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We demonstrate that the open quantum Rabi model (QRM) exhibits a second-order dissipative phase transition
(DPT) and propose a method to observe this transition with trapped ions. The interplay between the ultrastrong
qubit-oscillator coupling and the oscillator damping brings the system into a steady state with a diverging number
of excitations, in which a DPT is allowed to occur even with a finite number of system components. The universality
class of the open QRM, modified from the closed QRM by a Markovian bath, is identified by finding critical
exponents and scaling functions using the Keldysh functional integral approach. We propose to realize the open
QRM with two trapped ions where the coherent coupling and the rate of dissipation can be individually controlled
and adjusted over a wide range. Thanks to this controllability, our work opens a possibility to investigate potentially
rich dynamics associated with a dissipative phase transition.
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I. INTRODUCTION

Quantum optical systems have emerged as a promising
platform to investigate the physics of many-body systems
and phase transitions [1–7]. They typically consist of matter
represented by two- or few-level systems interacting with quan-
tized light fields or motional degree of freedom, i.e., quantum
harmonic oscillators, which in experiments are subject to dissi-
pation. In addition to this intrinsic open nature of these systems,
the possibility to bring the systems out of equilibrium in a con-
trolled manner allows one to explore a broad range of nonequi-
librium phenomena that has remained difficult to access and
yet is vital to advance the understanding of nonequilibrium
many-body physics. For example, recent experiments have
observed dissipative phase transitions (DPTs) in a BEC trapped
in a cavity [8–12], semiconductor microcavity [13], and super-
conducting circuits [14,15], which are abrupt and nonanalytical
changes of the steady state due to the competition among
coherent interactions, external drivings, and dissipations.

Another fundamental property of a quantum harmonic
oscillator is that its Hilbert space dimension is unbounded. It
has been recently pointed out that this can give rise to a sharp
notion of phases and phase transitions even in a coupled system
of single oscillator and single qubit [16,17]. The underlying
principle of this so-called finite-component system phase tran-
sition is that the ultrastrong qubit-oscillator coupling together
with the extremely large detuning achieves a thermodynamic
limit of diverging oscillator excitations, in which a nonanalytic
change of the ground state may occur. These works, however,
have so far been limited to closed systems [16–21] despite the
intrinsic open nature of harmonic oscillators in experiments. It
is therefore an important open question to understand whether
it is possible for a finite-component quantum system to reach
the thermodynamic limit of diverging excitations through
the simultaneously large detuning and coupling even in the
presence of dissipation, and, if so, what are the universal
properties of a phase transition appearing in such a limit of
an open quantum system.

In this work, we show that a single damped harmonic
oscillator coupled to a single qubit, described by an open
quantum Rabi model (QRM), undergoes a second-order DPT
due to the interplay between the ultrastrong, highly detuned
qubit-oscillator coupling and the oscillator damping. In the
infinite-η limit [16,17], where η is the qubit frequency divided
by the oscillator frequency, we analytically show the vanishing
of the asymptotic decay rate at the critical point, a direct mani-
festation of the closing gap of the Liouvillian and a hallmark of
DPTs [14,22]. This is accompanied by the diverging oscillator
population of the steady state at the critical point due to the
counter-rotating terms that counteract the loss, even in the
absence of external driving fields. Therefore, our study shows
that achieving the thermodynamic limit of infinite excitations,
in which a finite-component quantum system is allowed to
exhibit a nonanalytical change, through the large detuning (η)
and the large coupling strength, is a universal principle working
for both closed and open systems.

Moreover, we study the effect of quantum fluctuations
due to finite η on the DPT, which introduces a nonquadratic
interaction for the oscillator to the master equation and makes it
no longer amenable to analytical solutions in general. We over-
come this challenge by employing the Keldysh path-integral
approach [23,24] and find analytic expressions for the finite-
η scaling exponents and reveal the nonequilibrium scaling
function, which are identical with those of the open Dicke
model. Our analysis demonstrates that the open QRM and the
open Dicke model [24–33] belong to the same universality
class. This finding generalizes the previous studies that the
closed QRM and the closed Dicke model belong to the same
universality and that the frequency ratio η and the number
of spins N play the identical role in their respective phase
transitions to the setting of a quantum open system. Moreover,
the analytical results for finite-η scaling relations play a crucial
role in our proposal for observing the DPT of open QRM.

Finally, we propose a method to observe the DPT of the
open QRM in a system of two trapped ions. In our scheme,
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a collective motional mode is coupled to the internal levels
of one of the ions to implement the coherent Rabi coupling
[34], while the second ion is used to introduce a controlled
amount of damping via standard laser-cooling techniques
[35,36]. The key feature of our scheme is that the damping
rate is controllable and can be turned on and off; this opens
an exciting possibility for a controlled switch from a quantum
phase transition to a DPT and vice versa, a scenario that is not
achievable in other setups previously used to realize DPTs in
cavity QED systems [8–11,14,15]. Our analysis on the effects
of noise demonstrates that the verification of the DPT of the
open QRM through the measurement of the finite-η scaling
exponent is feasible with current technology.

The paper is organized as follows. In Sec. II, we introduce
the open QRM and perform a semiclassical analysis of the
model which shows an instability of the soft mode and a
bifurcation in the steady state, a typical manifestation of a
dissipative phase transition at a mean-field level. In Sec. III,
we present a full quantum mechanical solution for the open
QRM in the limit η → ∞ and show that it undergoes a DPT.
In this limit, the effective master equation becomes quadratic
and therefore we readily find analytical solutions for mean
amplitudes, fluctuations, as well as the asymptotic decay rate.
In Sec. IV, the effects of finite η are investigated. We employ
the Keldysh approach to predict analytic expressions for the
finite-η scaling exponent and nonequilibrium scaling function;
we also confirm the analytical predictions by numerically
solving the master equation. In Sec. V, we determine the
universality class of the open QRM. In Sec. VI, we propose a
scheme based on two trapped ions to realize the open QRM
with controllable coherent interaction and dissipation and
demonstrate the feasibility of observing the DPT of the open
QRM in a realistic experimental setup. Finally, we conclude
our paper in Sec. VII.

II. THE OPEN QUANTUM RABI MODEL

The model considered in this paper is the open-system
version of the QRM, described by a master equation,

ρ̇ = L[ρ] = −i[HRabi,ρ] + κD[a], (1)

where a (a†) and κ are the annihilation (creation) operator and
the damping rate of a harmonic oscillator, respectively. The
dissipator of the oscillator is assumed to be given in Lindblad
form, D[a] = 2aρa† − a†aρ − ρa†a, while the coherent dy-
namics is governed by the Rabi Hamiltonian,

HRabi = ω0a
†a + �

2
σz − λ(a + a†)σx, (2)

where σx,z are Pauli matrices for a two-level system. The
oscillator frequency is ω0, the qubit transition frequency �,
and λ is the coupling strength. It is convenient to introduce
a frequency ratio η ≡ �/ω0 and a dimensionless coupling
constant g = 2λ/

√
ω0�. The Rabi Hamiltonian can be gener-

alized to many particle models that undergo phase transitions
in the thermodynamic limit of infinitely many particles; for
example, the Dicke model [37,38] takes N qubits instead of a
single qubit and the Rabi lattice model [39–42] considers a one-
dimensional lattice of coupled oscillators where each oscillator
realizes the Rabi Hamiltonian with a local qubit. Interestingly,

the Rabi Hamiltonian itself also undergoes a quantum phase
transition [16] in the limit of ultrastrong coupling, λ/ω0 � 1,
and extremely large detuning, η � 1, but keeping the coupling
constant g ∼ O(1) finite; in the following, we are mainly
interested in such a limit.

Note that for an equilibrium system in the ultrastrong-
coupling regime, the master equation in the form of Eq. (1)
is typically not valid because the environment of the oscillator
and the qubit cannot be treated independently [43–46]; how-
ever, this can be effectively achieved by a driven trapped ion
system, as detailed below, or by cavity-assisted Raman transi-
tions [47]. We also emphasize that the effective master equation
in Eq. (1) does not contain any driving terms and the oscillator
damping solely competes with the Z2 symmetry preserving
qubit-oscillator coupling. This is in stark contrast to first-order
DPTs investigated in the driven-dissipative Jaynes-Cummings
[15,48] or Kerr [13,49] models, where the external driving field
used to compensate the oscillator damping explicitly breaks the
underlying U(1) symmetry.

Before developing a full quantum mechanical solution of
the open QRM, we first perform a semiclassical analysis and
find semiclassical steady states of the open QRM. In the
limit η → ∞, the semiclassical solution correctly captures the
mean-field amplitudes, while neglecting important quantum
fluctuations, which will be properly taken into account in the
following sections. From the standard Heisenberg-Langevin
equations of motion [50] obtained from the master equation
given in Eq. (1), we neglect quantum fluctuations and factorize
expectation values to find a semiclassical equation of motion
of the open QRM,

〈ȧ〉 = −i(ω0 − iκ)〈a〉 − iλ(〈σ+〉 + 〈σ−〉),
〈σ̇+〉 = i�〈σ+〉 − iλ(〈a〉 + 〈a〉∗)〈σz〉, (3)

〈σ̇z〉 = −i2λ(〈a〉 + 〈a〉∗)(〈σ+〉 − 〈σ−〉).
Therefore, the semiclassical steady-state solutions satisfy

0 =
(

1 − i
κ

ω0

)
α + g

2
(s+ + s∗

+),

0 = −s+ + g

2
(α + α∗)sz, (4)

0 = g(α + α∗)(s+ − s∗
+),

where we have introduced a renormalized steady-state mean
amplitude of the oscillator,

α ≡ 〈a〉s/
√

η, (5)

and the steady-state qubit expectation values s+ ≡ 〈σ+〉s and
sz ≡ 〈σz〉s .

Together with the fact that a pseudoangular momentum is
conserved, i.e., 4|s+|2 + s2

z = 1, we find that the semiclassical
solution of the open QRM exhibits a bifurcation at g = gc,
where the critical point gc is defined as

gc =
√

1 + κ2/ω2
0. (6)

Below the critical point, g < gc, the only stable solution is a
trivial solution with zero mean-field amplitudes,

α = 0, s+ = 0, (7)
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with the qubit being in its ground state sz = −1. Above the
critical point g > gc, however, the zero mean-field solution
given by Eq. (7) becomes unstable and bifurcates into two
stable solutions with nonzero mean-field solutions,

〈a〉 = ± g
√

η/2

1 − i κ
ω0

√
1 − (gc/g)4, s+ = ∓1

2

√
1 − (gc/g)4,

(8)

which accompanies nonzero population of the qubit excited

state sz = − g2
c

g2 . We note that the open QRM preserves the Z2

symmetry, namely, Eq. (1) is invariant under {a → −a,σ− →
−σ−}, as there is no explicit driving field that breaks the
symmetry. Any symmetry-preserving steady-state solution
should have zero mean-field amplitude, α = s+ = 0. That
the nonzero mean-field solutions become stable for g > gc

therefore indicates that a spontaneous symmetry breaking
occurs. Moreover, the spontaneous coherence of the oscillator
exhibits superradiance in that its amplitude is proportional to√

η and therefore diverges.
The semiclassical steady-state solution of the open QRM

presented here exhibits a bifurcation from a zero mean-field
solution to a symmetry-breaking, superradiant mean-field so-
lution, which are reminiscent of the mean-field solution of
the open Dicke model [25,28] that are a manifestation of a
dissipative phase transition occurring in the thermodynamic
limit of an infinite number of qubits. Our semiclassical analysis
here therefore strongly suggests that the open QRM undergoes
a DPT and the thermodynamic limit of infinite oscillator
excitation is achieved in the limit η → ∞ even in the presence
of oscillator damping and in the absence of driving fields that
counteract the damping to maintain the finite-density phase. In
the next section, we present a full quantum mechanical solution
that shows this is indeed the case. It is important to note that
in what follows, we keep the harmonic oscillator frequency
ω0 finite when we take the limit η → ∞, as it determines the
energy scale for quantum fluctuations in such a limit.

III. DISSIPATIVE PHASE TRANSITION

In this section, we find an analytical and full quantum
mechanical solution for the steady state of the open QRM
and demonstrate that it undergoes a superradiant dissipative
phase transition. To this end, we first derive an effective master
equation for the limit η → ∞, which becomes quadratic in
the oscillator operator a. From the quadratic effective master
equation, we solve linear systems of the equation of motion
for both first and second moments of the oscillator. As we will
see below, the exact solution for the first moment shows the
emergence of the superradiant and broken-symmetry phase,
which agrees with the semiclassical solution; the second
moment shows the diverging fluctuation around the mean-field
solution, which establishes the thermodynamic limit of infinite
excitations.

A. Normal phase

Consider a unitary transformation

Unp = exp[g
√

η−1/2(a + a†)(σ+ − σ−)], (9)

which has been shown in Ref. [16] to remove from the Rabi
Hamiltonian, given by Eq. (2), any coupling terms between
the qubit states |↑〉 and |↓〉 (σz|↑ (↓)〉 = +(−)|↑ (↓)〉) up to
second order in g. We apply the unitary transformation Unp to
the master equation (1). Then, the transformed Hamiltonian
of the coherent part reads U

†
npHRabiUnp = ω0a

†a + �
2 σz +

(ω0g
2/4)(a + a†)2σz, while the infinitesimal transformation

does not affect the dissipator D[a] (see the Appendix). Upon
a projection to the |↓〉 subspace of the qubit, we obtain an
effective master equation

ρ̇a = −i[Hnp,ρa] + κD[a], (10)

with

Hnp = ω0a
†a − (ω0g

2/4)(a + a†)2 (11)

and ρa ≡ 〈↓|U †
npρUnp|↓〉.

From Eq. (10), we derive a system of linear equations for
the mean amplitude u = (〈a〉,〈a†〉)T ,

u̇ ≡ Lnpu =
⎛
⎝−iω0

(
1 − g2

2

) − κ iω0
g2

2

−iω0
g2

2 iω0
(
1 − g2

2

) − κ

⎞
⎠u.

(12)

The eigenvalues of Lnp are


np,± = −κ ± iεnp, (13)

where the imaginary part εnp = ω0

√
1 − g2 is the excitation

energy in the normal phase of the closed QRM [16]. As long
as the real part of 
np,± remains negative, the system simply
decays to a trivial steady state with zero mean-field amplitudes,

us,np = (0,0)T . (14)

There exists, however, a critical point gc,

gc =
√

1 + κ2

ω2
0

, (15)

where the real part of 
np,− becomes zero; see Fig. 1(a). For g >

gc, Re[
np,−] becomes positive. This indicates that the trivial
solution with zero mean-field amplitude, given by Eq. (14), is
no longer stable and that the mean-field amplitude acquires a
nonzero value, thereby breaking the Z2 symmetry of the open
QRM.

B. Superradiant phase

To take into account the emergence of nonzero mean-
field solutions for g > gc, we first apply the displacement
unitary transformation D[α] = exp[αa† − α∗a] that displaces
the oscillator field, i.e., a → a + α. A proper choice ofα would
lead to a stable zero mean-field solution for the steady state in
the displaced coordinate. We will see in the following that the
semiclassical solution given in Eq. (8) achieves exactly that.
With the choice of α = ±αs where

αs = g
√

η

2g2
c

(
1 + i

κ

ω0

)√
1 − (gc/g)4, (16)

we apply the unitary transformation D[±αs] to Eq. (1) to have

˙̄ρ± = −i[H̄Rabi(±αs),ρ̄±] + κD[a], (17)
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FIG. 1. Analytical solutions in the limit η → ∞. (a) The asymp-
totic decay rate κADR (solid line) vanishes at g = gc. The excitation
energy ε (dashed line) becomes zero for g1 � g � g2 with g1 = 1 and
g2 = g3/2

c , leading to an overdamped dynamics. (b) The steady-state
expectation values for the order parameter |〈a〉s |/η (dotted line), the
oscillator population 〈a†a〉s (solid line), and the maximum quadrature
variance �Xs (dashed line). The relevant critical exponents for each
quantity are indicated in the figures.

where ρ̄± ≡ D†[±αs]ρD[±αs] and

H̄Rabi(±αs) = ω0a
†a ± ω0g

√
η

2

√
1 − g4

c

g4
(a + a†)(1 + τ±

z )

− ω0g
2
c

√
η

2g
(a + a†)τ±

x + �g2

2g2
c

τ±
z , (18)

up to a constant. Here, τ±
x,z are Pauli matrices in a new qubit

basis defined as

|↑̄±〉 = 1√
2

(√
1 + g2

c /g
2|↑〉 ∓

√
1 − g2

c /g
2|↓〉),

|↓̄±〉 = 1√
2

( ±
√

1 − g2
c /g

2|↑〉 +
√

1 + g2
c /g

2|↓〉). (19)

We then apply a unitary transformation

U±
sp = exp

[
− ig4

c

2g3

√
η−1(a + a†)τ±

y

]
(20)

to Eq. (17), which removes any coupling between the new qubit
basis states |↑̄±〉 and |↓̄±〉 from the displaced Hamiltonian
given by Eq. (18) (see the Appendix). This is followed by a
projection onto |↓̄±〉 subspace. The resulting effective master
equation for the reduced density matrix ρ̄a,± in the superradiant
phase reads

˙̄ρa,± = −i[Hsp,ρ̄a,±] + κD[a], (21)

with

Hsp = ω0a
†a − ω0g

6
c

4g4
(a + a†)2. (22)

We provide a detailed derivation of the effective master
equation given by Eq. (21) in the Appendix.

From Eq. (21), we derive the equation of motion for the
mean amplitudes u = (〈a〉,〈a†〉)T ,

u̇ = Lspu, (23)

where

Lsp =
⎛
⎝−iω0

(
1 − g6

c

2g4

) − κ iω0
g6

c

2g4

−iω0
g6

c

2g4 iω0
(
1 − g6

c

2g4

) − κ

⎞
⎠. (24)

The eigenvalues of Lsp read


sp,± = −κ ± iεsp, (25)

where εsp = ω0

√
1 − g6

c /g
4. Note that real values of 
sp,±

remain negative for g > gc. Therefore, the effective master
equation (21) does have a stable zero mean-field amplitude
solution when one displaces the oscillator field by αs deter-
mined by the semiclassical solution. From this, we conclude
that the open QRM has two possible steady-state solutions with
spontaneous coherence of the oscillator,

us,sp = (±αs, ± α∗
s )T , (26)

whose amplitude diverges as
√

η, leading to a macroscopic oc-
cupation of the oscillator population. The steady-state solution
also spontaneously breaks the Z2 symmetry of the open QRM.

C. Asymptotic decay rate

The eigenvalues of systems of the equations of motion
in both normal and superradiant phases, given in Eqs. (14)
and (25), show that near the critical point gc, the long-time
dynamics is overdamped. More precisely, εnp for 1 < g < gc

and εsp for gc < g < g
3/2
c become purely imaginary; while

this leads to a quantum phase transition at g = gc = 1 in
the absence of dissipation [16], here it is balanced with the
oscillator damping κ and it gives rise to a new time scale, the
so-called asymptotic decay rate (ADR) [22],

κADR,np ≡ −Re[
np,−] = κ − ω0

√
g2 − 1; (27)

see Fig. 1(a). The ADR vanishes at the critical point gc =√
1 + κ2/ω2

0 as

κADR ∝ ω0|g − gc|νADR, (28)

with νADR = 1. This is a consequence of the closing of the
Liouvillian gap, a hallmark of a DPT [14,22], at the critical
point.

D. Fluctuations

Now we examine fluctuations of the boson field around
the mean amplitude us,np and us,sp. To this end, we derive
systems of linear equations for the boson fluctuations v =
(〈a†a〉,〈a2〉,〈a†2〉)T , which we write as

v̇ = Mnp(sp)v + Ynp(sp). (29)
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For the normal phase g < gc, we find

Mnp = iω0

⎛
⎜⎜⎝

i 2κ
ω0

− g2

2
g2

2

g2 −2
(
1 − g2

2

) + i 2κ
ω0

0

−g2 0 2
(
1 − g2

2

) + i 2κ
ω0

⎞
⎟⎟⎠

(30)

and

Ynp = iω0

⎛
⎝ 0

g2

2

− g2

2

⎞
⎠. (31)

From this, we derive the steady-state solution in the normal
phase vs,np = −M−1

np Ynp, which reads

vs,np = g2

8
(
g2

c − g2
)(

g2,2 − g2 + 2iκ

ω0
,2 − g2 − 2iκ

ω0

)T

.

(32)

For the superradiant phase, we have

Msp = iω0

⎛
⎜⎜⎝

i 2κ
ω0

− g6
c

2g4
g6

c

2g4

g6
c

g4 −2
(
1 − g6

c

2g4

) + i 2κ
ω0

0

− g6
c

g4 0 2
(
1 − g6

c

2g4

) + i 2κ
ω0

⎞
⎟⎟⎠

(33)

and

Ysp = iω0

⎛
⎜⎜⎝

0
g6

c

2g4

− g6
c

2g4

⎞
⎟⎟⎠, (34)

which leads to the steady-state solution

vs,sp = g4
c

8
(
g4 − g4

c

)(
g6

c

g4
,2 − g6

c

g4
+ 2iκ

ω0
,2 − g6

c

g4
− 2iκ

ω0

)T

.

(35)

Using the analytical solution for the second moments of the
oscillator, given in Eqs. (32) and (35), we discuss in the
following the oscillator population, squeezing, and the purity
of the steady state.

1. Oscillator population

We first consider the oscillator population of the steady
state. From the first row of vnp(sp), we find that it diverges near
g = gc as

〈a†a〉s ∝ |g − gc|−νx , (36)

with νx = 1; see Fig. 1(b). This so-called photon flux exponent
νx of the open QRM differs from νx = 1/2 of the closed QRM
[16]. Note that the presence of a Markovian bath also changes
the photon flux exponent of the Dicke model in an identical
way, namely, from νx = 1/2 to νx = 1 [24,28]. Equation (36)
also demonstrates that a thermodynamic limit of diverging
oscillator excitations is indeed established in the limit η → ∞
even in the presence of damping and the absence of the explicit

driving. This divergence is due to the counter-rotating terms of
the Rabi Hamiltonian that counteract the damping and establish
a finite-density phase.

2. Squeezing

Second, we examine the quantum fluctuation along a
quadrature variable, X(θ ) = ae−iθ + a†eiθ with 0 � θ � π .
From Eq. (32), we find the analytical expression for the
variance �X(θ ) = 〈X2(θ )〉 − 〈X(θ )〉2 in the normal phase as

�Xs,np(θ )

= g2

2
(
g2

c −g2
)[(

1− g2

2

)
cos(2θ )+ κ

ω0
sin(2θ )+ g2

2

]
+1,

(37)

while the expression for �Xs,sp can be obtained by simply
substituting g from �Xs,np with g3

c /g
2. At the critical point,

the variance diverges, i.e.,

�Xs(θ �= θmin) ∝ |g − gc|−ν�, (38)

where ν� = 1 for any θ [cf. Fig. 1(b)], except for θ
np
min = π −

arctan( ω0
κ

) where we find

�Xs(θmin,g = gc) = 1/2. (39)

Note that the minimum variance is below the vacuum fluc-
tuation and therefore the steady state exhibits squeezing.
However, the product of the maximum and minimum variance,
�Xs(θmax)�Xs(θmin) with θmax = θmin − π/2, diverges at the
critical point. This is in stark contrast to the closed QRM where
the minimum variance of the ground state at the critical point
becomes zero and the maximum variance diverges so that the
ground state remains the minimum uncertainty state [16].

3. Purity

Here, we show that the purity of the steady state at the DPT
of the open QRM becomes zero. The purity μ of Gaussian
states [51], with our convention of x = a + a†, is given by

P = 1

2
√

σxxσpp − σxp

, (40)

where

σxx = 1

2
(〈x2〉 − 〈x〉2),

σpp = 1

2
(〈p2〉 − 〈p〉2), (41)

σxp = 1

2

(
1

2
〈xp + px〉 − 〈x〉〈p〉

)
.

From Eqs. (32) and (35), we observe that all the second
moments, 〈a†a〉, 〈a2〉, and 〈a†2〉, diverge near the critical
point with |g − gc|−1. Therefore, it immediately follows that
σxx,σpp,σxp ∝ |g − gc|−1 and, as a consequence, the purity at
the dissipative phase transition vanishes as

P (g ∼ gc) ∝ |g − gc|νP , (42)

with νP = 1/2. Therefore, we conclude that the steady state at
the DPT becomes a maximally mixed state.
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IV. KELDYSH APPROACH FOR FINITE-FREQUENCY
SCALING ANALYSIS

Having established the DPT of the open QRM in theη → ∞
limit, we now move our focus to the effect of η < ∞ on the
DPT. The results presented here play a very important role
for establishing the universality class of the open QRM and
for making possible its experimental observation, as we will
discuss below. For finite η, the quartic interaction, i.e., a term
that is proportional to (a + a†)4, must be taken into account
[16] and this makes the master equation no longer amenable
to exact analytical solutions. We employ the Keldysh path-
integral approach [23,24,52] to overcome this challenge and
analytically derive the finite-η scaling exponents of the open
QRM.

We start from the master equation in the normal phase, given
in Eq. (10),

ρ̇ ≡ L[ρ] = −i

[
ω0a

†a − ω0g
2

4
(a + a†)2,ρ

]

+ κ(2aρa† − a†aρ − ρa†a). (43)

Suppose that ρ(t) is a solution to the above equation. The
central object in the Keldysh approach is the Keldysh partition
function [23],

Z = Tr[ρ(t)] = 1. (44)

By applying the path integral to the trace of the formal solution,
ρ(tf ) = e(tf −ti )Lρ(ti), and taking a limit of ti → −∞ and tf →
∞, we express the partition function Z as

Z =
∫

d[α+,α∗
+,α−,α∗

−] exp[iS], (45)

where α± are complex numbers defined on the Keldysh contour
[52] and their time dependence is omitted for a compact
notation. Here, the action S consists of two parts, namely,

S = SF + SI . (46)

First, SF is the free oscillator part with a damping,

SF [α+,α∗
+,α−,α∗

−] =
∫ ∞

−∞
dt{α∗

+(i∂t − ω0)α+

−α∗
−(i∂t − ω0)α−

− iκ[2α+α∗
− − α∗

+α+ − α∗
−α−]}. (47)

Second, SI is the quadratic interaction part of the oscillator,

SI [α+,α∗
+,α−,α∗

−] = ω0g
2

4

∫ ∞

−∞
dt[(α2

+ + α∗2
+ + 2α∗

+α+ + 1)

− (α2
− + α∗2

− + 2α∗
−α− + 1)]. (48)

After introducing a Keldysh rotation αcl = (α+ + α−)/
√

2 and
αq = (α+ − α−)/

√
2, we obtain the Keldysh action in the

frequency space,

S = 1

2

∫ ∞

−∞

dω

2π
V †(ω)

(
0

[
GA

2×2

]−1
(ω)[

GR
2×2

]−1
(ω) DK

)
V (ω).

(49)

Here we have introduced the Nambu spinor,

V (ω) =

⎛
⎜⎜⎝

αcl(ω)
α∗

cl(−ω)
αq(ω)

α∗
q (−ω)

⎞
⎟⎟⎠, (50)

the retarded Green’s function GR
2×2, the advanced Green’s

function GA
2×2 = (GR

2×2)∗, and the Keldysh Green’s function
DK . For the normal phase of the open QRM, we find that the
retarded Green’s function reads[

GR
2×2

]−1
(ω) =

(
ω−ω0+iκ+� �

� −ω−ω0−iκ+�

)
,

(51)

with a self-energy � = ω0g
2/2 and the Keldysh Green’s

function reads

DK (ω) =
(

2iκ 0
0 2iκ

)
. (52)

Before analyzing the finite-η effect, let us note that
the characteristic frequencies of the system are given by
det[GR

2×2]−1(ω) = 0, which leads to

ω = −iκ ± ω0

√
1 − g2. (53)

The above frequency is closely related to the eigenvalues 
np

in Eq. (14), as ω = i
np, and therefore it correctly captures the
vanishing of ADR at g = gc. In fact, we note that all of our
findings on the DPT of the open QRM in the η → ∞ limit
provided in Sec. III can also be obtained from the Keldysh
action for the open QRM in Eq. (49). In Sec. III, we have chosen
to present our main results in the η → ∞ limit by solving the
equations of motion derived from the effective master equation
as it is a more accessible approach for a broader audience. For
η < ∞, however, it is the Keldysh approach presented here
that allows us to make an analytical prediction for the open
QRM.

From the Keldysh action given in Eq. (49), we derive
the finite-η scaling exponent using the idea of scale in-
variance, following the procedure used for the open Dicke
model in Ref. [24]. To this end, we perform a change of
variables using αcl(q) = √

ω0/2(xcl(q) + ipcl(q)) and α∗
cl(q) =√

ω0/2(xcl(q) − ipcl(q)), and then integrate out the pcl and pq.
After a low-frequency expansion, we obtain the Keldysh action
in the time domain as

S = 1

2

∫ ∞

−∞
dt(xcl(t),xq(t))

(
0 −2iκ∂t

2iκ∂t 2iκω0(1 + κ2/ω2
0)

)

×
(

xcl(t)
xq(t)

)
. (54)

It is straightforward to show that the above action is invariant
under the scaling transformation,

t → at, xcl(t) → √
axcl(t), xq(t) → 1√

a
xq(t). (55)

The lowest-order contributions of the finite-η correction to the
quadrature effective Hamiltonian Hnp are quartic interactions
[16]. Thus, the expansion of the open QRM up to η−1 would
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FIG. 2. Finite-η scaling relations. (a) Numerical solutions for the
oscillator population 〈a†a〉s (squares) and the diverging quadrature
variance �Xs (circles) of the steady state follows a power-law
behavior η1/2 (solid line), whose exponent is analytically predicted by
the Keldysh functional analysis. (b) The rescaled oscillator population
|g − gc|νx 〈a†a〉s is plotted as a function of η|g − gc|νx/ζx for the
open QRM (triangles) and N |g − gc|νx/ζx for the open Dicke model
(squares). Note that for the open Dicke model, a nonuniversal
prefactor c ∼ 0.507 is multiplied to the y axis. All data points collapse
onto a single curve.

yield terms such as λ
η

∫
dtφclφclφclφq or λ

η

∫
dtφclφqφqφq [24].

For these first-order corrections to be invariant under the same
scaling transformation, one has to renormalize η as

η → a2η. (56)

It follows that 1√
η
〈x2

cl〉 is invariant under the scaling transfor-
mation given by Eqs. (55) and (56) and therefore the oscillator
population and the quadrature variance of the steady state,
which is proportional to 〈x2

cl〉, follow a finite-η scaling relation,

〈a†a〉s(η,g = gc) ∝ ηζx , �Xx(η,g = gc) ∝ ηζ�, (57)

with ζx = ζ� = 1/2. We confirm these predictions on the
finite-η scaling exponents by numerically solving the master
equation of the open QRM in Eq. (1) for η � 1 at g = gc,
which shows an excellent agreement with Eq. (57), as shown
in Fig. 2(a).

V. UNIVERSALITY CLASS

So far, we have demonstrated that the open QRM undergoes
a DPT in the infinite-η limit and exhibits a finite-η scaling in the
steady state. We have also found analytical expressions for crit-
ical exponents characterizing the criticality of the open QRM.
First, the ADR, which describes the overdamped dynamics
near the critical point due to the closing of the Liouvillian gap,

vanishes as κADR ∝ |g − gc|νADR with νADR = 1. Second, the
oscillator population of the steady state with respect to the
mean amplitude diverges at g = gc as 〈a†a〉s ∝ |g − gc|−νx

with νx = 1 for η → ∞ and as 〈a†a〉s ∝ ηζx with ζx = 1/2
for η < ∞, in contrast to νx = 1/2 and ζx = 1/3 for the
ground-state oscillator population of the closed QRM [16]. All
of these critical exponents are identical to the corresponding
exponents of the open Dicke model [28]. This observation
suggests that the open-system version of the QRM and Dicke
model belong to the same universality class. Moreover, the
correspondence between the frequency ratio η and the number
of atoms N in the qubit-oscillator systems demonstrated for
a closed system [16,17] holds also for an open quantum
system [16,17]. To determine the universality class of the open
QRM and to corroborate that the open QRM and the open
Dicke model belong to the same universality class [53], we
calculate nonequilibrium scaling functions of both the open
QRM and the open Dicke model. Together with analytical
expressions for the critical exponents for both η → ∞ and
η < ∞, given in Eqs. (36) and (57), respectively, we use the
scaling hypothesis [54,55] to find a scaling transformation that
reveals the nonequilibrium scaling function for the steady-state
oscillator population of the open QRM as

|g − gc|νx 〈a†a〉s(η,g) = Fn(η|g − gc|νx/ζx ). (58)

In Fig. 2(b), we numerically calculate the steady-state ex-
pectation value 〈a†a〉s(η,g) from Eq. (1) for different values
of η and g satisfying η � 1 and g ∼ gc and then plot the
rescaled oscillator population |g − gc|νx 〈a†a〉s as a function of
a rescaled coupling strength η|g − gc|νx/ζx . The single curve on
which all the data points collapse is the nonequilibrium scaling
function.

We perform the same scaling transformation with Eq. (58)
for the open Dicke model where η is replaced by N , i.e.,

|g − gc|νx 〈a†a〉s(N,g) = cF Dicke
n (N |g − gc|νx/ζx ). (59)

The form of the scaling transformation above agrees with the
one presented in Ref. [56], in which the value of νx/ζx has been
obtained through a numerical calculation that deviates slightly
from the analytical value νx/ζx = 2 used here. As shown in
Fig. 2(b), Fn and F Dicke

n are identical, and thus universal,
and the calculated nonuniversal prefactor is c ∼ 0.507. This
confirms that the open QRM and the open Dicke model belongs
to the same universality class. Note that the ratio of critical
exponent ξ = νx/ζx appearing in the argument of scaling
functions Fn and F Dicke

n is sometimes referred to as a coherence
number [55] for the models without spatial degrees of freedom
or for the infinitely coordinated systems. While νx and ζx are
specific to observables, which in this case is the oscillator
population, the coherence number ξ is specific to the model
and is observable independent. For the open QRM and the open
Dicke model, we find ξ = 2. For the closed QRM and closed
Dicke model, on the other hand, we have ξ = 3/2 [16,38,57].
Finally, while we have focused on the oscillator population, the
same scaling analysis can be applied to other observables such
as �Xx , which would lead to the identical scaling function for
both models.
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(a)

(b) (c)

FIG. 3. (a) Realization of the open QRM using a 9Be+ − 24Mg+
ion pair in a linear trap. (b) Two lasers are applied to the 9Be+ in
order to drive the blue- and red-sideband transitions with detuning δ1

and δ2, respectively, and a Rabi frequency ηLD�d . This creates the
coherent Rabi coupling between two hyperfine states of 9Be+ and the
center-of-mass (COM) mode. (c) The 24Mg+ ion is used to implement
a tunable phonon damping rate κ = 2�2

e/� via a weak red-sideband
excitation to an optically excited state |e〉.

VI. IMPLEMENTATION BASED ON TWO TRAPPED IONS

We propose a method for an experimental observation of
the predicted DPT in the open QRM using two trapped ions
in a linear trap. See Fig. 3 for a schematic of our proposal.
While the proposed scheme is not specific to a certain species
of ions, to closely examine the feasibility we consider a specific
setup with a mixed-species ion pair 9Be+ − 24Mg+ [58,59].
We choose the common center-of-mass mode as the oscillator
of the QRM. All other vibration modes are far separated in
frequency and can be neglected. The hyperfine states of 9Be+,
|F = 2,mF = 0〉 and |F = 1,mF = 1〉, form a qubit, which
can be coupled to the motional mode using coherent stimulated
Raman transitions [60]. After moving to the interaction picture
with respect to the bare qubit and oscillator dynamics, followed
by a rotating wave approximation (RWA), the interaction
Hamiltonian between the oscillator and qubit in the Lamb-
Dicke limit is HI = ηLD�dσ

+(aeiδ1t + a†eiδ2t ) + H.c., where
we have considered two lasers driving both the blue- and
red-sideband transition and δ1 (δ2) is a detuning of the driving
laser with respect to the red- (blue)-sideband transition, �d

is the Rabi frequency, and ηLD ∼ 0.15 is the Lamb-Dicke
parameter [58,59]. In the rotating frame, where HI becomes
time independent, HI takes the form of HRabi with ω0 =
(δ2 − δ1)/2, � = (δ1 + δ2)/2, and λ = ηLD�d [34,61].

To the above scheme, which allows one to observe the
quantum phase transition (QPT) of the closed QRM [34],
one can controllably introduce a dissipation to the oscillator,
thereby switching the system from probing the QPT of the
closed QRM to the DPT of the open QRM. We propose to
achieve this by laser cooling the motional mode with the help of
the second 24Mg+ ion. The sympathetic cooling of the in-phase
mode using 24Mg+ has already been experimentally achieved

101 102 103 104
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FIG. 4. The effect of dephasing noise on finite-η scaling relations.
(a) Numerical solutions for the oscillator population 〈a†a〉s of the
steady state for different values of dephasing rate:�d/κ = 0 (squares),
�d/κ = 7 × 10−3 (circles), and 7 × 10−2 (triangles). (b) The rescaled
steady-state oscillator population |g − gc|νx 〈a†a〉s is plotted as a
function of η|g − gc|νx/ζx . The solid line is the nonequilibrium scaling
function of the open QRM without any dephasing nose. While the
nonequilibrium scaling function is still intact with the dephasing rate
�d/κ = 7 × 10−3 (circles), the data no longer collapse onto a single
curve for �d/κ = 7 × 10−2 (triangles). For all data, the same set of
values for η and g is used.

[58,59]. In this setting, the cooling of the normal modes
introduces the oscillator damping [36] and the 9Be+ − 24Mg+
ion pair now realizes the dynamics described by Eq. (1), i.e.,
the open QRM. The finite-η scaling of the phonon number in
the steady state is a quantity to be measured and it already
emerges for 50 � η � 100 [cf. Fig. 2(a)]; a possible set of
parameters to realize this range of η is ω0/2π = 500 Hz and
25 � �/2π � 50 kHz. The sympathetic cooling rates as high
as tens of kHz have been achieved [58] and here we set the
cooling rate 2κ/2π = 200 Hz so that we have κ/ω0 = 0.2 for
the parameters used here, as assumed throughout the paper.
The critical coupling strength λc = 0.5ω0

√
η
√

1 + (κ/ω0)2 is
then realized in a range of 1.8 < ηLD�d/2π < 2.5 kHz. All of
these parameters are within the range of validity of the RWA
and Lamb-Dicke limit [34].

Finally, we examine the effect of dephasing noise of the
qubit on the DPT. The master equation including the qubit
dephasing noise reads

ρ̇ = L[ρ] = −i[HRabi,ρ] + κD[a] + �dD[σz], (60)

where D[x] = 2xρx† − x†xρ − ρx†x. For numerical simu-
lations, we choose �d/κ = 7 × 10−3 and �d/κ = 7 × 10−2.
The former corresponds to the dephasing rate reported in
Ref. [59] for an experimental setup based on the hyperfine
states of 9Be+. From Figs. 4(a) and 4(b), we conclude that
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for this experimentally accessible dephasing rate of �d/κ =
7 × 10−3, one can quantitatively measure both the finite-η
scaling exponent for the oscillator population ζx = 1/2 and the
universal nonequilibrium scaling function for the experimen-
tally accessible values of the frequency ratio 50 � η � 100.
For a stronger dephasing rate, e.g., �d/κ = 7 × 10−2, the
scaling relations are strongly modified by the dephasing noise.
Therefore, choosing an ion with a long coherence time, in this
case the hyperfine states of 9Be+, is highly advantageous in
this regard.

We emphasize that the oscillator damping in our proposal
is highly tunable; therefore, one could realize either the
QPT of the closed QRM or the DPT of the open QRM
in the same experimental setup and even switch from one
another suddenly or adiabatically in time. This remarkable
controllability of the dissipation in an experimental realization
of a DPT is not available in any currently available cavity
QED system with optical and microwave photons [8–15]. It
opens an exciting opportunity to experimentally investigate the
dynamics of DPT and to examine the crossover between a QPT
and a DPT.

VII. CONCLUSION

In conclusion, we have demonstrated that the open QRM
undergoes a DPT, established its universality class, and pro-
posed an experimental scheme based on ion traps where
the predicted DPT can be induced by a motional cooling
of ions. Our work shows that the notion of phase transi-
tions in a finite-component system of a coupled oscillator
and spin extends to an open quantum system and provides
a theoretical and experimental framework to systematically
investigate the nature of dissipative phase transitions and its
dynamics in a small, fully controlled open quantum sys-
tem. The gained understanding in the proposed setting may
have a far-reaching implication for a wide range of exper-
imental setups [8–12] thanks to the universality established
here.
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APPENDIX: DERIVATION OF EFFECTIVE
MASTER EQUATIONS

In this section, we derive the effective master equation of
the open quantum Rabi model (QRM) in the η → ∞ limit for
both the normal and superradiant phase.

First, for the normal phase, we consider a unitary transfor-
mation Unp = exp[g

√
η−1/2(a + a†)(σ+ − σ−)] that has been

used to derive the effective Hamiltonian of the closed QRM
in Ref. [16] and apply to the master equation of the open

QRM, i.e.,

U †
npρ̇Unp = −iU †

np[HRabi,ρ]Unp + κU †
npD[a]Unp. (A1)

In the η → ∞ limit, the coherent part in the above equation
becomes

−iU †
np[HRabi,ρ]Unp

= −i

[
ω0a

†a + �

2
σz + ω0g

2

4
(a + a†)2σz,U

†
npρUnp

]
,

(A2)

which follows from U
†
npHRabiUnp = ω0a

†a + �
2 σz +

(ω0g
2/4)(a + a†)2σz + O(η−1/2) [16]. In the zeroth order in

η, the dissipator part does not change and all the corrections
have an order higher than η−1/2, which becomes zero in the
considered limit. Therefore, the transformed master equation
is diagonal in the spin basis |↑〉 and |↓〉, and upon the
projection onto the spin |↓〉 subspace we obtain the effective
master equation,

ρ̇a = −i

[
ω0a

†a − ω0g
2

4
(a + a†)2,ρa

]
+ κD[a]ρa, (A3)

where ρa ≡ 〈↓|U †
npρUnp|↓〉.

Second, we now derive the effective master equation for the
superradiant phase. We begin by applying the displacement
unitary transformation to Eq. (1) with D[α] = exp[αa† −
α∗a], which leads to

˙̄ρ = −i{D†[α]HRabiD[α] + iκ(α∗a − αa†),ρ̄}
+ κ(2aρ̄a† − a†aρ̄ − ρ̄a†a), (A4)

where ρ̄ ≡ D†[α]ρD[α]. Upon choosing α = ±αs , where αs

is a mean-field amplitude of the field of the steady state given
in Eq. (8), the master equation becomes

˙̄ρ± = −i[H̄Rabi(±αs),ρ̄±] + κ(2aρ̄±a† − a†aρ̄± − ρ̄±a†a),
(A5)

where the coherent part reads

H̄Rabi(±αs) = ω0a
†a + ω0|αs |2

± g
√

ω0�

2

√
1 − g4

c

g4
(a + a†) − λ(a + a†)σx

∓ 2λRe[αs]σx + �

2
σz. (A6)

The spin part of H̄Rabi(±αs), i.e., the last two terms of the above
equation, becomes diagonal in the following new spin basis:

|↑̄±〉 = 1√
2

⎛
⎝

√
1 + g2

c

g2
|↑〉 ∓

√
1 − g2

c

g2
|↓〉

⎞
⎠,

|↓̄±〉 = 1√
2

⎛
⎝±

√
1 − g2

c

g2
|↑〉 +

√
1 + g2

c

g2
|↓〉

⎞
⎠. (A7)

Let us define Pauli matrices in the new spin basis
τ±
x = |↑̄±〉〈↓̄±| + |↓̄±〉〈↑̄±|, τ±

y = i(|↑̄±〉〈↓̄±| − |↓̄±〉〈↑̄±|),
and τ±

z = |↑̄±〉〈↑̄±| − |↓̄±〉〈↓̄±|, which are related to the Pauli
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matrices in the original spin basis in the following way:

σ+ = ±1

2

⎛
⎝−

√
1 − g4

c

g4
τ±
z ± g2

c

g2
τ±
x ± iτ±

y

⎞
⎠,

σx = ±
⎛
⎝−

√
1 − g4

c

g4
τ±
z ± g2

c

g2
τ±
x

⎞
⎠. (A8)

The displaced Hamiltonian in Eq. (A6) in this new spin basis
reads

H̄Rabi(±αs) ≡ H̄±
0 − V̄ ±, (A9)

where

H̄±
0 = ω0a

†a+ω0|αs |2 ± g
√

ω0�

2

√
1− g4

c

g4
,(a+a†)(1+τ±

z )

+ �g2

2g2
c

τ±
z (A10)

and

V̄ ± = g2
c

√
ω0�

2g
(a + a†)τ±

x . (A11)

We now find a unitary transformation U±
sp = e−S±

sp which
decouples the spin and the oscillator up to the second order
in V̄ ± following the approach of Ref. [16]. To this end, the
generator should satisfy

[H̄±
0 ,S±

sp] = V̄ ±, (A12)

from which we find

S±
sp = i

g4
c

2g3
η−1/2(a + a†)τ±

y + O(η−1). (A13)

Upon this choice of the generator, the transformed Hamiltonian
becomes

H̄Rabi(±αs) = H̄±
0 − 1

2
[V̄ ±,S±

sp] + · · ·

= ω0a
†a + ω0|αs |2

± g
√

ω0�

2

√
1 − g4

c

g4
(a + a†)(1 + τ±

z )

+ �g2

2g2
c

τ±
z + ω0g

6
c

4g4
(a + a†)2τ±

z + O(η− 1
2 ).

(A14)

By projecting to the spin subspace of |↓±〉, we arrive at

Hsp ≡ 〈↓±|H̄Rabi(±αs)|↓±〉

= ω0a
†a − ω0g

6
c

4g4
(a + a†)2 + EG,sp(g), (A15)

where the constant energy shift is given by

EG,sp(g) = ω0|αs |2 − �g2

2g2
c

= −�

4

(
g2

g2
c

+ g2
c

g2

)
. (A16)

Finally, the effective master equation in the superradiant phase
therefore reads

˙̄ρ± = −i[Hsp,ρ̄±] + κ(2aρ̄±a† − a†aρ̄± − ρ̄±a†a). (A17)

Note that both signs of α = ±αs lead to the identical effec-
tive Hamiltonian Hsp, and thus the identical effective master
equations and the doubly degenerate steady states.
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