valve by restricting ourselves,
without loss of generality, to the case of a “balanced” vectorial
optical state characterized by α = β and �− = −�+ = �. This
corresponds to linearly polarized vector fields whose electric
vector orientation angle has a linear azimuthal dependence,
ψ = �φ. At the origin, the angle ψ is thus undefined, which
defines a vector point singularity (V point) characterized by
a Poincaré-Hopf index [57], here equal to �, which describes
how many turns the electric field vector makes around a full
turn nearby the singularity. Adopting the simplified notation
�V(�) ≡ �(1/

√
2,1/

√
2 ; −�,�), the SIUQP thus ideally op-

erates the following transformation only if the incident photon
flux is high enough:

�V(�)

SIUQP
ideal−−−→ �V(2 − �). (5)

B. Experimental setup

We use the setup shown in Fig. 1. The key element is the
LCLV that consists of a L = 34-μm-thick layer of the nematic
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FIG. 1. Experimental setup. Ein: linearly polarized incident Gaus-
sian beam; CA clear circular aperture with diameter 3 mm; PCi :
polarization controllers; L1: lens with focal length f1 = 100 mm;
LCLV: liquid crystal light valve whose enlargement depicts its
structure (see text for details); U : applied voltage on the LCLV. L2

and L3: lenses with focal length f2 = f3 = 75 mm; BS: beamsplitter;
Cam: camera.

liquid crystal mixture MLC6608 (Merck) characterized by a
negative relative dielectric permittivity εa � −4.2 at 1 kHz
frequency and room temperature. This last is sandwiched
between a 1-mm-thick slab of bismuth silicon oxide (BSO)
photoconductive crystal and a 1-mm-thick glass slab which
are both provided with transparent electrodes. The inset of
Fig. 1 depicts the location of the electrodes on which is applied
an ac electric field at 2-kHz frequency. The inner walls of
the cell are treated with cetyl-trimethyl-ammonium-bromide
surfactant that provides uniform molecular orientation of the
liquid crystal along the z axis at rest.

We prepare a set of five incident states �V(�) with −2 �
� � 2 by using solid-state QPs made of nanostructured glass
slabs with q = (0,1/2,1) illuminated by a Gaussian laser
beam linearly polarized along the x beam at wavelength
λ = 532 nm. Indeed, noting that x = (c+ + c−)/

√
2, Eq. (3)

gives

x
QP−→ �V(2q). (6)

In our case, this gives an access to � = (0,1,2). The negative
values of � are then obtained without need of additional q
plates by inserting a half-wave plate (HWP, which is ensured
by the polarization controller PC1) after the QP. This ensures

the transformation �V(�)
HWP−−→ �V(−�). In practice, a 3-mm-

diameter clear circular aperture (CA) is placed in the plane
of the QP, where the incident Gaussian beam waist diameter is
� 4 mm. The last plane is reimaged onto the nematic layer with
a magnification factor of 0.2 using the lens L1. Polarimetric
analysis of the output light field is performed by reimaging
the LCLV using the lens L2 placed in a 2f -2f configuration
with respect to the polarization controller PC2. The field is
eventually reimaged on a camera (Cam) with a magnification
factor of 3.25 using the lens L3. The spatial features of the
phase are also assessed by interfering the output field with a
reference Gaussian beam owing to the beamsplitter BS, which
is removed during the polarization study.

The experimental protocol consists in applying a fixed
voltage U � 0.9Uth, where Uth � 7Vrms refers to the threshold
value below which the nematic layer remains unperturbed in

0 4 8 12 16 20 24
0

1

FIG. 2. (a) Power dependence of the parameter η that charac-
terizes the self-induced generated scalar vortex field for an incident
circularly polarized unstructured light. Markers: measurements for
incident power giving extremal values of η as well as η � 0.5. Solid
line: spline fit of the experimental data. Interference pattern between
the output field and a reference Gaussian beam in the linear and
nonlinear regimes in panels (b) and (c), respectively. The second of
these refers to the fourth maximum of η(P ), which corresponds to the
realization of a SIUQP. Labels A to D refer to local maxima occurring
at P = 2, 4.3, 7.7, and 16 mW, see Fig. 3 while labels A′ to C′ refer
to local minima occurring at P = 3.2, 5.8, and 10.7 mW.

the absence of light, and illuminating the LCLV according to
Fig. 1 with total optical power P impinging on the sample. At
first, we check the ability of the LCLV to act as a SIUQP in
the case of a circularly polarized incident unstructured field
onto the sample. This is done by setting q = 0 and PC1 as
a quarter-wave plate oriented at ±45◦ from the x axis. The
efficiency of the process is evaluated by measuring the fraction
of the total output power carried by the contra-circularly
polarized component, η, using PC2 either as right-handed or
left-handed circular polarizer. Its dependence as a function of
the incident power is shown in Fig. 2(a).

At low power (P � 0.5 mW) the output field is not af-
fected by the LCLV that behaves as a linear, isotropic, and
homogeneous optical medium. This is illustrated in Fig. 2(b)
showing the usual concentric fringes pattern in the presence of
a coaxial Gaussian reference beam. Above a threshold power,
the liquid crystal reorients and forms an umbilical defect. In
return, a scalar optical vortex beam with topological charge
±2 is generated. This corresponds to the nonlinear regime
characterized by an oscillation of η(P ). The fact that near-unit
value can be reached [see label D, Fig. 2(a)] proves that a
SIUQP can be readily obtained. Accordingly, the output field
is fully transformed into a scalar vortex beam, as shown in
Fig. 2(c) where the two-arm spiral pattern is the indication of
the topological charge 2.

C. Self-induced umbilic q-plate characteristics

Basically, there is a two-fold distinction between a SIUQP
and an ideal QP. First, the birefringent phase retardation  is
no longer uniform in the (x,y) plane of the sample. An indirect
signature of it can be grasped from Fig. 2(a). In contrast to a
QP exhibiting oscillation of η between 0 and 1 as the uniform
retardance increases [58], here the overall monotonic increase
of the liquid crystal orientation with power leads to extremal
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FIG. 3. (a) Images of the LCLV observed between crossed cir-
cular polarizers at incident optical power values that correspond to
local maxima for the scalar optical vortex generation as reported in
Fig. 2(a), see labels A to D. (b) Same as in (a) using crossed linear
polarizers. The dashed white circles refer to the geometric image of
CA.

values for η that are neither 0 nor 1. This is explained by the
fact that the optically localized umbilical defect structure is
unavoidably accompanied by a radially varying retardance.
Namely,  = 0 at the defect core and  → 0 outside the illu-
mination area since U < Uth. Therefore, neither the condition
 = 2nπ [i.e., η = 0] nor  = (2n + 1)π [i.e., η = 1] (n > 0
integer) can be satisfied uniformly. The present case is thus the
optical analog of the electrically driven localized umbilic QP
studied in a previous work [59]. Still, as already noticed in the
previous subsection, η � 1 can be reached at larger power [see
label D, Fig. 2(a)].

In practice, direct information on the retardance can also
be obtained by imaging the LCLV placed between crossed
circular polarizers (XCPOL) using the excitation light only,
see Fig. 3(a) where each panel refers to a local maximum of η

as indicated by the labels A to D. Indeed, within the paraxial ap-
proximation and neglecting diffraction effects as well as nona-
diabatic propagation inside the structure, XCPOL images are
associated with intensity profiles Iinput(x,y) sin2[(x,y)/2]
with Iinput(x,y) the intensity profile at the input facet of the
sample [60]. Therefore, the black dots in Fig. 3(a) refer to the
umbilic core with zero retardance. On the other hand, the circu-
lar contour sharpening and the improved uniformity of the in-
tensity distribution as the power increases from the case A to D
indicate the establishment of almost uniform light-driven retar-
dance inside the geometric image of the input circular aperture.

The second characteristic distinguishing a SIUQP from an
ideal QP relates to the spatial distribution of the optical axis
orientation. Indeed, θ is no longer solely dependent on the
azimuthal angle φ as is the case for a QP. This is illustrated in
Fig. 3(b) where crossed linear polarizers (XLPOL) images of
the LCLV are shown. The four dark brushes are the signature
of an umbilic with unit strength [61], however, the observed
axisymmetric swirl around the defect core indicates a radial
contribution to the space-variant optical axis θ = φ + ϕ(r).

The function ϕ(r) characterizes the swirl of the light-driven
umbilic that has been identified to result from the elastic
anisotropy of the nematic liquid crystal [62]. Interestingly we
notice that the swirl tends to decrease as the power increases,
as one can see from the evolution from the case A to D in
Fig. 3(b).

From the above analysis of the spatial features of both the
retardance and optical axis orientation of the SIUQP, we fix
the power to P = 16 mW when working in the nonlinear
regime. This choice suggests a simple, yet relevant, model to
describe the SIUQP. Namely, we assume the birefringent phase
retardance to be uniform and equal to an odd value of π uniform
inside the geometric image of the input circular aperture. Since
P = 16 mW corresponds to the fourth maximum of η(P ), we
set  = 7π . Also, we neglect the observed off-axis defect core,
see Fig. 3, that results from the competition between various
distinct contributions to the total torque density exerted on the
liquid crystal [51]. Eventually, the function θ (r,φ) is experi-
mentally assessed by Stokes polarimetry as detailed below.

When the incident light is circularly polarized, the orien-
tation of the major axis of the total output field polarization
ellipse ψ is oriented at ±45◦ from the effective optical axis
orientation. We thus have ψ = θ ± π/4, the ± sign being
dictated by the incident polarization handedness and the value
of the retardance [63]. The experimental map θexp is thus
retrieved by exploiting the standard polarimetry relationship
ψ = (1/2) arctan [(I45◦ − I135◦ )/(I0◦ − I90◦ )] [64], where Iα

refers to the intensity profile obtained by placing a polarizer
at an angle α from the x axis at the output of the film, see
Fig. 4(a). The result is shown in Fig. 4(b) where the presence
of noise outside the geometric image of the input circular
aperture (dashed circle) is due to the absence of signal in that
region. The θexp map confirms the topological charge +1 of
the SIUQP and its swirled character. Moreover, this allows
extraction of the radial dependence of the swirl according to
the relationship ϕexp = θexp − φ. This is done by defining a
circular region of interest of radius R around the defect core
taken as the coordinate origin, see the solid white circle in
Fig. 4(b). A series of measurements for a representative sample
of 180 equally spaced values of φ is shown in Fig. 4(c), where
we discarded the noisy data close to the origin, typically for
r < R/10. Their mean value (thick cyan solid line) is then
adjusted by an exponentially decaying function (red solid line)

ϕ(r) = ϕ0 + ϕ1(1 − e−r/rc ), (7)

with ϕ0 = −0.805, ϕ1 = 1.849, and rc = 0.385R, which gives
a satisfying agreement. We note that the obtained value for the
characteristic swirl length, rc � 80 μm, is of the order of the
cell thickness as expected from the nonlocal character of a
liquid crystal film.

In summary, the SIUQP obtained in our experiments can be
quantitatively described by  = 7π and θ (r,φ) = φ + ϕ(r).
This model will be used in the next section to simulate our
experimental attempts to realize the nonlinear transformations
described by Eq. (5).

III. NONLINEAR TRANSFORMATIONS OF �V

Following the approach presented in Sec. II B we prepare
a set of incident optical states �V(�) with −2 � � � +2 that
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FIG. 4. (a) Images of the LCLV illuminated by a incident circu-
larly polarized light, adjusting the polarization controller PC2 as a
polarizer oriented at an angle α = 0◦, 45◦, 90◦, and 135◦ from the
x axis. (b) Experimentally reconstructed map θexp of the effective
optical axis orientation of the SIUQP. Dashed white circle: contour of
the geometric image of the circular aperture CA. Solid white circle:
region of interest used to evaluate experimentally the swirl function
ϕexp(r). (c) Determination of the swirl function ϕexp(r) according to
the protocol described in the text. The inset displays the modeled map
θ (r,φ) of the optical axis orientation of the SIUQP over the region of
interest.

are individually sent onto the LCLV. The experimental maps
ψexp of the output electric field vector orientation in the region
of interest are collected in Fig. 5(a) for the linear regime. The
comparison to the expected maps associated with �V(�) is
shown in Fig. 5(b), which agree well with the data. Still one
must also check the degree of linear polarization (DOLP),

FIG. 5. (a) Experimental output maps ψexp of the electric field
vector orientation in the linear regime for input optical states �V(�)
with −2 � � � +2. (b) Simulated maps associated with �V(�).

TABLE I. Average value of the degree of linear polarization
(DOLP) in the linear and nonlinear regimes.

� −2 −1 0 +1 +2

DOLP (linear regime) 0.92 0.93 0.99 0.93 0.91
DOLP (nonlinear regime) 0.88 0.92 0.93 0.91 0.89

which equals 1 for any state �V(�). The evaluation is made
from the relationship DOLP = (s2

1 + s2
2 )

1/2
where s1 and s2

are the first and second reduced Stokes parameters that can
be evaluated from the previously defined intensity profiles Iα .
The results are summarized in Table I and complete the linear
regime analysis.

In the nonlinear regime, however, the measurements do not
correspond to the output state �V(2 − �) given by Eq. (5), as
one can see by comparing Fig. 6(a) to Fig. 6(b). Indeed, twisted
maps are observed in all the cases except for � = +2, though
the latter remains associated with radial nonuniformity. Such
a behavior is explained by the swirled nature of the SIUQP
that imparts an additional geometric phase contribution to the
output field. Noticeably, this happens in a differential manner
for the two orthogonal components �+,−� and �−,+� of the
input state. This can be derived by Jones calculus accounting

FIG. 6. (a) Experimental output maps ψexp of the electric field
vector orientation in the nonlinear regime for input optical states
�V(�) with −2 � � � +2. (b) Simulated maps associated with
�V(2 − �). (c) Simulated maps associated with the hybrid states
�̃V(2 − �), see text for details.
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for the above-retained description of the SIUQP, which allows
us to identify that a hybrid vectorial state has been generated.
Namely, one gets

�V(�)

SIUQP
real−−−→ �̃V(2 − �), (8)

where

�̃V(2 − �) = 1√
2

[e−2iϕ(r)�+,�−2 + e2iϕ(r)�+,2−�]. (9)

The evaluation of the ψ maps for the latter hybrid state is shown
in Fig. 6(c), which gives a good agreement when compared to
the observations in Fig. 6(a).

Note that any state �V(�) with � �= 0 has the property of
being nonseparable: neither the spin nor the orbital degree of
freedom can be factorized. As such, any attempt to measure
one of the two degrees of freedom is perturbing the other.
This finds many classical optics applications as well as be-
ing a source of mutual inspiration with its quantum analog
(quantum entanglement) see, for instance, a recent discussion
in Ref. [65]. In the present case, the nonseparable state is
perturbed by the involvement of the radial degree of freedom,
which has, nevertheless, an interesting application potential, as
reported in Ref. [66] in a linear optics experiment using a static
solid-state vortex lens. In the next section we address the issue
of nonlinear (non)separability, which is an original feature of
our experiments.

IV. NONLINEAR (NON)SEPARABILITY

Since �V(�) with � �= 0 is a nonseparable state for the
spin and orbital degrees of freedom while �V(0) is separable,
we notice two particular cases of interest. Indeed, the SIUQP
performs a nonlinear optical nonseparability operation when
� = 0 while the separable analog occurs when � = +2. Such
a nonlinear “mixing” or “demixing” of the spin and orbital
degree of freedom can be directly assessed by observing the
interference patterns resulting from the coherent superposition
between each of the circularly polarized components of the
output field and a copolarized coaxial reference Gaussian
beam. The results are summarized in Fig. 7.

In the linear regime, the incident states are unperturbed
as demonstrated in the previous section, hence one recovers
circular fringes for � = 0 and a two-arm spiral with opposite
handedness for � = +2. On the other hand, when the nonlinear-
ity is at play, the nonlinear regimes evidence the generation of
two orthogonal orbital states with charge −σout(2 − �) where
σout = ±1 refers to the helicity components of the output field.

FIG. 7. (a,b) Nonlinear optical nonseparability when � = 0. Inter-
ference pattern between the cσout -polarized components of the output
field with a copolarized reference Gaussian beam in the (a) linear and
(b) nonlinear regimes. (c,d) Same as in (a,b) but for nonlinear optical
separability when � = +2.

V. CONCLUSION AND OUTLOOK

While the use of geometric-phase optical elements to ma-
nipulate the orbital angular momentum degree of freedom has
become common, there are only rare demonstrations of nonlin-
ear attempts to control it. Here we propose to use liquid crystals,
which are prime choice materials in the development of linear
optical elements to process the orbital angular momentum of
freedom of light, to realize fully efficient nonlinear unitary
transformations of superpositions of generalized orthogonal
states involving both the spin and orbital degrees of freedom.
The demonstration is made by exploiting two key properties of
liquid crystals: their giant optical orientational nonlinearities
and their ability to self-organize into topological defects. In
addition, we note that although the demonstration is made at a
single wavelength, the generalization to other wavelengths is
straightforward since the liquid crystal light valve retardance
can be tuned with the incident optical power. By proposing an
efficient route to transform vector vortex beams via a nonlinear
interaction between light and matter, these results enrich the
nonlinear singular optics toolbox. We anticipate the elaboration
of nonlinear protocols to manipulate high-dimensional spin-
orbit optical states, and hence agile manipulation of the optical
information.
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