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Hamiltonian design to prepare arbitrary states of four-level systems
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We propose a method to manipulate four-level systems with specific coupling configurations by means of
time-dependent couplings and constant energy shifts (detunings in quantum-optical realizations). We inversely
engineer the Hamiltonian, in ladder, tripod, or diamond configurations, to prepare arbitrary states using the
geometry of four-dimensional rotations to set the state populations; specifically, we use Cayley’s factorization of
a general rotation into right- and left-isoclinic rotations.
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I. INTRODUCTION

The coherent state manipulation and control of multiple-
level quantum systems plays a significant role in atomic,
molecular, and optical physics, with applications in existing
or developing quantum technologies and quantum information
processing [1]. Slow adiabatic protocols may be used for some
transitions but they require long times, and detrimental effects
of noise and perturbations accumulate. This has motivated the
development of a set of techniques denominated “shortcuts to
adiabaticity” (STA) to speed up the processes, which include
counterdiabatic driving [2,3], inverse engineering based on
invariants [4], Lie algebraic methods [5–8], fast quasi-adiabatic
approaches [9], or fast-forward approaches [10–12].

Some of these methods require us to add terms in the Hamil-
tonian which are not easy or possible to implement in practice
[4,13–15]. This problem has been addressed in specific systems
by optimizing physically available terms [15], or by unitary
transformations making use of the Lie algebraic structure of
the dynamics [14,16–19]. However, generic solutions are not
known and, as the system complexity and number of generators
increase, the Lie algebraic methods may become numerically
unstable or cumbersome to apply. These difficulties were
already noticed in three-level or four-level systems where only
certain couplings are allowed by symmetry, so alternative or
complementary approaches are currently being explored that
restrict the shortcuts to a set of physically allowed couplings
[20].

The scope of STA methods has, in practice, outranged the
original aim in many applications, so they can be applied
to drive general transitions, regardless of whether the initial
and final states can be adiabatically connected: for example,
transitions where the initial state is an eigenstate of the initial
Hamiltonian whereas the final state is not an eigenstate of
the final Hamiltonian. This broader perspective merges with
“inverse engineering” methods of the Hamiltonian to achieve
unitary transformations or arbitrary transitions [21–27], and is
the one adopted in this paper. In other words, even if we were
initially motivated to solve the realizability of STA approaches,
in fact, we shall address general four-level transitions for
specific coupling configurations. In a similar vein, in Ref. [20],
the authors proposed a scheme to control three-level system

dynamics by separating the evolution into population changes,
which may be parameterized using Rodrigues’ rotation for-
mula, and phase changes. This separation was used to inversely
construct the Hamiltonian of the three-level system so as to
drive a given transition with allowed couplings and vanishing
forbidden couplings. Our goal here is to explore the extension
of this concept to four-level systems. Certain couplings should
not appear in the final Hamiltonian to implement specific
four-level configurations such as a “diamond,” a “tripod,” or
a “ladder.” The population dynamics are now represented
by rotations in a four-dimensional (4D) space, which are
considerably more complex and less intuitive than in three
dimensions. We have found a description of the rotation in
terms of isoclinic matrices and quaternions, making use of
Cayley’s factorization, more convenient to perform the in-
version than a generalized Rodrigues’ formula, see Sec. II.
In Sec. III, we find the Hamiltonian for the different con-
figurations and provide examples. The appendices address
technical points: long formulas in Appendix A, a short account
of quaternions for 4D rotations in Appendix B, and details of
quantum optical realizations in Appendix C.

Four-level systems are widely found and used in different
contexts such as atomic physics, optical lattices [28–30], or
waveguides [31–33], with applications such as electromag-
netically induced transparency (EIT) [28,34,35], electromag-
netically induced absorption [29], or beam splitting [31,32].
Most of the results in this paper are set in an abstract way,
without specifying necessarily the physical system, but the
notation is chosen as in a quantum-optical realization where
atomic internal levels are coupled by laser fields, consistent
with Rabi frequencies or detunings as matrix elements of
the Hamiltonian. An explicit connection for the diamond
configuration is worked out in Appendix C.

II. 4D ROTATIONS

Consider a four-level system in the state |ψ(t)〉 = c1(t)|1〉 +
c2(t)eiϕ2(t)|2〉 + c3(t)eiϕ3(t)|3〉 + c4(t)eiϕ4(t)|4〉, where cn(t) are
real probability amplitudes of bare states |n〉 satisfiying the
normalization c2

1(t) + c2
2(t) + c2

3(t) + c2
4(t) = 1, and the ϕn(t)

are relative phases. Following Ref. [20], we separate phase and
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amplitude information by writing |ψ(t)〉 = K(t)|ψr (t)〉, where
K(t) = |1〉〈1| + eiϕ2(t)|2〉〈2| + eiϕ3(t)|3〉〈3| + eiϕ4(t)|4〉〈4| and
|ψr (t)〉 = c1(t)|1〉 + c2(t)|2〉 + c3(t)|3〉 + c4(t)|4〉. K(t) is a
unitary transformation that contains the phases and |ψr (t)〉
represents a 4D vector on the surface of a 4D sphere. The state
|ψ(t)〉 and the associated |ψr (t)〉 evolve via time-evolution
operators U (t) and Ur (t) related by Ur (t) = K†(t)U (t)K(0),

|ψ(t)〉 = U (t)|ψ(0)〉, (1)

|ψr (t)〉 = Ur (t)|ψr (0)〉, (2)

where we set initial time as 0. Ur (t) represents a 4D rotation
displacing points on the surface of the 4D sphere. In the 4D
real space, we define the rotation Hamiltonian as

Hr (t) = ih̄U̇r (t)U †
r (t), (3)

such that ih̄U̇r (t) = Hr (t)Ur (t), whereas the total Hamiltonian
is

H (t) = ih̄U̇ (t)U †(t)

= ih̄K̇(t)K†(t) + K(t)Hr (t)K†(t). (4)

A. Rotations in E4

In 4D Euclidean space E4, a 4D rotation with center O can
be expressed by a rotation matrix [36–38]⎛

⎜⎝
cos α −sinα 0 0
sin α cos α 0 0

0 0 cos β −sinβ

0 0 sin β cos β

⎞
⎟⎠ (5)

in some appropriate orthogonal coordinates w̃x̃ỹz̃. Instead of
having an axis of rotation as in 3D, 4D rotations are defined
by a pair of completely orthogonal planes of rotation (w̃-x̃ and
ỹ-z̃ in the example), α and β are the angles of rotation with
respect to the origin of any point on the w̃-x̃ and ỹ-z̃ planes,
respectively. More details can be found, e.g., in Refs. [36–38].

We may classify the rotations based on the α and β angles.
If α �= β �= 0, the rotation is a double rotation. There are two
completely orthogonal (invariant) planes of rotation, with just
the point O in common. Points in the first plane rotate through
α with respect to the origin, and in the second plane rotate
through β. For a general double rotation, the planes of rotation
and angles are unique. Points which are not in the two planes
rotate with respect to the origin through an angle between α

and β.
If either of α or β are zero, the rotation is a simple rotation

about the rotation center O. There is a fixed plane whose points
do not change, whereas half lines from O orthogonal to this
plane are displaced through the nonzero angle (α or β).

If α = ±β, the rotation is isoclinic and all nonzero points
are rotated through the same angle. Then there are infinitely
many pairs of orthogonal planes that can be treated as planes of
rotation [36]. An isoclinic rotation can be left or right isoclinic
(depending on whether α = β or α = −β) [39]. According to
Cayley’s factorization [40,41], any 4D rotation matrix can be
decomposed into the product of a right- and a left-isoclinic
matrix. This decomposition is also conveniently expressed in
terms of quaternions, as discussed in the following subsection.

B. Isoclinic rotations and quaternions

In 4D Euclidean space, an arbitrary point C can be rep-
resented as a column vector (w,x,y,z)T or as C = w + xi +
yj + zk [42,43]. If |C|2 = w2 + x2 + y2 + z2 = 1 we call it
unit quaternion. A general 4D rotation takes C to C ′, according
to

C ′ = qCp, (6)

where q = qw + qx i + qy j + qzk and p = pw + px i + py j +
pzk are two unit quaternions. See Appendix A for a minimal
introduction to quaternion algebra. In more common matrix
language, the rotation reads

C ′ = MLMRC, (7)⎛
⎜⎝

w′
x ′
y ′
z′

⎞
⎟⎠ =

⎛
⎜⎝

qw −qx −qy −qz

qx qw −qz qy

qy qz qw −qx

qz −qy qx qw

⎞
⎟⎠

×

⎛
⎜⎝

pw −px −py −pz

px pw pz −py

py −pz pw px

pz py −px pw

⎞
⎟⎠

⎛
⎜⎝

w

x

y

z

⎞
⎟⎠, (8)

a formula due to Van Elfrinkhof [39,40]. ML and MR are
isoclinic matrices [42,43], so R = MLMR = MRML is a
4D rotation matrix without loss of generality. Furthermore,
R†R = RR† = I due to |q|2 = q2

w + q2
x + q2

y + q2
z = 1 and

|p|2 = p2
w + p2

x + p2
y + p2

z = 1. A summary of further rela-
tions between quaternions and 4D rotations, such as the relation
between the isoclinic matrices and the orthogonal rotation
planes and corresponding rotation angles, may be found in
Appendix A.

III. HAMILTONIAN INVERSE ENGINEERING

In this section, we will make use of the rotation formula (8)
to engineer the Hamiltonian and dynamics to drive a four-level
system from an initial state to a final state. We substitute
Ur (t) = R(t) in Eq. (3), where the quaternion components
are generally time dependent. The corresponding rotation
Hamiltonian has the following structure:

Hr (t) = ih̄U̇r (t)U †
r (t)

= ih̄

⎛
⎜⎝

0 �12(t) �13(t) �14(t)
−�12(t) 0 �23(t) �24(t)
−�13(t) −�23(t) 0 �34(t)
−�14(t) −�24(t) −�34(t) 0

⎞
⎟⎠, (9)

where the real elements �nm(t) are functions of the unit
quaternion components (the explicit expression is given in
Appendix B).

Taking the relative phases into account, the total Hamilto-
nian (4) is

H (t) = ih̄U̇ (t)U †(t)

= ih̄K̇(t)K†(t) + K(t)Hr (t)K†(t)

= h̄[−ϕ̇2(t)|2〉〈2| − ϕ̇3(t)|3〉〈3| − ϕ̇4(t)|4〉〈4|
+ i(e−iϕ2(t)�12(t)|1〉〈2| + e−iϕ3(t)�13(t)|1〉〈3|
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Ω12 Ω13 Ω14

|2
|3 |4

|1

FIG. 1. Energy-level scheme for the inverse-tripod configuration
with three nonzero couplings �12, �13, and �14.

+ e−iϕ4(t)�14(t)|1〉〈4| + ei[ϕ2(t)−ϕ3(t)]�23(t)|2〉〈3|
+ ei[ϕ2(t)−ϕ4(t)]�24(t)|2〉〈4|
+ ei[ϕ3(t)−ϕ4(t)]�34(t)|3〉〈4|)] + H.c.. (10)

The physical interpretation of this Hamiltonian depends on the
system considered. In quantum optics, this is to be interpreted
as an interaction picture Hamiltonian where the diagonal terms
are not energies of the bare levels, as depicted, e.g., in Fig. 1,
but detunings, see Appendix C.

It proves useful to parametrize the quaternion components
in terms of generalized spherical angles [44,45],

qw = cos γ1,

qx = sin γ1 cos θ1,

qy = sin γ1 sin θ1 cos φ1,

qz = sin γ1 sin θ1 sin φ1,

pw = cos γ2,

px = sin γ2 cos θ2,

py = sin γ2 sin θ2 cos φ2,

pz = sin γ2 sin θ2 sin φ2, (11)

where 0 � φ1,2 � 2π , 0 � θ1,2,γ1,2 � π , and all angles may
be time dependent. The explicit expression of the Hamiltonian
(9) in terms of these angles is in Appendix B. We denote the
initial (t = 0) and final states (t = T ) as

|ψ(0)〉 = a1|1〉 +
4∑

k=2

ake
iεk |k〉,

|ψ(T )〉 = b1|1〉 +
4∑

k=2

bke
iε′

k |k〉, (12)

so that on the 4D sphere, |ψr (0)〉 = a1|1〉 + a2|2〉 +
a3|3〉 + a4|4〉 (a2

1 + a2
2 + a2

3 + a2
4 = 1) and |ψr (T )〉 =

b1|1〉 + b2|2〉 + b3|3〉 + b4|4〉 (b2
1 + b2

2 + b2
3 + b2

4 = 1). Since
|ψr (T )〉 = Ur (T )|ψr (0)〉, we have four equations:⎛

⎜⎝
b1

b2

b3

b4

⎞
⎟⎠ = Ur (T )

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠. (13)

If the angles at time T and the initial aj components are fixed,
these equations specify the final coefficients bj . Alternatively,
if both initial and final coefficients are given, we have four
equations and six variables to play with. The additional

freedom may be used to cancel certain terms in the Hamiltonian
as demonstrated below.

A. The inverse tripod configuration

As a first four-level system, we consider the “inverse tripod”
configuration in Fig. 1. The three excited states (|2〉, |3〉, and
|4〉) are coupled to the ground state |1〉 by three couplings �12,
�13, and �14, respectively [34,46,47]. In this configuration,
the transitions |2〉 ↔ |3〉, |2〉 ↔ |4〉, and |3〉 ↔ |4〉 are not al-
lowed, so we want to cancel these couplings in the Hamiltonian
(9). One possible choice to set �23(t) = �34(t) = �24(t) = 0
is

φ2 = φ1 = φ,

θ2 = θ1 = θ,

γ2 = γ1 = γ (t), (14)

see Eq. (B1), where φ and θ are constants and γ (t) may gen-
erally depend on time. The angles are equal for both isoclinic
matrices, so Ur (t) becomes, geometrically, a simple rotation
(see Appendix A), and the rotation Hamiltonian reduces to

Hr (t) = −2ih̄{[γ̇ (t) cos θ ]|1〉〈2| + [γ̇ (t) cos φ sin θ ]|1〉〈3|
+ [γ̇ (t) sin φ sin θ ]|1〉〈4|} + H.c.. (15)

For this particular case, the couplings

�12(t) = 2γ̇ (t) cos θ,

�13(t) = 2γ̇ (t) sin θ cos φ,

�14(t) = 2γ̇ (t) sin θ sin φ, (16)

take the form of cartesian coordinates of a point on a sphere in
terms of spherical coordinates. Starting from the ground state
|1〉 we have freedom to achieve any final state. Setting a1 = 1,
a2 = a3 = a4 = 0, and from Eq. (13) we get

b1 = A, b2 = BC,

b3 = BDE, b4 = BDF, (17)

with

A = cos [2γ (T )], B = sin [2γ (T )],

C = cos θ, D = sin θ,

E = cos φ, F = sin φ, (18)

obeying the conditions A2 + B2 = 1, C2 + D2 = 1, and E2 +
F 2 = 1. The system in Eq. (17) with the above conditions has
solution

A = b1, B =
√

b2
2 + b2

3 + b2
4,

C = b2√
b2

2 + b2
3 + b2

4

, D =
√

b2
3 + b2

4√
b2

2 + b2
3 + b2

4

,

E = b3√
b2

3 + b2
4

, F = b4√
b2

3 + b2
4

, (19)

where we take positive square roots, so it is possible to drive
population transfers between the ground state and any final
state. To exemplify the method, let us implement the rotation

013830-3



YI-CHAO LI et al. PHYSICAL REVIEW A 97, 013830 (2018)

|1〉 → |ψr (T )〉 = 1√
3
(|2〉 + |3〉 + |4〉). Substituting b1 = 0,

b2 = 1/
√

3, b3 = 1/
√

3, and b4 = 1/
√

3 in Eq. (19) and using
Eq. (18) we get four equations for γ (T ), θ , and φ with solutions

γ (T ) = π

4
, θ = arctan

√
2, φ = π

4
. (20)

We use an Ansatz for γ (t) consistent with γ (T ), γ (t) = π
8 [1 −

cos( πt
T

)], to determine the time dependence of the Hamiltonian
according to Eq. (16). Notice that this is just a simple choice; we
could use different functions, e.g., to optimize some physically
relevant variable or improve robustness.

Now let us discuss the phases. Consistent with specific
initial and final phases, we use simple linear interpolation
Ansätze,

ϕk(t) = εk + �kt, (21)

where

�k = (ε′
k − εk)/T , (k = 2,3,4) (22)

may be interpreted as constant detunings in a quantum-optical
realization, see Appendix C. Substituting them in Eq. (10), the
total Hamiltonian is

H (t) = −h̄

{
4∑

k=2

�k|k〉〈k| + i[e−i(ε2+�2t)�12(t)|1〉〈2|

+ e−i(ε3+�3t)�13(t)|1〉〈3|

+ e−i(ε4+�4t)�14(t)|1〉〈4|]
}

+ H.c.. (23)

As an example, let us choose as initial and final phases εk = 0,
ε′
k = π

3 , k = 2,3,4, and apply Eq. (21) for ϕk(t). Figure 2(a)
shows the common smooth amplitude of the couplings, and
Fig. 2(b) demonstrates the perfect population transfer.

B. The diamond configuration

Now we will focus on the diamond configuration shown in
Fig. 3. In this configuration, one ground state |1〉 is coupled in
a V -type structure to two intermediate states |2〉, |3〉, which are
themselves coupled to a common excited state |4〉 in a -type
structure (see examples in atomic systems in Refs. [35,48,49]
and in optical lattices in Ref. [30]). Figure 3 shows that
the transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉 are not allowed so,
they must be canceled in the Hamiltonian (9). To remove the
unwanted terms, we proceed similarly as in the inverse tripod,
taking now

φ1 = φ2 = 0,

θ̇1 = θ̇2 = φ̇1 = φ̇2 = 0, (24)

to achieve �14(t) = �23(t) = 0, which gives for the other
couplings

�12(t) = −[γ̇1(t) cos θ1 + γ̇2(t) cos θ2],

�13(t) = −[γ̇1(t) sin θ1 + γ̇2(t) sin θ2],

�24(t) = γ̇1(t) sin θ1 − γ̇2(t) sin θ2,

�34(t) = −[γ̇1(t) cos θ1 − γ̇2(t) cos θ2]. (25)

FIG. 2. (a) Overlapping couplings �12(t) (solid black line), �13(t)
(green dots), and �14(t) (red triangles). (b) Populations of |1〉 (solid
black line), |2〉 (long-dashed blue line), |3〉 (green dots), and |4〉 (red
triangles). Parameters: φ = π

4 , θ = arctan
√

2, εk = 0, and ε ′
k = π/3,

for k = 2,3,4.

The evolution operator Ur (t) simplifies, and the rotating
Hamiltonian becomes

Hr (t) = −h̄{[γ̇1(t) cos θ1 + γ̇2(t) cos θ2]|1〉〈2|
+ [γ̇1(t) sin θ1 + γ̇2(t) sin θ2]|1〉〈3|
+ [−γ̇1(t) sin θ1 + γ̇2(t) sin θ2]|2〉〈4|
+ [γ̇1(t) cos θ1 − γ̇2(t) cos θ2]|3〉〈4|} + H.c.. (26)

To design the Hamiltonian for a rotation from |ψr (0)〉 = |1〉,
we set a1 = 1, a2 = a3 = a4 = 0 and substitute the unitary

Ω12 Ω13

Ω24 Ω34

|1

|2
|3

|4

FIG. 3. Energy-level scheme for the diamond-type configuration
with four couplings �12, �13, �24, and �34.
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evolution matrix in Eq. (13),

b1 = AB − CD(EF + GH ), b2 = CBE + ADF,

b3 = CBG + ADH, b4 = CD(HE − GF ), (27)

where

A = cos γ1(T ), B = cos γ2(T ),

C = sin γ1(T ), D = sin γ2(T ),

E = cos θ1, F = cos θ2,

G = sin θ1, H = sin θ2, (28)

so that A2 + C2 = 1, B2 + D2 = 1, E2 + G2 = 1, and F 2 + H 2. The solution in terms of the final state coefficients is

A = b3E − b2G√
b2

4 + (b3E − b2G)2
, B =

[(b1b3 + b2b4)E + (b3b4 − b1b2)G]
√

b2
4 + (b3E − b2G)2(

b2
3 + b2

4

)
E2 − 2b2b3EG + (

b2
2 + b2

4

)
G2

,

C = b4√
b2

4 + (b3E − b2G)2
, D =

√√√√1 − [(b1b3 + b2b4)E + (b3b4 − b1b2)G]2
[
b2

4 + (b3E − b2G)2
]

[(
b2

3 + b2
4

)
E2 − 2b2b3EG + (

b2
2 + b2

4

)
G2

]2 ,

F = −
[
(b4b1 − b2b3)E + (

b2
2 + b2

4

)
G

]√
b2

4 + (b3E − b2G)2[(
b2

3 + b2
4

)
E2 − 2b2b3EG + (

b2
2 + b2

4

)
G2

]
D

,

H =
[(

b2
3 + b2

4

)
E − (b2b3 + b1b4)G

]√
b2

4 + (b3E − b2G)2[(
b2

3 + b2
4

)
E2 − 2b2b3EG + (

b2
2 + b2

4

)
G2

]
D

, (29)

so there is freedom to fix the value of the angle θ1, see Eq. (28).
The other angles, γ1,2(T ) and θ2, are found from Eq. (28).
As an example, we study the population transfer from |1〉 to
the final states |ψ(T )〉 = 1√

2
(|2〉 ± i|3〉). Substituting b1 = 0,

b2 = 1/
√

2, b3 = 1/
√

2, and b4 = 0 in Eq. (29), choosing θ1 =
π/2 and using Eq. (28), we find for the angles the values

γ1(T ) = π, γ2(T ) = π

2
, θ2 = −3π

4
. (30)

For γ1(t) and γ2(t), we pick out smooth functions consistent
with the values at T ,

γ1(t) = π

2

[
1 − cos

(
πt

T

)]
,

γ2(t) = π

4

[
1 − cos

(
πt

T

)]
. (31)

To find the full Hamiltonian we use Eqs. (10) and (21), where
the �k are chosen to satisfy the boundary conditions of the
example,

εk = 0,

ε′
2 = 0, ε′

3 = ±π/2, ε′
4 = 0. (32)

The results are shown in Fig. 4. Figure 4(b) shows the perfect
population transfer.

C. The N-type configuration

The last four-level structure we study is the N-type level
scheme [28], with three nonzero couplings �12, �23, and �34,

see Fig. 5 (the ladder configuration is equivalent from the
point of view of the present inverse method and would be
treated similarly.). This configuration is applied, for example,
to realize the phenomenon of EIT and population transfers in
optical lattice systems [28,29,50]. To eliminate the unwanted
terms, i.e., to have �13(t) = �14(t) = �24(t) = 0 in Eq. (9),
one possible solution is

φ̇1 = φ̇2 = θ̇1 = θ̇2 = 0, (33)

φ1 = φ2 = π

2
, (34)

γ̇1 = − sin θ2

sin θ1
γ̇2. (35)

The Hamiltonian Hr (t) becomes

Hr (t) = ih̄[(cot θ1 sin θ2 − cos θ2)γ̇2(t)|1〉〈2|
+ 2 sin θ2γ̇2(t)|2〉〈3|
+ (cot θ1 sin θ2 + cos θ2)γ̇2(t)|3〉〈4|] + H.c., (36)

and the couplings are

�12(t) = γ̇2(t)(sin θ2 cot θ1 − cos θ2),

�23(t) = 2γ̇2(t) sin θ2,

�34(t) = γ̇2(t)(sin θ2 cot θ1 + cos θ2). (37)

Unlike the previous cases, we do not find an analytical expres-
sion for the general solution of Ur (T ) in Eq. (13) for the initial

013830-5



YI-CHAO LI et al. PHYSICAL REVIEW A 97, 013830 (2018)

FIG. 4. (a) Couplings �12(t) (solid black line), �13(t) (long-
dashed blue line), �24(t) (green dots), and �34(t) (red triangles),
�12(t) = �34(t). (b) Populations of |1〉 (solid black line), |2〉 (long-
dashed blue line), |3〉 (green dots), and |4〉 (red triangles). The
parameters are φ1 = φ2 = 0, θ1 = π

2 , θ2 = − 3π

4 , εk = 0, ε ′
2 = ε ′

4 = 0,
and ε ′

3 = ±π/2.

state |ψr (0)〉 = |1〉. However, for a given final state, the system
can be solved to get the needed angles. As an example, let us
engineer the interaction for a rotation from |ψr (0)〉 = |1〉 to
|ψr (T )〉 = |4〉. From Eq. (13) and Ur (T ), we get four equations
for γ1(T ), γ2(T ), [note that γ1 = − sin θ2

sin θ1
γ2 + c, see Eq. (35)],

θ1, and θ2 with solutions θ1 = π/6, θ2 = π/2, γ2(T ) = −π/2,
γ1(T ) = π . We choose again γ2(t) = π

4 [cos( πt
T

) − 1] as a
smooth Ansatz, so Hr (t) takes the form

Hr (t) = ih̄[�12(t)|1〉〈2|+�23(t)|2〉〈3|+�34(t)|3〉〈4|]+H.c.,

(38)

Ω12 Ω23 Ω34

|2

|1
|3

|4

FIG. 5. Energy-level scheme for the four-level N configuration.
There are three allowed couplings, �12, �23, and �34.

FIG. 6. (a) Couplings �12(t) (solid black line), �23(t) (green
dots), and �34(t) (red triangles). (b) Populations of |1〉 (solid black
line), |2〉 (long-dashed blue line), |3〉 (green dots), and |4〉 (red trian-
gles). The parameters are θ1 = π/6, θ2 = π/2, γ1(T ) = π , γ2(T ) =
−π/2, εk = 0, ε ′

2 = 0, ε ′
3 = 0, ε ′

4 = π/6.

where

�12(t) = �34(t) = −
√

3π2

4T
sin

(
πt

T

)
,

�23(t) = − π2

2T
sin

(
πt

T

)
. (39)

As for the phases, we may use the simple linear interpolation
(21). For an example with boundary conditions

εk = 0, ε′
2 = ε′

3 = 0, ε′
4 = π/6, (40)

Fig. 6 shows the couplings (a) and population transfer (b) from
state |1〉 to the desired state eiε′

4 |4〉.

IV. DISCUSSION

We have set a method to design four-level Hamiltonians so
as to drive, in principle in an arbitrary time, specific transitions
for different, preselected configurations of the couplings. For
arbitrary final states, the method requires full control of the
real and imaginary parts of the couplings, and of constant
energy shifts. The possibility to realize this type of control
will depend on the specific system and physical realization
of the Hamiltonian (10). In an atomic system subjected to
optical laser fields, this is an interaction picture Hamiltonian
after applying the rotating wave approximation (RWA), see
Appendix C, where the diagonal terms can be interpreted
as detunings, and the nondiagonal terms as complex Rabi
frequencies. Independent control may be required of the real
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and imaginary parts of the Rabi frequencies for final states with
nonzero phases.

In all configurations studied, our method provides the
Hamiltonian to transfer the ground state |1〉 to any other state
“in one step,” as represented in Eq. (1). How about other
transitions? In principle, any transition is achievable in two
steps by using |1〉 as an intermediate trampoline, jumping
first from an arbitrary initial state to |1〉 with the inverse
operation, and then from |1〉 to an arbitrary final state. Setting
the domain of transitions where one stroke is enough is an
interesting open question. Note that our emphasis here is in
transitions among four-level system states, which differs in
aim and scope from the work in Refs. [22,23] applied to the
tripod. We consider different coupling configurations, while
Refs. [22,23] concentrate on the tripod or, more generally,
N-pod configurations. Specifically for the tripod, state |1〉
is regarded in Refs. [22,23] as an ancillary state to achieve
arbitrary unitary matrices or transitions in the qutrit space
spanned by {|2〉,|3〉,|4〉}. Four-level state engineering may be
handled as in Refs. [22,23] with a four-pod scheme, i.e., with
five levels, where four of them are coupled to the ancillary
level.

We intend to apply these results in different scenarios—for
example, to manipulate the spin state in quantum dots with
spin-orbit coupling and electric-field control [51]. Broad fields
for applications are multivalued quantum logic, e.g., qudit-
based quantum information and quantum-gates engineering
[26]. The N -type or diamond linkages, in particular, may be
used to implement quantum phase-gate operations [35,52].

As for generalizations, the geometry of rotations in higher
dimensions has been much less studied than that in 3D or 4D,
but there are different approaches available [53,54] that could
be used to generalize the current scheme to systems with more
levels.
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APPENDIX A: QUATERNIONS AND 4D ROTATIONS

A quaternion q can be defined as the sum of a scalar qw and
a vector 	q, namely [55]

q = qw + 	q = qw + qx i + qy j + qzk. (A1)

The rule of product of two quaternions is defined by

i2 = j2 = k2 = i j k = −1. (A2)

If |q|2 = 1, namely, q2
w + q2

x + q2
y + q2

z = 1, q is a unit quater-
nion and q−1 = q̄. If u = 	u and |u|2 = 1, u is a pure unit
quaternion, and every pure unit quaternion is a square root
of −1. A unit quaternion can be expressed in terms of a real
number γ and a pure unit quaternion u as

q = euγ = cos γ + u sin γ. (A3)

Consider two arbitrary unit quaternions p and q. We may
choose proper pure unit quaternions u and v with correspond-
ing real numbers γ1 and γ2, so that p = euγ1 and q = evγ2 . As
noted in Sec. II A, an arbitrary rotation R in E4 of a four-vector
C can be represented by the product qCp, associated with left
and right isoclinic rotations with rotation angles γ1 and γ2.
R also corresponds to a product of rotations in two mutually
orthogonal planes [39,40,42,43]. If u �= ±v,R rotates the plane
spanned by u + v and uv − 1 through the angle |γ1 + γ2|,
and the plane spanned by v − u and uv + 1 through the angle
|γ1 − γ2|, respectively [55]. If u = ±v, the planes are spanned
by 1 and u and its orthogonal complement, and the rotation
angles are as well |γ1 + γ2| and |γ1 − γ2| [55].

APPENDIX B: HAMILTONIAN AND EVOLUTION

Using Eqs. (8), (9), and (11), the parameterized rotation Hamiltonian is given by

Hr (t) = ih̄U̇r (t)U †
r (t)

= ih̄{[sin γ1 sin θ1(θ̇1 cos γ1 − φ̇1 sin γ1 sin θ1) + sin γ2 sin θ2(θ̇2 cos γ2 + φ̇2 sin γ2 sin θ2) − γ̇1 cos θ1 − γ̇2 cos θ2]|1〉〈2|
+ [θ̇1 sin γ1(sin γ1 sin φ1 − cos γ1 cos θ1 cos φ1) − θ̇2 sin γ2(sin γ2 sin φ2 + cos γ2 cos θ2 cos φ2) − γ̇1 sin θ1 cos φ1

− γ̇2 sin θ2 cos φ2 + φ̇1 sin γ1 sin θ1(cos γ1 sin φ1 + sin γ1 cos θ1 cos φ1) + φ̇2 sin γ2 sin θ2(cos γ2 sin φ2

− sin γ2 cos θ2 cos φ2)]|1〉〈3| + [−θ̇1 sin γ1(sin γ1 cos φ1 + cos γ1 cos θ1 sin φ1) + θ̇2 sin γ2(sin γ2 cos φ2

− cos γ2 cos θ2 sin φ2) − γ̇1 sin θ1 sin φ1 − γ̇2 sin θ2 sin φ2 − φ̇1 sin γ1 sin θ1(cos γ1 cos φ1 − sin γ1 cos θ1 sin φ1)

− φ̇2 sin γ2 sin θ2(cos γ2 cos φ2 + sin γ2 cos θ2 sin φ2)]|1〉〈4| + [−θ̇1 sin γ1(sin γ1 cos φ1

+ cos γ1 cos θ1 sin φ1) − θ̇2 sin γ2(sin γ2 cos φ2 − cos γ2 cos θ2 sin φ2) − γ̇1 sin θ1 sin φ1

+ γ̇2 sin θ2 sin φ2 − φ̇1 sin γ1 sin θ1(cos γ1 cos φ1 − sin γ1 cos θ1 sin φ1) + φ̇2 sin γ2 sin θ2(cos γ2 cos φ2

+ sin γ2 cos θ2 sin φ2)]|2〉〈3| + [−θ̇1 sin γ1(sin γ1 sin φ1 − cos γ1 cos θ1 cos φ1) − θ̇2 sin γ2(sin γ2 sin φ2
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+ cos γ2 cos θ2 cos φ2) + γ̇1 sin θ1 cos φ1 − γ̇2 sin θ2 cos φ2 − φ̇1 sin γ1 sin θ1(cos γ1 sin φ1 + sin γ1 cos θ1 cos φ1)

+ φ̇2 sin γ2 sin θ2(cos γ2 sin φ2 − sin γ2 cos θ2 cos φ2)]|2〉〈4| + [sin γ1 sin θ1(θ̇1 cos γ1 − φ̇1 sin γ1 sin θ1)

− sin γ2 sin θ2(θ̇2 cos γ2 + φ̇2 sin γ2 sin θ2) − γ̇1 cos θ1 + γ̇2 cos θ2]|3〉〈4|} + H.c.. (B1)

APPENDIX C: CONNECTION WITH QUANTUM OPTICS (DIAMOND CONFIGURATION)

To relate the Hamiltonian of the inverse engineering approach, Eq. (10), to an interaction picture Hamiltonian for a four-level
atom illuminated by laser fields, we assume a semiclassical description of the interaction of the atom with coupling laser fields.
Neglecting atomic motion, the Hamiltonian in the Schrödinger picture for the diamond configuration and fields composed by
combinations of out-of-phase quadrature components is

H (t) = h̄

{
�̃12(t)[|1〉〈2| + |2〉〈1|] cos (ω12t + φ12) − �̃′

12(t)[|1〉〈2| + |2〉〈1|] sin (ω12t + φ12)

+ �̃13(t)[|1〉〈3| + |3〉〈1|] cos (ω13t + φ13) − �̃′
13(t)[|1〉〈3| + |3〉〈1|] sin (ω13t + φ13)

+ �̃24(t)[|2〉〈4| + |4〉〈2|] cos (ω24t + φ24) − �̃′
24(t)[|2〉〈4| + |4〉〈2|] sin (ω24t + φ24)

+ �̃34(t)[|3〉〈4| + |4〉〈3|] cos (ω34t + φ34) − �̃′
34(t)[|3〉〈4| + |4〉〈3|] sin (ω34t + φ34)+

4∑
i=2

ωi |i〉〈i|
}

, (C1)

where we use the vector basis |1〉 =
(

1
0
0
0

)
,|2〉 =

(
0
1
0
0

)
,|3〉 =

(
0
0
1
0

)
,|4〉 =

(
0
0
0
1

)
. �̃ij (t),�̃′

ij (t) are the atom-field coupling strengths

(Rabi frequencies), assumed real for simplicity, and φij the phases of the coherent driving fields. The atomic levels |i〉 have
energies h̄ωi and the fields have angular frequencies ωij . We choose the energy zero to match that of level |1〉 (ω1 = 0).

To transform the system into a laser-adapted interaction picture (rotating frame), we define the unitary operator

U0(t) =

⎛
⎜⎜⎝

1 0 0 0
0 ei(ω12t+φ12) 0 0
0 0 ei(ω13t+φ13) 0
0 0 0 ei[(ω12+ω24)t+φ12+φ24]

⎞
⎟⎟⎠. (C2)

Using

HI (t) = U0(t)H (t)U †
0 (t) + ih̄U̇0(t)U †

0 (t), (C3)

and imposing the four-photon resonance condition [49,56,57]

ω13 + ω34 = ω12 + ω24, (C4)

the Hamiltonian in the interacting picture is

HI (t) = h̄

2
{2(ω2 − ω12)|2〉〈2| + 2(ω3 − ω13)|3〉〈3| + 2(ω4 − ω12 − ω24)|4〉〈4|

+ �̃12(t)[(1 + e−2i(ω12t+φ12))|1〉〈2| + (1 + e2i(ω12t+φ12))|2〉〈1|]
+ i�̃′

12(t)[(1 − e−2i(ω12t+φ12))|1〉〈2| − (1 − e2i(ω12t+φ12))|2〉〈1|]
+ �̃13(t)[(1 + e−2i(ω13t+φ13))|1〉〈3| + (1 + e2i(ω13t+φ13))|3〉〈1|]
+ i�̃′

13(t)[(1 − e−2i(ω13t+φ13))|1〉〈3| − (1 − e2i(ω13t+φ13))|3〉〈1|]
+ �̃24(t)[(1 + e−2i(ω24t+φ24))|2〉〈4| + (1 + e2i(ω24t+φ24))|4〉〈2|]
+ i�̃′

24(t)[(1 − e−2i(ω24t+φ24))|2〉〈4| − (1 − e2i(ω24t+φ24))|4〉〈2|]
+ �̃34(t)[(1 + e−2i(ω34t+φ34))e−i�|3〉〈4| + (1 + e2i(ω34t+φ34))ei�|4〉〈3|]
+ i�̃′

34(t)[(1 − e−2i(ω34t+φ34))e−i�|3〉〈4| − (1 − e2i(ω34t+φ34))ei�|4〉〈3|]}, (C5)

where

� = φ12 − φ13 + φ24 − φ34. (C6)
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Applying now a RWA to get rid of the counter-rotating terms we end up with

HI,RWA(t) = h̄

2

⎛
⎜⎜⎜⎝

0 �̃12(t) + i�̃′
12(t) �̃13(t) + i�̃′

13(t) 0

�̃12(t) − i�̃′
12(t) �̃2 0 �̃24(t) + i�̃′

24(t)

�̃13(t) − i�̃′
13(t) 0 �̃3 (�̃34(t) + i�̃′

34(t))e−i�

0 �̃24(t) − i�̃′
24(t) (�̃34(t) − i�̃′

34(t))ei� �̃4

⎞
⎟⎟⎟⎠, (C7)

where �̃i (i = 2,3,4) are the detunings defined as

�̃2 = 2(ω2 − ω12),

�̃3 = 2(ω3 − ω13),

�̃4 = 2(ω4 − ω12 − ω24). (C8)

Assuming that the phases of the coherent driving fields can be
manipulated to satisfy

φ12 − φ13 + φ24 − φ34 = 0, (C9)

the Hamiltonian in Eq. (C7) has the structure of the one in
Eq. (10).

Notice that, the four-photon resonance condition (C4) is
key to find a simple Hamiltonian structure in terms of the
Rabi frequencies for closed-loop configurations. Equating the
diagonal terms, −�i = �̃i/2, the laser (angular) frequencies

are

ω12 = ω2 − ε′
2 − ε2

2T
,

ω13 = ω3 − ε′
3 − ε3

2T
,

ω24 = ω4 − ω2 + ε′
2 − ε2

2T
− ε′

4 − ε4

2T
, (C10)

and, to satisfy the four-photon resonance condition,

ω34 = ω4 − ω3 − ε′
4 − ε4

2T
+ ε′

3 − ε3

2T
. (C11)

Comparing the nondiagonal terms in Eqs. (C7) and (10), we
find the form of the Rabi frequencies,

�̃jk = 2ei(φj −φk )t�jk, (C12)

with φ1 = 0, φk (k = 2,3,4) given by Eqs. (21) and (22), and
�̃jk = �̃jk + i�̃′

jk .
For other configurations that do not form a closed loop,

similar steps may be followed, but the four-photon resonance
condition is not imposed.
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