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Experimental cancellation of aberrations in intensity correlation in classical optics
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We study the classical correlation function of spatially incoherent beams with a phase aberration in the beam
path. On the basis of our experimental measurements and in the optical coherence theory, we show that the effects
of phase disturbances, independently of their kind and without need of coordinate inversion, can be canceled out
if the same phase is aligned in the signal and reference beam path. These results can be useful for imaging and
microscopy through random media.
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I. INTRODUCTION

Optical systems may cause distortions of the light, the
so-called aberrations [1]. They can be chromatic aberrations,
an effect resulting from dispersion due to the impossibility
to focus all colors to the same point, or monochromatic
aberrations, where the rays emerging from one object point
O will not all meet at a single image point O ′.

The field of correlated-photon imaging with cancellation
of aberrations has been a fairly active research line [2–11].
The first steps in this direction started with the measure-
ments of dispersion cancellation using entangled two-photon
beams generated by the process of spontaneous parametric
down-conversion (SPDC) [2,3], which found applications in
clock synchronization [4] and in quantum-optical coherence
tomography [5]. Another direction was the use of correlated-
photon imaging for the cancellation of phase aberrations
[6,7] with applications in correlation confocal microscopy [8]
and in cancellation of atmospheric turbulence effects [9,10].
Particularly, a recent work detailed the conditions under which
the cancellation of aberrations in entangled two-photon beams
takes place [11]. The authors demonstrated the cancellation
of odd-order aberrations in correlated-photon imaging using
entangled photons generated via SPDC, where the method
of cancellation relies on a coordinate inversion of one of the
entangled photons.

It is worthwhile to mention that demonstrations of dis-
persion cancellation using classical light with interferometry
[12] and intensity correlation [13] were studied as well. One
of the approaches to the study of light intensity correlation
for imaging is based on the so-called ghost-imaging scheme
[14]. Thanks to an analogy between the quantum and classical
intensity light correlations the studies of ghost imaging from
the classical viewpoint have been very fruitful [15,16]. Some
authors have suggested theoretical models for the cancellation
of phase aberrations using classical light in the ghost-imaging
scheme [17,18]. However, a detailed experimental study of the
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cancellation of phase aberrations using classical light intensity
correlation is still missing.

In this paper, we show that when exploring the correlations
of fluctuations in speckle intensity it is possible to cancel out
aberrations that may exist in the Fraunhofer plane of an optical
system. The aberration cancellation occurs independently of
its shape and it does not need coordinate inversion. Therefore,
we extended the quantum-classical analogy to the study of
cancellation of phase aberrations showing an interesting and
useful distinction from the quantum case [11]. It is possible to
embed images into speckle patterns which, through the spatial
correlation function, can be recovered [19]. Images also can
be recovered from the spatial intensity autocorrelation through
the Fienup’s phase retrieval algorithm [20–22]. Therefore, this
effect can be useful in imaging through random media and
microscopy, where inherent aberrations causing distortions in
the image can be canceled.

II. EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig. 1. An
argon ion laser is transmitted through a rotating ground glass
disk (RGGD) producing a partially coherent Gaussian beam.
Two lenses, L1 and L2, with f1 = 30 mm and f2 = 500 mm
of focal length, were used to control the source size and to
collimate the speckles, respectively. It is possible to control
the coherence length δ at the plane of a double slit A, by
adjusting the distance between the lens L1 and the RGGD
[23]. A double slit of slit width a = 0.25 mm and spacing d =
0.45 mm was placed immediately after lens L2. The double
slit is imaged over the spatial light modulator (SLM) by two
4f -configuration systems formed by lens L3 confocal with
L5, and L4 confocal with L5, with fi = 300 mm, i = 3, 4, and
5. The beams that pass through L3 and L4 are the reference
and signal beams, respectively. Using a beam blocker we can
choose one of two paths: the red, which is horizontally inverted
(I) in relation to the reference beam or the yellow, which
is horizontally noninverted (NI) in relation to the reference
beam. For simplicity, we have defined one-dimensional poly-
nomial monochromatic wave aberrations of the form ψn(x) =
π (x/α)n, where α is a constant that express the strength of the
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FIG. 1. Experimental setup: M1 − M6 are mirrors, L1 − L6 are lenses, BS1 − BS4 are beam splitters, RGGD is a rotating ground glass disk,
A is a double-slit aperture, SLM is a spatial light modulator, and CCD is a charge-coupled (CCD) camera. Polynomial aberrations of the form
ψn(x) = αnx

n (n = 1,2,3,4) and a random phase are displayed on the SLM. I and NI stand for inverted and noninverted beams, respectively.

aberrations [11]. To give an example of a two-dimensional and
arbitrary wave aberration we also have defined a random phase
(RP) aberration. These aberrations are imprinted in the beam
wave front using the SLM. Inverting the beam actually results
in a coordinate inversion of the phase aberration.

The optical Fourier transform of the SLM plane is projected
over a charge-coupled device (CCD) camera by a lens L6 of
f6 = 250 mm. The signal and reference beams are projected
in two different sections of the CCD area, but they illuminate
the same region of the SLM display.

III. THEORY

Let ES(xS,t) and ER(xR,t) be spatially stochastic electro-
magnetic fields in the scalar and monochromatic approxima-
tions. We consider xi = (xi,yi) the transversal coordinates and
i = S,R stands for signal and reference beams, respectively.
The intensities are given by Ii(xi) = |Ei(xi ,t)|2. We have
calculated the second-order spatial intensity correlations using
the definition [24]

G(2,2)(xS,xR) = 〈IS(xS)IR(xR)〉, (1)

where 〈· · · 〉 means ensemble average. The coordinates xS and
xR in Eq. (1) refer to different detection planes, as represented
in Fig. 2. The speckle patterns shown were shifted from the
center due to a linear phase aberration.

FIG. 2. Detection planes for S and R intensities in Eq. (1).

Defining the ensemble average of the intensities as Īi(xi) =
〈E∗

i (xi ,t)Ei(xi ,t)〉, the normalized first-order correlation func-
tion can be written as

g(xS,xR) = G(1,1)(xS,xR)√
ĪS(xS)ĪR(xR)

= 〈E∗
S(xS)ER(xR)〉√
ĪS(xS)ĪR(xR)

. (2)

Assuming Gaussian statistics, the Reed’s momentum the-
orem [25] can be employed to relate the spatial intensity
correlation, Eq. (1), to the field correlations, Eq. (2),

G(2,2)(xS,xR) = ĪS(xS)ĪR(xR)[1 + |g(xS,xR)|2]. (3)

According to Eq. (3) the intensity correlation function is the
first-order correlation function plus a background. Therefore,
we are considering the propagation of the first-order correlation
function from the SLM to the CCD camera, once the double-
slit plane was imaged over the SLM, and that the S and R

fields were subjected to identical apertures A(ui) = |A(ui)|
with phase aberrations exp[iφ(ui)]. Let G

(1,1)
0 (uS,uR) be the

first-order correlation at the SLM plane. Then we can calculate
the first-order correlation function at the plane of the CCD
camera as

G(1,1)(xS,xR)=
∫∫

�

|A(uS)||A(uR)| exp[iφ(uR) − iφ(uS)]

×G
(1,1)
0 (uS,uR)h∗(uS,xS)h(uR,xR)duSduR,

(4)

where h(ui ,xi) = exp[iπui · xi/(λf6)], and the integral is
performed over all region � where it has non-negligible
values. For small coherence length, the first-order correlation
function at the SLM can be modeled by a Dirac’s delta
G

(1,1)
0 (uS,uR) = δ(uR − uS) because Īi(xi) is approximately

constant. Therefore, Eq. (4) becomes

G(1,1)(xS,xR) =
∫

�

A(u) exp[i2φ±(u)]

× exp

[
iπ

λf6
u · (xR − xS)

]
du

= Ãφ

(
xR − xS

λf6

)
, (5)

where Ãφ is the Fourier transform of the aperture and φ±(u) =
[φ(u) − φ(±u)]/2, where the φ+ corresponds to the configura-
tion without horizontal inversion of the phase aberrations in the
signal beam, i.e., the beam takes path NI, and φ− corresponds
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to the configuration with horizontal inversion of the phase
aberrations in the signal beam; i.e., the beam takes path I. It is
clear that aberrations are completely canceled, independently
of its shape, for the noninverted configuration, i.e., φ+ = 0.
For the inverted configuration, we have two times the effect of
the antisymmetrical part of the phase aberration.

We also have calculated the mean cross-correlation [19,26]
between the signal and reference intensities,

	(x) =
〈∫

�

IS(x′)IR(x′ − x)dx′
〉
, (6)

where IS(x) is the signal intensity and IR(x′ − x) is the
reference intensity rotated of 180°, the symbol 〈· · · 〉 indicates
the average, and � is the domain where the integral has
nonvanishing values. Naturally, we can rewrite Eq. (6) as

	(x) =
∫

�

〈IS(x′)IR(x′ − x)〉dx′ =
∫

�

G(2,2)(x′,x′ − x)dx′.

(7)

For the δ-correlated model, we have ĪS(x) ∼= ĪR(x) ∼= K

constant, and Eqs. (2), (3), and (5) show that Eq. (7) becomes

	(x) ∝ K2 +
∣∣∣∣Ãφ

(
x

λf6

)∣∣∣∣
2

, (8)

showing that the in the second-order intensity cross-correlation
the aberrations can also be canceled out.

The analogy between the classical and quantum intensity
correlations is based on fact that the spatial pump field in the
SPDC process plays the role of the source intensity distribution
in the incoherent case and that two-particle wave function in
the SPDC process is the analog to the second-order coherence
function in the incoherent case. The entangled two-photon
wave function can be written as [27]

ψ(x1,x2) =
∫

dxEp(x)hs(x1,x)hi(x2,x), (9)

where s,i refer to signal and idler beams and Ep(x) is the pump
field. At this point it is interesting to compare this equation with
Eq. (4). The entangled two-photon wave function depends on
the product of the impulse-response functions of the signal and
idler beams. The product of these impulse-response functions
contains the effect of the sum of the aberrations in the signal
and idler beams [11]. Interestingly enough, this product, in
Eq. (4), depends on the difference of the phase aberration of the
signal and reference beams. We observe that, differently from
the entangled two-photon case, Eq. (9), the phase aberrations
are always canceled in Eq. (4) independently of its functional
form.

IV. EXPERIMENTAL RESULTS

The procedure used to obtain the mean intensity correlation
between the signal and reference speckle patterns was the
following: We measured the reference intensity followed by
the signal intensity, and we calculated the cross-correlation
between them, which is the integral in Eq. (6). In this ex-
periment, we have averaged over 80 measurements of the
cross-correlation corresponding to different positions of the

RGGD. After evaluating the mean intensity correlation, we
have taken a profile at the center of the result.

By recording the speckle patterns’ intensities at a plane
immediately before the double slit, it is possible to obtain the
coherence length at this plane by evaluating the intensity auto-
correlation of these patterns. The full width at half maximum
(FWHM) of a Gaussian fit of the autocorrelation gives the
coherence length of δ = 0.06 mm.

From this point on, all measurements were performed
at the focal plane of L6. Figures 3(a)–3(e) show the nor-
malized intensity correlation profiles of |Ãφ|2, for different
phase aberrations, ψn(x) = π (x/α)n, for n = 1,2,3,4 and a
RP, respectively. We have used α = 0.2 mm for n = {1,3}
and α = 0.3 mm for n = {2,4}. To obtain the |Ãφ|2 we just
performed a background subtraction [28]. In Fig. 3(f) we see
the effect of subtracting the background.

To capture the intensity patterns of the signal or reference
beams we have used matrices of 810 × 810 pixels of the CCD
camera, corresponding to an area of 2.8 mm × 2.8 mm. The
black curves (squares) are the nonaberrated results obtained
from the intensity correlation between the signal and reference
beams with n = 0. The red curves (circles) correspond to the
correlation with horizontal inversion of the phase aberrations in
the signal beam, path I. The blue curves (triangles) correspond
to the correlation without horizontal inversion of the phase
aberrations in the signal beam, path NI. We observe that for
the NI path all the aberrations are canceled, in agreement with
the theory presented in Sec. III. Nevertheless, in some cases,
there is not a complete match with the nonaberrated curves. The
origin of this mismatch is due to the finite coherence length as
well as the value of the parameter α. For a finite coherence
length, the reference and signal beams may be influenced by
different phase aberration profiles. For a perfect aberration
cancellation, independently of the phase aberration profile, we
should have a truly delta-correlated field. In Sec. V, we will
provide a better explanation of this point. We would like to note
that for the case of using the NI path the correlation result is
similar to an autocorrelation, because the signal and reference
beams are the same.

The phase inversion does not affect even aberrations,
Figs. 3(b) and 3(d), but it does effect odd aberrations, as can
be clearly seen in Figs. 3(a) and 3(c). In Fig. 3(e), it was used
a random phase aberration and we observe that, for path NI,
the aberrations are canceled, since the maxima coincides with
the maxima of the nonaberrated graph. For path I, the peaks
are randomly positioned for each random phase and, therefore,
the aberrations are not canceled.

In order to quantify the mismatch between aberrated and
nonaberrated curves, we have applied the definition of the
difference between two curves [11],

D = 1

2

∑
j

|	aber(xj ) − 	0(xj )|, (10)

where 	aber is the normalized aberrated correlation curve and
	0 is the normalized nonaberrated curve. This quantity varies
from 0 (maximum overlap) to 1 (completely disjoint curves).
The results for D, calculated from the same data used to obtain
Fig. 3, are shown in Table I, where DI and DNI refer to the
configuration with and without inversion of the coordinate of
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FIG. 3. (a–e) Measured high-order normalized (by its sum) intensity correlation profiles for δ = 0.06 mm for different phase aberrations.
Black (squares): nonaberrated curve for the case without aberrations in the SLM. Red circles: aberrated curves with coordinate inversion of
the phase of the signal beam. Blue triangles: corrected curves (without coordinate inversion of the phase of the signal beam). (f) Comparison
between the correlation with |Ãφ |2 and without background subtraction 	.

the phase of the signal beam, respectively. We also defined the
relative differences due to coordinate inversion,

rD = (DI − DNI)/DI. (11)

TABLE I. Deviation of aberrated curves without and with coordi-
nate inversion (DNI, DI) from the nonaberrated and relative difference
due to coordinate inversion of the phase of the signal beam. The
symbol ∼0 is used for values smaller than the error. These results
correspond to the coherence length of δ = 0.06 mm.

DNI DI rD(%)

n = 1 0.15 ± 0.03 0.70 ± 0.03 78 ± 7
n = 2 0.27 ± 0.04 0.19 ± 0.03 ∼0
n = 3 0.22 ± 0.05 0.66 ± 0.04 67 ± 10
n = 4 0.22 ± 0.04 0.16 ± 0.03 ∼0
RP 0.17 ± 0.03 0.40 ± 0.05 58 ± 16

The error is the standard deviation of the mean. This error
could be reduced by increasing the area of the CCD camera
illuminated by the speckles. The symbol ∼0 means that the
value obtained for rD should be zero. Notice that for the RP
aberration we have obtained DI = 0.40 ± 0.05, which is not
as large as the values obtained for odd-order aberrations. This
happens because every function can be written as a sum of
an odd function and an even function. Therefore, according
to our previous discussion the even part will be canceled but
the odd part is not canceled with inversion of the coordinate
of the phase of the signal beam. Therefore, due to the random
character of the phase, the value for the distance DI and of
rD also fluctuates randomly, and for another random phase the
value for rD could have another larger value.

V. SIMULATION

We have observed that in general there is not a perfect phase
aberration cancellation. Therefore, the present simulation clar-
ifies some effects of the coherence length δ, and shows what
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FIG. 4. Simulation results of the first-order correlation curves for the noninverted configuration where a complete aberration cancellation
is expected, (a) n = 2 and (b) n = 4; simulation results of the difference between the aberrated and nonaberrated first-order correlation curves
varying the coherence length δ for α = 0.3 mm (c) and α = 0.8 mm (d).

kind of results should be expected for the signal following
the NI path. So far, we have considered that the first-order
correlation function at the SLM plane was a Dirac delta. In
order to take into account the effect of the finite size of the
coherence length we can use a Gaussian-Schell model (GSM)
to represent the first-order correlation function at the SLM
plane [29],

G0(u1,u2) = exp

[
−u2

1 + u2
2

4σ 2
− (u1 − u2)2

2δ2

]
. (12)

We have considered Gaussian apertures to represent the
double-slit aperture,

A(u) = exp

[
− (u − d/2)2

w2
0

]
+ exp

[
− (u + d/2)2

w2
0

]
, (13)

where the slit width is the FWHM of each of these Gaussians
a = 2w0

√
ln 2 and d is the slit spacing. We have used the

same values of the experiment for these parameters, a =
0.25 mm and d = 0.45 mm. The propagation of the first-order
correlation function from the SLM to the CCD plane is given
by Eq. (4). Using Gaussian apertures, the numerical evaluation
of integrals in Eq. (4) converges more easily.

Figure 4 displays the simulations of the configuration with-
out coordinate inversion. Figures 4(a) and 4(b) shows results
for the first-order correlation function for n = 2 and n = 4,
with α = 0.3 mm, the same value used in the experiment.
The values of the coherence length δ were 0.06, 0.2, 0.3, and
0.5 mm.

We noticed that changing the coherence length the pattern
changes its height and width. These results show that, depend-
ing on the values of the coherence length, the phase aberration

may not be completely canceled. The better cancellation occurs
for smaller values of δ.

Figures 4(c) and 4(d) show the differences between the
aberrated and nonaberrated first-order correlation curves DNI

as a function of the coherence length δ. Figure 4(c) shows DNI

as a function of δ for n = 2 and n = 4, using α = 0.3 mm.
The same was done in Fig. 4(d), but with α = 0.8 mm. We
observe that in Fig. 4(c) the differences are bigger for n = 4
than for n = 2, for values of coherence lengths smaller than
δ = 0.2 mm, and this behavior inverts for values bigger than
that. However, this inversion does not occur for α = 0.8 mm.
To understand the last statements Table II displays some values
for the phase aberration ψn(x) = π (x/α)n and its variation
dψn/dx = (nπ/αn)(x)n−1 evaluated at the center of the slits,
x = ±d/2.

Using α = 0.3 mm the slope of the phase aberration is
bigger for n = 4 than for n = 2. This justifies the behavior

TABLE II. Phase aberration and its slope evaluated at the center
of the slits.

ψn

(± d

2

)
dψn

dx

∣∣
x=±d/2

n = 2
α = 0.3 mm

1.8 ±15.7

n = 4
α = 0.3 mm

1 ±17.7

n = 2
α = 0.8 mm

0.2 ±2.2

n = 4
α = 0.8 mm

0.02 ±0.3
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observed in Fig. 4(c) for coherence lengths smaller than δ =
0.2 mm. Bigger values for the difference parameter DNI with
n = 4 for these coherence lengths indicate that the effect is
more sensitive to variations in the phase aberrations at these
coherence lengths, but at δ = 0.2 mm this behavior inverts.
Above this point, the local values of the phase become more
important than the variation. For α = 0.8 mm, DNI is always
bigger than for n = 2 corresponding to the fact that these
values of α and n imply bigger values of the phase and of
its variation, than for n = 4. The main finding of this analysis
is that, increasing the coherence, the overall phase cancellation
becomes less effective resulting in the increased values of DNI.
Therefore, one should use the smallest possible coherence
length in order to obtain the better aberration cancellation
DNI 	 1.

VI. CONCLUSION

Correlations of intensity fluctuations of far-field laser speck-
les were explored to show cancellation of aberrations. Unlike
the quantum correlated twin-photons experiment, this method

does not require coordinated inversion and works for any type
of phase aberration.

It is important to note that once we showed how the
aberration cancellation works, the configuration without phase
aberration inversion in the signal beam path would not need
a reference beam; all we would need would be to perform
the autocorrelation. Additionally, the autocorrelation of the
far-field scattered speckle pattern, Eq. (5), is proportional to
the Fourier transform of the aperture with no aberrations, and it
was already demonstrated that it is possible to recover an image
from this autocorrelation function [21,22]. Therefore this effect
can be useful for imaging in the presence of aberrations such
as imaging through random media and microscopy.
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