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Analog gravity by an optical vortex: Resonance enhancement of Hawking radiation
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Propagation of coherent light in a Kerr nonlinear medium can be mapped onto a flow of an equivalent fluid. Here
we use this mapping to model the conditions in the vicinity of a rotating black hole as a Laguerre–Gauss vortex
beam. We describe weak fluctuations of the phase and amplitude of the electric field by wave equations in curved
space, with a metric that is similar to the Kerr metric. We find the positions of event horizons and ergoregion
boundaries, and the conditions for the onset of superradiance, which are simultaneously the conditions for a
resonance in the analog Hawking radiation. The resonance strongly enhances the otherwise exponentially weak
Hawking radiation at certain frequencies and makes its experimental observation feasible.
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I. INTRODUCTION

Analog gravity is a research field aimed at creating table-
top experimental systems which model processes generally
described within the framework of general relativity (GR).
It is one of the directions of a broader field aiming at
merging quantum mechanics and general relativity [1]. The
research field of analog gravity essentially originated from
the seminal paper by Unruh in 1981 [2], where the analog of
Hawking radiation [3,4] in a transonically accelerating inviscid
barotropic fluid in a linear geometry was discussed. In his work,
Unruh showed that the accelerating flow in linear geometry
creates a background, which mimics curved space with the
Schwarzschild metric, and that weak fluctuations with respect
to such background are described by the corresponding Klein–
Gordon equation (see Ref. [5] for detailed explanations). More
recently, several different physical systems were theoretically
proposed, in which the necessary conditions for the onset of
a Schwarzschild metric can occur, such as 3He [6], solid-
state systems [7], one-dimensional Fermi liquids [8], Bose–
Einstein condensates (BECs) [9–11], superconducting devices
[12], and optical fluids [13–17], to name a few. Moreover,
“horizon physics” for surface waves in a water channel has
also been investigated [18–22] and, recently, the possibility for
a “magnonic” black hole has been discussed as well [23,24].
Parallel to theoretical proposals, significant progress in the
experimental realization of analog gravity systems has also
been made, like the observation of a white-hole horizon in
optical fibers [25,26], or the realization of a black-hole horizon
in BECs by Steinhauer and coworkers [27], who also reported
on evidence of Hawking radiation in such a system [28].
Moreover, stimulated amplification of Hawking radiation [29],
in accordance with the predictions of Ref. [30], has also been
reported.

In nearly all aforementioned works, however, the
background-induced metric is always the same; namely, the
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Schwarzschild metric, which describes the spacetime in the
vicinity of an ordinary, nonrotating, back hole. In GR, on the
other side, there are different metrics that admit black holes as
a solution. It would therefore be very interesting to construct
analog models for other types of black-hole metrics and to
study the effects of these alternative geometries on the process
of Hawking radiation. For example, it would be of particular
interest to realize an analog of a rotating black hole. In this case,
the relevant metric would be the Kerr metric [5], rather than the
standard Schwarzschild metric. Moreover, in such a geometry
one would be able to observe not only Hawking radiation, but
also superradiance (SR), i.e., the conditions when an incident
wave may be amplified by the rotating black hole itself, so that
the reflected wave is stronger than the incident one. A vortex
in a fluid, in particular, is an exciting possibility for studying
the dynamics of fields in the vicinity of rotating black holes.
In such a system, the vortex induces a Kerr-type metric [5] and
essentially plays the role of the rotating black hole. In particular
the SR effect for the case of vortices in shallow water [20],
as well as for BEC [31], has been predicted. Very recently,
moreover, SR from a vortex in shallow water has also been
reported experimentally [32].

Water waves and atomic systems, however, are not the only
media, in which vortices appear. Vortices, in fact, are also
known to occur in optics. As shown by the pioneering works
of Berry and Nye in 1974 [33] and Allen and Woerdman in
1992 [34], optical fields that carry phase singularities, e.g.,
Laguerre–Gaussian beams, have transverse intensity profiles
with all the characteristics of a vortex [35]. Moreover, it is
also well known that coherent light propagation in defocusing
nonlinear Kerr media [36] is analogous to the flow of a
fluid, and even a superfluid, by virtue of the so-called hy-
drodynamic approach to Maxwell’s equations. This approach
was instrumental for investigating dispersive shock waves
[37–39] and tunneling processes [40], and its application to
the field of analog gravity was discussed theoretically and
experimentally in Refs. [13–15,41,42]. The fluctuations in such
equivalent-photon fluids are predicted to be of the Bogoliubov
type [16,43–46], and recent measurements of their dispersion
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relation [47] support this prediction. It is important to empha-
size that such an optical system is effectively isolated from
the thermal bath of the medium due to enormous difference of
the light velocity and that of the thermal fluctuations. So the
criterion of Ref. [48], which yields the limiting temperature in
BEC above which entanglement is destroyed, is not applicable
here.

Yet, despite a considerable volume of work dealing with the
hydrodynamic approach to Maxwell’s equations, to the best of
our knowledge a comprehensive theory of Hawking radiation
from a black hole event horizon in a vortex background has
not been studied. The only exception, however, is represented
by the works of Marino and coworkers [13,14]. In these
works, the hydrodynamic approach is used to describe the
propagation of light in an optical cavity filled by a defocusing
medium. In particular, they carefully show how an analog
of a rotating black hole in such a system can be realized by
suitably controlling the properties of the vortex state sustained
by the cavity. However, the principal attention of these works
is concentrated on the study of SR and although the possibility
of using this system to study Hawking radiation is envisaged,
this phenomenon is not studied in detail.

Hence, we devote this paper to this open question. In
particular, we consider Laguerre–Gaussian beam propagating
in a defocusing Kerr nonlinear medium and study the dynamics
of fluctuations of the electromagnetic field on such a vortex
background, leading to Hawking radiation and SR. We discuss
the strong connection between these two phenomena and show
that the conditions for the onset of SR coincide with resonance
enhancement of certain frequencies of Hawking radiation.

This paper is organized as follows: in Sec. II we
shortly review the hydrodynamic formulation of the nonlinear
Schrödinger equation in nonlinear optical media and cast
the problem for analysis; namely, the field fluctuations in a
nonstationary vortex background with a radial flow. In Sec. III
we discuss how to obtain the nonvanishing radial flow that
is essential for the appearance of an event horizon in the
vortex background. Section IV is then devoted to analyzing
the induced “spacetime” geometry, including the positions of
event horizons and ergoregions. Section V is then dedicated
to calculation of the Hawking temperature as a function of
the background vorticity, and to the discussion of the spectral
density of Hawking radiation, with a particular emphasis on the
occurrence of its resonant enhancement, which is essentially
due to the background vorticity. Finally, conclusions are drawn
in Sec. VI. Moreover, the occurrence of SR is investigated in
detail in Appendix B.

II. FIELD FLUCTUATIONS IN A VORTEX BACKGROUND
WITH RADIAL FLOW

A. Hydrodynamic formulation of nonlinear
Schrödinger equation

The propagation of electromagnetic waves in Kerr nonlinear
media can be described, under the paraxial and the slowly
varying envelope (SVEA) approximations, by the following
nonlinear Schrödinger equation [49]:

i
∂A

∂z
= − 1

2β0
∇2

⊥A + g|A|2A, (1)

where the propagation distance z plays the role of time, R =
{r,φ}, A ≡ A(R,z) is the slowly varying amplitude of the elec-
tric field propagating in the medium along the z direction, ∇2

⊥
is the transverse Laplace operator with respect to the variables
x and y, or r and φ in polar coordinates, β0 = ω0n0/c = k0n0

is the wave vector of the field in the medium, and ω0 is the
laser frequency. The parameter g = 2β0n2/n0 describes the
strength of the nonlinear interaction of the laser EM field with
the medium, with n2 being the Kerr nonlinear refractive index,
i.e., n(A) = n0 + n2|A|2. Applying the Madelung transforma-
tion [50,51] A(R,z) = f (R,z) exp [−iϕ(R,z)], we obtain the
following coupled differential equations:

∂ρ

∂z
+ ∇⊥ · (ρv) = 0, (2a)

∂v
∂z

+ 1

2
∇⊥(v · v) = − 1

β0
∇

[
− 1

2β0

∇2
⊥f

f
+ gρ

]
, (2b)

for the density ρ(R,z) = f 2(R,z) and the velocity v =
−(1/β0)∇ϕ(R,z). The first term on the right-hand side of
Eq. (2b) is the so-called quantum potential, which accounts
for dispersion in the medium. Equations (2) can be seen as
the continuity and Euler equations for a fluid characterized
by density ρ and velocity v. In this form, light dynamics
in a Kerr nonlinear medium is similar to the dynamics of a
compressible fluid. Usually, the next step would be to consider
small fluctuations A = �0 + ψ around a z-stationary solution
�0, i.e., the function �0 z dependence is only in the factor
eiμz. However, this assumption is not only unnecessary but also
undesirable, since creation of a z-stationary flow is unrealistic
for flow fields that involve radial velocities (radial flow appears
only if the beam profile varies with z). We therefore assume
that the z-dependent function �0 = f0 exp (−iϕ0), and the
functions ρ0(R,z) and v0(R,z), solve Eqs. (2) and write the
corresponding density and velocity fluctuations in the form
δρ(R,z) = ρ0(R,z)χ (R,z) and δv(R,z) = −(1/β0)∇ξ (R,z).
Then, Eqs. (2) can be linearized and written as follows:

D̂χ − 1

β0ρ0
∇⊥(ρ0∇⊥ξ ) = 0, (3a)

D̂ξ + 1

4β0ρ0
∇⊥(ρ0∇⊥χ ) − gρ0χ = 0, (3b)

where D̂ = ∂z + v0 · ∇⊥. The above set of equations is equiv-
alent to the one obtained for fluctuations on a z-stationary
background [52]. However, in this case, the density ρ0 and
velocity v0 are weakly z dependent.

B. Fluctuations in a vortex background

If we neglect the quantum potential in Eq. (3b), solve it with
respect to χ , and substitute into Eq. (3a), we get the Klein–
Gordon equation

1√
det(−gμν)

∂μ(gμν
√

det(−gμν) ∂ν ξ ) = 0 (4)

for the phase fluctuation ξ in the curved space determined by
the background flow of the z-nonstationary solution �0(R,z).
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The contravariant metric in polar coordinates is then

gμ ν = 1

s

⎛⎜⎜⎜⎜⎝
1 vr

vφ

r
0

vr v2
r − s2 vrvφ

r
0

vφ

r

vr vφ

r

(
v2

φ−s2
)

r2 0

0 0 0 −s2

⎞⎟⎟⎟⎟⎠, (5)

where we assume that the background flow velocity v0 =
vr r̂ + vφφ̂ contains both a rotational and an azimuthal com-
ponent. The quantity s is the sound velocity of the background
flow, defined as follows:

β0s
2 = gf 2

0 . (6)

Although we consider t-stationary solutions, a 4×4 metric
is used as a matter of convenience. The fourth coordinate
(measured in properly chosen units) is redundant and can be
omitted whenever necessary.

By inverting Eq. (5) we find the covariant metric describing
the background; namely,

gμ ν = 1

s

⎛⎜⎜⎜⎝
s2 − v2

0 vr rvφ 0

vr −1 0 0

rvφ 0 −r2 0

0 0 0 −1

⎞⎟⎟⎟⎠, (7)

where v2
0 = v2

r + v2
φ . In the general case, Eq. (7) represents a

Kerr-type metric and therefore delineates two special contours
corresponding to the boundary of the ergoregion and the event
horizon of a rotating black hole [53]. To let them explicitly
appear in the above metric, we first introduce the generalized
tortoise coordinates

dz̃ = dz + vr

s2 − v2
r

dr,

dr̃ = dr,

dφ̃ = vrvφ

r
(
s2 − v2

r

)dr + dφ, (8)

such that the interval dσ 2 = gμνdxμdxν becomes

dσ 2 = 1

s

[(
s2−v2

0

)
dz̃2− s2

s2 − v2
r

dr̃2−r2dφ̃2+2rvφ̃dz̃dφ̃

]
.

(9)

The radius re of the ergoregion is then found from the condition
gzz = 0, i.e., v2

0(re) = s2(re), whereas the radius rh of the
event horizon corresponds to the point where grr diverges, i.e.,
v2

r (rh) = s2(rh).
For the case of a background whose z-stationary solution

�(R) is a vortex of charge n, it follows directly from Eqs. (2)
that v0 = vφφ̂ = n/(β0r)φ̂, i.e., there is no radial flow, and,
therefore, vr = 0 [51,54]. Substituting this result into Eq. (7)
we see that the metric for a pure z-stationary vortex back-
ground contains only one singular point, corresponding to the
ergoregion.

The dynamics of fluctuations in a vortex background
therefore always admit SR, as the ergoregion, according to
Eq. (7), is always well defined. This effect was considered
for several model systems [31,55,56]. However, the lack of
radial flow, i.e., a radial component of the velocity v0 of the

vortex, and the consequent absence of an event horizon, does
not allow analysis of the effect of the background vorticity
on the Hawking process at the event horizon of a rotating
black hole. Introducing radial flow requires consideration of
a z-nonstationary vortex background, as discussed in detail in
the following section.

III. RADIAL FLOW ON A VORTEX BACKGROUND

The absence of a radial component of the velocity flow
v0 in a z-stationary vortex background is essentially due to
Eq. (2a). In fact, for any z-stationary solution �0(R) of Eq. (1),
Eq. (2a) implies that ∇⊥ · (ρ0v0) = 0. This condition leads
immediately to vr = 0. The metric for a pure z-stationary
vortex background contains only two singular points, which
correspond to two ergoregions. In such a metric, therefore, no
event horizon appears. Short of introducing source or sink, we
now have to look for weakly z-dependent solutions �(R,z) of
Eq. (1).

For the case of an optical beam propagating in a defocusing
Kerr medium, we can (at least to the first order in z) assume
that the solution to Eq. (1) can be sought in the form of
an adiabatically slowly varying paraxial vortex beam, e.g.,
a Laguerre–Gaussian beam. Although this is rigorously true
only for the linear case (i.e., g = 0), we can assume that the
effect of the defocusing nonlinearity is only to introduce a
nonlinear phase shift that does not drastically affect the form
of the solution, at least to the first perturbation order.

With this in mind, let us assume that the density and velocity
of the quasistationary solution �(R,z) of Eq. (1) can be written
as

ρ(r,z) = f 2
0 (r,z) = IP (r,z), (10a)

v(r,z) = − 1

β0
∇⊥ϕ0(r,z) = r

R(z)
r̂ − n

β0r
φ̂, (10b)

where I is the total intensity of the laser beam and

P (r,z) = 2

π |n|!w2(z)

(
2r2

w2(z)

)|n|
e−2r2/w2(z) (11)

is the normalized intensity profile of a Laguerre–Gaussian
beam with

w2(z) = w2
0

[
1 +

(
z

zR

)2]
, (12)

1

R(z)
= z

z2 + z2
R

(13)

being its z-dependent width and wavefront curvature, respec-
tively. Moreover, zR = β0w

2
0/2 is the Rayleigh range. As can

be seen from Eq. (10b), the radial part of the velocity is related
to the wavefront curvature of the beam. Note that, at the beam
waist z = 0, the wavefront is plane and the radial velocity is
zero. Rather than positioning the experimental apparatus far
away from the beam waist, where R(z) ≈ z, we choose to
position a defocusing lens with focal length −f at the waist, a
short distance z before the input plane of the nonlinear medium,
so that the phase front of the beam is no longer planar, resulting
in a radial velocity that monotonically increases (from zero on
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axis) along the radial coordinate. Following standard Gaussian
optics [57] (see Appendix A), the intensity and velocity profiles
of the field at the input plane of the nonlinear medium are given,
in the limit of small z, by

P (r,z) = P0(r)[1 + P1(r)z], (14a)

v(r,z) = r

f
r̂ − n

β0r
φ̂ + O(z), (14b)

where

P0(r) = 2

π |n|!w2
0

(
2r2

w2
0

)|n|
e−2r2/w2

0 , (15)

P1(r) = 2

f w2
0

[
2r2 − (|n| + 1)w2

0

]
. (16)

It is not difficult to show that these density and velocity fields
satisfy both the continuity and the Euler equations, up to the
order O(z/f ). Crucially, the background velocity v0 now has
a radial component: vr = r/f .

As mentioned before, the defocusing nonlinearity adds a
nonlinear phase, which essentially acts as a nonlinear defo-
cusing lens [49]. The above equations can be corrected to
account for this effect by simply setting 1/f = 1/fL + 1/fNL.
In this case, fL accounts for the linear radial flow induced
by the lens at the beam waist, while fNL is the focal length
of the equivalent defocusing lens generated by the nonlinear
defocusing. Ultimately, fNL is related to the nonlinear length of
the Kerr medium [49] and accounts for a nonlinear correction
to the radial flow.

This very simple experimental configuration allows us to
fully explore the effects of vorticity, not only in terms of SR
scattering from the ergoregion, as in Refs. [31,55,56], but rather
in terms of the dynamics of fluctuations in the vicinity of
the event horizon of the vortex background. In what follows,
we will use this model to study the effect of the background
vorticity on both Hawking radiation and SR.

IV. INDUCED SPACETIME GEOMETRY

A. Event horizon

Our first step is to find the positions of the event horizon
and ergoregion and to explore the global geometry described
by the vortex background. According to Sec. II, the position of
the event horizon is determined by the equation s2(r) = v2

r (r);
namely,

gI

β0
P (r) = r2

f 2
. (17)

A graphical solution of this equation is shown in Fig. 1.
Depending on the values of the parameters, it may have no
solution (upper, green curve), one solution (middle, blue
curve) or two solutions (lower, red curve). In the case of a
single solution, the relation

gI

β0

dP (r)

dr
= 2r

f 2
, (18)

must also hold, and thus the solution in this case is

rc =
√

n − 1

2
w0. (19)

FIG. 1. Graphical solution of equation (17). The bell-shaped
curve (in black) represents the Laguerre–Gauss profile of the laser
beam, while the three colored curves (dotted green, solid blue, and
dashed red) represent the squared radial velocity v2

r (r) for three
different values of the focal length f , corresponding to f < fc,
f = fc, and f > fc, respectively. For f = −500 mm (upper, dotted,
green curve) there are no solutions. For fc = −555 mm (middle,
solid, blue curve) there is one solution. For f = −600 mm (lower,
dashed, red curve) there are two solutions. In the latter case, two
event horizons appear, thus introducing a subsonic (region II, shaded
in blue in the figure) and a supersonic (regions I and III) region
for the flow. The radial intensity profile of the vortex, with vorticity
n = 8, corresponds to I = 2 W, g = 5.5×10−4 m/W, w0 = 1 mm,
and β0 = (2π/7.80)×107 m−1. These parameters allow a broad range
of frequencies to satisfy the requirement L−1 < ν < l−1

n , where L

is the length of propagation in the nonlinear medium, and ln is the
nonlinearity length defined in Eq. (32).

Obviously, Eqs. (17) and (18) admit no solution for n = 0,
while for n = 1 we obtain rc = 0. In general, however, there
can only be one nonzero solution, depending on the parameters
(e.g., the focal length f ).

Two nonzero solutions appear only when n > 1 and |f | <

|fc|, where the critical value fc/w0 depends on the vorticity
n. For sufficiently small δf = f − fc, the two solutions are
slightly below and slightly above rc:

rh± = rc ± w0

√
δf

2fc

.

For larger δf , the outer horizon rh+ falls outside the maximum
of the Laguerre–Gauss beam profile (see, for example, the red
curve in Fig. 1).

B. Ergoregion

The other singular point appearing in the metricgμν given by
Eq. (9) gives the position of the ergoregion, i.e., the value r = re

where the total velocity of the fluid equals the background
sound velocity, namely s2(r) = v2

0(r). For the case of an optical
vortex beam propagating in a nonlinear medium, we get

gI

β0
P (r) = r2

f 2
+ n2

β2
0 r2

. (20)

A typical graphical solution is shown in Fig. 2 (lower, blue
line), together with the corresponding solution of Eq. (17)
(upper, red line). As can be seen from Fig. 2, we obtain two
ergoregions: the outer ergoregion re+, which corresponds to the
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FIG. 2. Graphical solution of Eq. (20). The bell-shaped curve (in
black) represents the Laguerre–Gauss profile of the laser beam. The
dashed red (upper) curve represents the squared total velocity v2

0(r)
and defines the position of the inner (re−) and outer (re+) ergoregions.
The solid blue (lower) curve corresponds to the squared radial velocity
v2

r (r) and defines the position of the inner (rh−) and outer (rh+)
horizons. There are two ergoregions, one lying between rh− and re−,
and the other lying between re+ and rh+. The parameters used here
are the same as in Fig. 1, except for β0 = (π/7.80)×107 m−1 and
f = −450 mm. The flow in regions I and III is supersonic, whereas
in region II it is subsonic.

outer horizon rh+ (close to the border between regions II and
III in Fig. 2), and the inner ergoregion re−, which corresponds
to the inner horizon rh− (close to the border between regions
I and II in Fig. 2). In both cases, moreover, both ergoregions
are inside the subsonic region (shaded blue area, in Fig. 2).

C. Vortex geometry

The resulting two-dimensional (2D) geometry of the back-
ground, including the positions of the ergoregions and the
event horizons, is depicted in Fig. 3. The inner (h−) and
outer (h+) horizons are depicted by solid circles, separating
three regions: I and III are supersonic regions, while II is
subsonic and sandwiched between them (shaded blue area in
Fig. 3). It is important to notice that, for the case of a black
horizon, the radial component of the flow is directed towards
the horizon in the subsonic region, crosses the horizon, and
enters the supersonic region. In a white horizon, on the other
hand, the direction of the radial flow is from the supersonic to
subsonic region. The direction of the azimuthal component of
the velocity plays no role in this case. Therefore, in the case
of the outgoing flow considered here, the outer horizon h+ is
black, whereas the inner horizon h− is white. In the case of
ingoing flow, the roles of h+ and h− are reversed. The two
ergoregions e+ and e− (dashed circles in Fig. 3) are located
inside the subsonic region.

This constitutes a significant difference with respect to
the Kerr or Kerr–Newman geometry typical of rotating black
holes. Although the latter also has outer and inner horizons,
the arrangement of areas of sub- and superluminal escape
velocities is the opposite of the one shown here, the ergoregions
are positioned differently, and there is no turnaround radius
in the optical system [53]. This geometry, moreover, differs
from the one presented in Refs. [13,14], where only one event

FIG. 3. A schematic depiction of the flow structure of a vortex.
Two solid blue circles represent the outer (h+) and inner (h−) event
horizons, separating the supersonic regions I and III from the subsonic
region II (shaded blue area). Two dashed red circles show the borders
of the outer (e+) and inner (e−) ergoregions. The arrows show the
radial component of the outgoing flow.

horizon is considered and the radial flow is directed towards
the center of the vortex, instead of away from it, as in our case.

V. HAWKING RADIATION WITH VORTEX BACKGROUND

Now we are in a position to analyze the properties of fluctu-
ations near the event horizon. Our approach follows essentially
the one used in Refs. [52,58], with some modifications in order
to take into account the z dependence of the beam profile
and the curvature of the horizon. To begin with, let us introduce
the new variables x± = r − rh±, such that ∂r = ∂x . Here and
below, if not specified otherwise we omit the ± sign, for the
sake of clarity. With this definition, the sound velocity and the
radial velocity in the vicinity of the horizons can be written
as s2

h(x) = s2
h(1 − αsx) and vr (x) = sh(1 + αrx), respectively.

Substituting this into Eqs. (2), the following conditions must
hold in the leading order in z:

1

ρ

∂ρ

∂z
= −sh

(
αr − αs + 1

rh

)
, (21)

∂v

∂z
= −s2

h(αr − αs), (22)

where sh is the sound velocity at the horizon and rh is the
position of the horizon. The first condition follows from the
continuity equation [Eq. (2a)], while the second follows from
the Euler equation [Eq. (2b)]. In the case of the Laguerre–
Gaussian beam, we have sh = rh/f , αr = 1/rh and

αs = −2|n|
rh

+ 4rh

w2
0

. (23)

Then using Eqs. (21) and (22) for the case of a Laguerre–Gauss
beam gives

sh(αr − αs + 1/rh) = −P1(r = rh). (24)
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The validity of this condition can be directly verified by
substituting the above definitions into Eq. (16).

The calculations carried out below assume the adiabatic
approximation with respect to the weak z dependence of
the background density and velocity. This means that their
derivatives with respect to z are discarded, except for nona-
diabatic corrections (21) and (22). We also take the curvature
1/rh of the event horizon into account. The z nonstationarity
and curved horizon are essential corrections and constitute
important differences with respect to the analysis carried out
in Refs. [52,58]. Another assumption is that the position of
the black horizon does not vary with z. Varying Eq. (17) with
respect to z and using Eq. (16) we can understand that this
assumption works well if the black horizon lies in the vicinity
of the optimal radius

ropt =
√

|n| + 1

2
w0, (25)

then αs = 2/rh. For the parameters used above we can estimate
the corresponding vorticity as nopt ≈ 22.

The starting point of our analysis is then Eqs. (3), which we
now expand with respect to the small parameters αs,rx � 1
and x/rh � 1. Moreover, we take the Fourier transform of the
field fluctuations χ (x,φ,z) and ξ (x,φ,z); namely,

χ (x,φ,z) =
∑
m

∫
dν

∫
dkχk,m,νe

i(νz−mφ−kz), (26)

thus obtaining the following set of coupled equations for the
Fourier components of the field fluctuations(Am(k) Bm(k)

Cm(k) Am(k)

)(
χk,m,ν

ξk,m,ν

)
= 0, (27)

where

ν̃m = 1

sh

(
ν − mn

β0r
2
h

)
, (28)

is the normalized vortex-corrected frequency and the matrix
elements Am(k), Bm(k), and Cm(k) are given by

Am(k) = i (̃νm − k) − iαr∂kk, (29a)

Bm(k) = 1

β0sh

[
(−αs + 1/rh)ik + k2 + m2

r2
h

]
, (29b)

Cm(k) = −1

4
Bm(k) − shβ0(1 + iαs∂k). (29c)

Following the procedure detailed in Appendix C, the solution
of Eq. (27) can be written as

χ (x,m,z) = ei(−mφ+νz)F (ν̃,x), (30)

where

F (ν̃,x) =
∫

C

dk kγ1

(
k − 2̃ν

3

)γ2

e�0(k,̃ν)−ikx, (31)

with the definitions

γ1 = iν̃m

2αr

− im2

2rh
2ν̃mαr

+ O
(
l2
n

/
r2
h

)
, (32a)

γ2 =
[
αs − αr

�
− 1

rh�
− iν̃m

2αr

+ 2 iν̃m

�
+ im2

2r2
hν̃mαr

]
+O

(
l2
n

/
r2
h

)
, (32b)

�m,ν(k) = k3l2
n

�

[
i

6
+ i

2krh

+ iν̃αr

2k�
+ αs

2k
+ O(1/(krh)2)

]
.

(32c)

In the expressions above, l2
n = 1/(β0gρ) (ln ≈ 10−5 m for

the above parameters) is the so-called nonlinearity length, akin
to the healing length in BEC [58], and � = 2αr + αs . At ropt we
get � = 4/rh+. Only the leading terms are retained in Eqs. (32).
The full expressions are given in Appendix C. The convergence
of the above integral is controlled by the cubic term in the
exponential. As a result, one can find four independent contours
of integration, corresponding to four independent solutions of
Eq. (27). The integral in Eq. (31) can be solved by using the
steepest descent technique. The equation for the saddle points
then reads[

(̃νsh − kvr (x))2 − ik(αr − αs + 1/rh) − m2

r2
h

]

= l2
n

2

[
(−αs + 1/rh)ik + k2 + m2

r2
h

]2

+ k2s(x)2. (33)

The first two saddle points can be obtained in the limit of
small k, when the terms O(l2

n) in Eq. (33) can be neglected. This
results in one singular and one regular solution. The singular
solution is

ks = 2̃νmsh − i(αr − αs + 1/rh)

x�
∝ 1

x
, (34)

and corresponds to χs = xγ−1, where, to the leading order,

γ = −γ1 − γ2 = γa + γ0 + O
(
l2
n

)
, (35)

with

γa = αr − αs

�
+ 1

rh�
= (|n| − 1)w2

0 − 2r2
h

−2r2
h + w2(|n| + 1)

, (36a)

γ0 = −2 iν̃m

�
. (36b)

The second saddle point is given by

kr = ν̃2
ms2

h − m2/r2
h

2̃νms2
h + i(αr − αs + 1/rh)

and corresponds to the regular solution χ ∝ e−ikr x . Together
with the regular and singular solutions displayed above, there
are two more solutions, corresponding to evanescent states in
the subsonic region II in Fig. 3. These solutions, however,
become propagating in the supersonic regions I and III. To
find them we have to consider the limit of large k, kln � 1, at
x > αl2

n. Then, Eq. (33) becomes

l2
n

2
k3 − k�x = 0. (37)

This equation admits two solutions; namely,

ke1,2 = ±
√

2�x/l2
n, (38)
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which correspond to the functions

χe1,2 ∝ exp

(
± i

√
2�

3ln
x3/2

)
. (39)

Finally, we carry out the transformation given by Eq. (8) and
use the relation between the functions χ and ξ to obtain the
following triads of incoming waves:

ξr1(x) = |x|−γ0/2eiνz−imφ, x < 0, (40a)

ξr2(x) = x−γ0/2eiνz−imφ, x > 0, (40b)

ξe1(x) =
√

4lnν̃m

(�x̄)3/2 x̃γ0/2eiνz−imφ+i
√

2�

3ln
x3/2

, (40c)

and outgoing waves

ξs1(x) = |x|γa+γ0/2eiνz−imφ, x < 0, (41a)

ξs2(x) = xγa+γ0/2eiνz−imφ, x > 0, (41b)

ξe1(x) =
√

4lnν̃m

(�x̄)3/2 x̃γ0/2eiνz−imφ−i
√

2�

3ln
x3/2

. (41c)

Note that the eigenfunctions ξr and ξs are propagating in
both the subsonic (II) and supersonic (I and III) regions,
whereas the eigenfunctions ξ1e and ξ2e are propagating only in
the supersonic regions. A detailed discussion of interrelation
between these solutions is presented in Refs. [52,58] for
the linear z-stationary flow background, and the analysis of
the scattering problem outlined there can be fully applied
to the present case. Although the eigenfunctions presented
here are formally similar to those of Refs. [52,58] (see also
Refs. [59–62] for an analysis related to the Schwarzschild black
hole), there are two important differences. First, the singular
eigenfunctions ξs1,s2 acquire now an extra factor |x|γa , where

γa = 2
(
r2
m − r2

h

) − w2
0

2
(
r2
m − r2

h

) + w2
0

, (42)

r2
m = |n|w2

0/2 being the maximum of the Laguerre–Gaussian
beam. The quantity γa may be either positive or negative, de-
pending on the parameters, which leads either to an increasing
density of fluctuations when approaching the horizon if γa < 0,
or to a suppression of the fluctuation density near the horizon
if γa > 0. One also must not forget that this description holds
for |x| > ln. Figure 4 shows γa for the outer black horizon
h+ as a function of the focal length f of the diverging lens
(i.e., as a function of the radial flow). For the outer horizon,
rm < rh+ and therefore the numerator in Eq. (42) is always
negative, whereas the denominator can be zero and change its
sign at ropt, Eq. (25). As a result, there exists a critical value
of the focal length f (corresponding to a critical value of the
radial flow) where γa has a vertical asymptote (i.e., it diverges
and also changes its sign). For negative γa in this region, the
fluctuation density becomes strongly skewed towards the outer
event horizon. For the inner event horizon, on the other hand,
rm > rh− and it is the numerator that goes to zero when γa

changes its sign. Therefore, no divergence is observed in this
case.

The second important distinction is connected with the fact
that expression (28) for the frequency ν̃ contains the term

500 510 520 530 540
6

4

2

0

2

4

6

8

f mm

10
2
γ a

FIG. 4. γa as a function of the focal length f for the outer horizon.
The red dots correspond to the actual numerical value of γa , while the
blue solid line is a spline interpolation. As can be seen, in the vicinity
of the critical focal length fc 
 520 mm, γa shows a typical resonant
behavior. Note that, while Eq. (42) contains an actual divergence
for f = fc, in the interpolation shown in this picture, this does not
appear because it is instead replaced by a resonance. The divergence,
in fact, is an artifact of the approximated analysis carried out to
obtain Eq. (42) and it is not present if the full solution is taken
into account. The radial intensity profile of the vortex, with vorticity
n = 6, corresponds to I = 2W, g = 5.5×10−4 m/W, w0 = 1 mm,
and β0 = (2π/7.80)×107 m−1.

reflecting the vorticity m of the mode as well as the vorticity
n of the background. A similar problem in the GR context for
the Kerr–Newman black hole is discussed in Refs. [3,63–66].
In particular, ν̃ can become negative, which implies SR. To
get the spectrum of Hawking radiation we have to carry out
the transformation given by Eq. (8) and solve the scattering
problem, in a similar manner as explained in detail in Ref. [52].
Following the procedure highlighted in Appendix C, we finally
get

N (ν) = [eπ Im {γ } − 1]−1, (43)

where

Im {γ } = 2ν̃

sh�
= 2

sh�

(
ν − nm

β0r
2
h

)
. (44)

The corresponding Hawking temperature is then given by

TH (ν) = h̄sh�

2πkB

, (45)

where kB is the Boltzmann constant.
As outlined in Ref. [3] (see also Ref. [67]) the spectral

density of the Hawking radiation has to overcome a barrier
before being registered by distant observer. In our analog case,
in principle, we can observe the radiation before it penetrates
the barrier. Moreover, the barrier does not necessarily exist (see
Appendix B).

Resonant enhancement of Hawking radiation

The situation when ν̃ is close to zero, i.e., when ν ∼
nm/(β0r

2
h+), is of a special interest, since we expect the

radiation to be strongly enhanced in this spectral region. When
ν̃ changes its sign the outgoing wave becomes incoming [see
Eq. (B5)] and vice versa. Therefore we have to change the
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sign in Eq. (36b). Then, by keeping the leading-order term in
Eq. (43), we have

N (ν) = sh+�

2π |ν − ν+| . (46)

The condition ν̃ = 0 can be rewritten in the form

mλν = τφ, (47)

where λν = 2π/ν and τφ = 2πrh/vφ , and vφ is the azimuthal
component of the velocity flow. The above expression can be
interpreted as a typical resonance condition, which happens
when an integer number m of wavelengths λν coincides with
the propagation distance τφ necessary for one full rotation of
the vortex. This condition is also related to the SR, since it cor-
responds to the total reflection [see Eq. (B9)]. This resonance
condition can strongly enhance the otherwise exponentially
weak Hawking radiation at certain frequencies, and makes its
experimental observation feasible. It should be noted here that
the exact resonance is not reachable due to the condition (B6).

To understand why this is true, one should realize that, in
order to establish quasistationary conditions and avoid a strong
z dependence of the position of the horizon and the physical
parameters there, the cell containing the nonlinear medium
should be significantly shorter than the local length f . This
sets a lower limit on the frequency of Hawking radiation that
such a cell can emit; namely, λc = 2π/νc < f . In the absence
of vorticity, n = 0 when � ≈ 4/rh, the spectral weight of the
emitted frequency components is exponentially small:

N (νc) ∝ e
− νc

νH = e− π2f

λc , (48)

where

νH = 2π

λH

= sh�

2π
≈ 2

πf
. (49)

This situation may drastically change in the case of a vortex
with a sufficiently high vorticity n, since near the critical
frequency, ∣∣∣∣ν − nm

β0r
2
h

∣∣∣∣ ∼ 1

λH

, (50)

the radiation intensity would not contain the exponentially
small factor anymore. One can readily estimate that, in order to
obtain a resonance at λr = 2π/νr ≈ 10 cm (which is a typical
propagation length for realistic experimental parameters), the
condition

λν ≈ 2πβ0r
2
h

nm
≈ πβ0w

2
0(n + 1)

nm
(51)

must be satisfied. Using Eq. (25) the vorticity n drops out at
large n and Eq. (51) becomes a condition on m. If we substitute
the parameters used in Fig. 1 we get that m should be larger than
a couple of hundred, which does not seem to be experimentally
realistic. However, by choosing smaller values of β0 and w0,
say, by a factor of two or so, we can readily gain an order
of magnitude or more. This means that we can arrive at the
condition m < 10 which is challenging but should be feasible
considering the state of the art of vortex beam generation
techniques. Then, instead of the exponentially small signal
(48), we may expect a much stronger signal.

VI. SUMMARY AND CONCLUSIONS

In this work, we have used a coherent Laguerre–Gaussian
beam propagating in a defocusing Kerr nonlinear medium
as a model system for observation of the analog Hawking
radiation. Our approach is based on the hydrodynamic formu-
lation of the propagation of light in a nonlinear medium [see
Eqs. (2)] and is therefore formally analogous to the dynamics
of a compressible inviscid liquid. Compared to other models
dealing with vortices, our model has the advantage of admitting
nonzero radial flow by simply placing a diverging lens in font
of the nonlinear medium itself. The diverging lens, in fact,
induces a nonzero phase front curvature proportional to r/f

[see Eq. (14b)], which allows for a control of the radial flow
and allows the formation of an event horizon in our model.
The geometry induced by this vortex background gives rise to
the situation depicted in Fig. 3, where a white (h−) and black
(h+) event horizon appear, together with two corresponding
ergoregions (e− and e+, respectively).

Considering the Hawking radiation from the (black) event
horizon, we have shown that the vorticity of the background
and of the field fluctuations compete to create a resonant am-
plification of the emitted Hawking radiation [see Eq. (46)]. Ac-
counting for the leading nonadiabatic (i.e., slowly z dependent)
corrections result in important features of the fluctuations, such
as their enhancement or suppression in the vicinity of the
horizon, whose magnitude can be controlled experimentally by
varying the focal length of the diverging lens in the proposed
experimental setup.

The most interesting feature is the prediction of a resonance
condition which may significantly amplify the otherwise ex-
tremely weak Hawking radiation in the relevant spectral inter-
val. The same resonance condition controls the onset of SR,
with total reflection taking place exactly at the resonance. Our
estimates show that satisfying the conditions for experimental
observation of the resonance, while challenging, is neverthe-
less a feasible task. We should also indicate that our estimates
favor higher vorticities when some of the approximations used
in the paper become less reliable. A different approach will
then be necessary.
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APPENDIX A: INTRODUCTION OF RADIAL FLOW
IN LAGUERRE–GAUSSIAN BEAM

In this Appendix we explicitly derive Eqs. (14) by using
standard Gaussian optics. Let us consider the ABCD matrix
describing the propagation of a Laguerre–Gaussian beam
whose waist (z = 0) coincides with the position of a defocusing
lens of focal length −f . The input plane of the nonlinear
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medium is a short distance z behind the lens. Thus(
A B

C D

)
=

(
1 z

0 1

)(
1 0

1/f 1

)
. (A1)

We then use the self-similarity of the Gaussian q parameter,
i.e.,

q ′(z) = Aq(0) + B

Cq(0) + D
, (A2)

to calculate the beam parameters. Recalling that

1

q(z)
= 1

R(z)
− i

2

βw2(z)
, (A3)

we can calculate the beam waist and the beam curvature at a
distance z from the lens, assuming that this distance is small
compared with the Rayleigh range zR of the beam itself. Note
that, in the paraxial approximation, this condition is easily
satisfied, because the typical value of zR for a collimated beam
of a few mm diameter is on the order of several meters. We
therefore have, in the limit of small z,

w2(z) 
 f w2
0

f − 2z
, (A4)

1

R(z)

 1

f
. (A5)

If we now substitute these equations in the expressions for ρ

and v given by Eqs. (10), and expand those in the limit of small
z, we obtain the expressions used in Sec. III.

APPENDIX B: SUPERRADIANCE

In this Appendix, we investigate the occurrence of SR in the
scattering of electromagnetic fluctuations from the ergoregion.
This effect has been discussed in GR [68–70] and in several
analog systems [55,56,71], including optical ones [13,14]. The
situation in our case is somewhat different since we deal now
with the subsonic region sandwiched between two supersonic
regions. Here, we will discuss propagation of the fluctuation
in our system, leaving the detailed analysis for the future.
The metric defined in Eq. (9) allows us to write the differ-
ential equation in tortoise coordinates for the field fluctuation
ξ = ξ̄ eiνz−imφ as follows:

D

r
∂rrD∂rξ+ν̃m(r)2ξ − m2D

r2
ξ− iν̃m(r)

s
[∂z ln(s2D)]ξ = 0,

(B1)

where D = (s2 − v2
r )/s2. The last term in Eq. (B1) accounts

for the nonadiabatic evolution due to the z dependence of
the vortex profile. It also causes a weak dependence of ξ

on z. However, this nonadiabatic correction can be shown to
be of order 1/(νzR) � 1 and can therefore be neglected in
our analysis. Moreover, the divergence at r → rh and D → 0
occurs in a narrow region where a regularization procedure
(such as the one outlined in Sec. V) should be applied.
Introducing the new coordinate dr∗ = D−1dr and the new
function ψ = r1/2ξ , Eq. (B1) becomes

−∂2
r∗ψ + V (r(r∗))ψ = 0, (B2)

where V (r(r∗)) is the effective potential, whose explicit ex-
pression reads

V (r(r∗)) = −ν̃m(r)2 + m2D

r2(r∗)
− 1

4

d

dr

[
D2

r(r∗)

]
. (B3)

A closer inspection of the above equation reveals that the
effective potential has two r∗-independent asymptotes; namely,

V (r) → − 1

s2
(ν − ν±)2 at r → rh± , (B4)

where

ν± = mn

β0r
2
h±

.

We are interested in studying the processes related to the
black horizon (r → rh+) and how they are influenced by the
boundary conditions at the white horizon (r → rh−). This issue
is discussed below. We first calculate the wave function in the
eikonal approximation. For this we look for a solution in the
form ψ = ueiS . Then in the leading order in S � 1 we get

ψ = Cei(νz−mφ)

4
√−V (r∗)

exp

[
±i

∫ rh+ −lr

r

√
−V (r∗)dr∗

]
, (B5)

where C is the normalization constant, and lr is the regulariza-
tion length, defined in Eq. (C6). In the limit r → rh+ we may
write D = �(r − rh+) and, from the equation above, we may
straightforwardly get that

ξ ∼ e
±i

(ν−ν+)
�s

ln
|r−rh+ |

lr ,

which corresponds to the functions in Eqs. (40a) and (41a).
This conclusion assumes that there is an area rh+ > r > lr near
the black horizon where V (r) < 0. If we use Eq. (25), the
condition V (r) < 0 corresponds to the following condition on
the frequency ν:

(ν − ν+)2 > s2
h+

�2l2
r

w2

2(m2 + n + 1)

2n + 1
. (B6)

The coordinate-dependent wave vector of the wave (B5) is

k2(r) = − V (r)

D2(r)
. (B7)

Depending on the sign of the potential V (r) it may be
real, corresponding to the propagating waves, or imaginary,
corresponding to the evanescent states. The actual situation is
very sensitive to the parameters of the system. Figure 5 shows
k(r)2 in region II in three possible regimes: for m = 2 (dashed,
black line) k(r)2 > 0 in the whole region II, and that the wave
can freely propagate in the subsonic region II. If the vorticity
of the fluctuation is increased slightly to m = 3, corresponding
to the solid, blue line in Fig. 5, a region where k(r)2 < 0
appears, i.e., there is a barrier which can either reflect or transfer
the wave. This region corresponds to the values of the radial
coordinate in the interval 2.73 < r < 3.35 mm (shaded blue
region). Finally, if the vorticity of the fluctuation is increased
further to m = 6, the barrier is so high and broad that it covers
nearly the whole region II; however, there remains a small area
(r > 3.78 mm) near the black horizon where k(r)2 > 0.

The case with a barrier inside the region II presents a
special interest. Consider a wave propagating from the black
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FIG. 5. The squared wave vector k2(r) in the subsonic region
II for the parameters I = 2 W, g = 5.5×10−4 m/W, w0 = 1 mm,
β0 = (2π/7.80)×107 m−1, and f = 6 m. The vorticity of the beam is
chosen n = 20 then rh− = 0.925 mm and rh+ = 3.03 mm. We assume
that the registered frequency of the fluctuation is ν = 3 m−1 and
we consider also three possible vorticities of the emitted radiation:
for m = 2 (black, dashed line) the graph is everywhere positive,
corresponding to propagating wave with k(r) > 600 m−1. For m = 3
(solid, blue line) there is a barrier in the middle of the region II
where the wave becomes evanescent. For m = 6 (dotted, green line)
the barrier becomes high and broad and covers the most part of the
region II, thus leaving a narrow area near the black horizon free. The
shaded red region, encapsulated by the two red dots corresponding
to r = 2.73 mm and r = 3.35 mm, corresponds to the region (for
the case m = 3), where the wave vector is evanescent, i.e., k2(r) < 0.
The green dot at r = 3.78 mm corresponds to the starting point of
the region in which the wave vector for m = 6 corresponds to a
propagating wave, i.e., k2(r) > 0.

horizon towards the barrier. The effective potential has two
r∗-independent asymptotes (B4). Corresponding to the asymp-
totic limits for the potential V (r(r∗)), the wave function ψ(r∗)
can be written as follows:

ψ(r∗+) = ei(ν−ν+)r∗+ + Re−i(ν−ν+)r∗+ at r → rh+ , (B8a)

ψ(r∗−) = T ei(ν−ν−)r∗− at r → rh−, (B8b)

where R and T are reflection and transmission amplitudes,
respectively. To calculate the relation existing between R and
T , we observe that, since Eq. (B2) does not contain first
derivatives, then, according to Abel’s theorem, its Wronskian
is constant [72]. Therefore, by equating the Wronskians calcu-
lated for the two above limits by means of the functions (B8a)
and (B8b) and their complex conjugate, we get the following
relation:

1 − |R|2 = |T |2 ν − ν−
ν − ν+

. (B9)

Note that the same condition can also be obtained by balancing
the ingoing and outgoing currents on both sides of the barrier
using Eq. (C9b) and the function (B5). If we consider the case
ν− < ν < ν+ as in Fig. 6, the right-hand side of Eq. (B9) is
negative, i.e., the transmission coefficient

T+ = |T |2 ν − ν−
ν − ν+

(B10)

is negative. In this case, the reflection coefficient R = |R|2
becomes larger than one, meaning that the reflected wave

FIG. 6. The squared wave vector k2(r) in the subsonic region II
for the parameters: I = 2 W, g = 5.5×10−4 m/W, w0 = 1 mm, β0 =
(2π/7.80)×107 m−1, and f = 6 m. The vorticity of the beam is cho-
sen n = 9, so that rh− = 0.925 mm and rh+ = 3.03 mm. Under these
conditions, the resonance frequencies are ν− = 5.803 516 989 m−1

and ν+ = 0.540 865 734 7 m−1, respectively. We assume that the
registered value of the fluctuation is ν = 2 m−1. Here, m = 2 and the
potential forms a barrier, reaching the value V (rm) = 8×105 m−2 in
its maximum not far from the midpoint rm = (rh+ − rh− )/2 of region
II. The light red box in the figure shows the region where the wave
vector is evanescent; namely, k2(r) < 0.

is stronger than the incident wave, i.e., that the former is
amplified. At ν → ν+ we can readily get that |T |2 → 0.
Considering a fluctuation prorogating from the white horizon
towards the barrier we get the transmission coefficient in the
form

T− = |T |2 ν − ν+
ν − ν−

. (B11)

Although this is similar to the superradiance of a Kerr
black hole, there are important dissimilarities. The central
point is that the distant observer of the astronomical black hole
should be now placed near the sphere of the white horizon. We
may also consider the radiation in the area between the black
horizon and the barrier, which is not observable otherwise.
An interesting possibility of creating a regime similar to the
“black-hole bomb” [73] deserves a special consideration.

APPENDIX C: NONADIABATIC CORRECTIONS

The coefficients in Eqs. (3) and (4) derived in the main
text depend on z. However, their derivation did not require
any sort of adiabatic approximation. The necessity of applying
an adiabatic approximation and investigating nonadiabatic
corrections arises only when looking for solutions of these
equations. It is the aim of this Appendix to present this analysis
taking into account the quantum potential. We give here the full
expressions for the quantities appearing in Eqs. (32), rather
than only their leading order in l2

n. We apply the expansion
outlined in Sec. V and then carry out the Fourier transform of
χ (x,φ,z); namely,

χ (x,φ,z) =
∑
m

∫
dν

∫
dk χk,m,ν ei(νz−mφ−kz). (C1)

Substituting this into Eqs. (3), we obtain Eqs. (27). We can now
solve the first of Eqs. (27) with respect to ξk,m,ν and substitute
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the result into the second of Eqs. (27), thus obtaining

∂k ln χk,m,ν =
i
[̃
ν2

m − 2̃νmk − ik(αr − αs + 1/rh) − m2

r2
h

]
k[2̃νmαr − k(αs + 2αr )]

− il2
n

2

[
(−αs + 1/rh)ik + k2 + m2

r2
h

]2

k[2̃νmαr − k(αs + 2αr )]
, (C2)

where l−2
n = 2β2

0 s2
h is the nonlinearity length. If we now

integrate the above equation, we can write the solution in the
following form:

χm,ν = ei(−mφ+νz)F (ν̃,x), (C3)

where F (ν̃,x) is given by Eq. (31) and reads

F (ν̃,x) =
∫

C

dk kγ1

(
k − 2̃ν

3

)γ2

e�m,ν (k)−ikx . (C4)

The exact expressions for γ1, γ2, and �m,ν(k) are reported
below for the sake of completeness:

γ1 = iν̃m

2αr

− im2

2rh
2ν̃mαr

− iln
2m4

4rh
4ν̃mαr

, (C5a)

γ2 =
[
αs − αr

�
− 1

rh�
− iν̃m

�
+ 2iν̃m

�
+ im2

2r2
hν̃mαr

]
+l2

n

[
iν̃mαr

r2
h�2

+ im4

4r4
hν̃mαr

+ 4iν̃2
mα2

r

rh�3
+ 4α2

r ν̃
2
m

�2

−iν̃mαr − 2αrm
2

r2
h�

− 4ν̃mα2
r

rh�2
+ 2ν̃mαr

rh�

+ im2

r3
h�

+ 4iν̃3
mα3

r

�4
− 4iν̃mα3

r

�2
+ 4iν̃mα2

r

�

+m2

r2
h

− 8ν̃2
mα3

r

�3
+ 2iν̃mαr l

2m2

r2
h�2

]
, (C5b)

�m,ν(k) = k3l3
r

3

[
i

6
+ i

2krh

+ iν̃αr

2k�
+ αs

2k

+2iαrν

k2rh�
+ 2αrαsν̃

k2�
+ i

2k2r2
h

+ im2

k2r2
h

+2iαr
2ν̃2

k2�2
+ αs

k2rh

− iα2
s

2k2

]
, (C5c)

with

lr = ln(�ln/3)−1/3 (C6)

being the regularization length [58] for the z-nonstationary
flow. The quantum potential corrections are important at |x| <

lr and negligible otherwise.

Normalization of Eigenfunctions

The goal of this Appendix is to derive the normalization
constant of the eigenfunctions ξ andχ and show that it depends,
in the case of a vortex background, on the sign of ν̃. To do this
we rely on the approach described in Ref. [58] and define the

two-component field

ψ =
(

χ√
2√
2ξ

)
. (C7)

Using standard field theory, we express the density and current
associated with the field ψ as follows:

ρc = if 2
0 (ξ ∗χ − χ∗ξ ), (C8a)

jc = ρcv − i
f 2

0

β0

(
1

4
χ∗∇⊥χ + ξ ∗∇⊥ξ − c.c.

)
. (C8b)

We then use the relation χ = (1/gf 2
9 )D̂ξ , which holds at

|x| > ln, write Eqs. (C8) in polar coordinates, and make the
transformation (8), obtaining

ρ̃c = i
s2

s2 − v2
r

[
ξ ∗

(↔
∂z + vφ

r

↔
∂φ

)
ξ

]
, (C9a)

j̃ c
r = i

(
v2

r − s2
)
ξ ∗↔

∂rξ, (C9b)

j̃ c
φ = ξ ∗

[
ivφs2

s2 − v2
r

↔
∂z + s2

(
v2

0 − s2
)

r
(
s2 − v2

r

) ↔
∂φ

]
ξ, (C9c)

where the derivative operator
↔
∂x is defined as follows:

ψ∗ ↔
∂xψ = ψ∗∂xψ − ψ∂xψ

∗. (C10)

We now use Eq. (C9a) to define the scalar product, and
consequently the norm of the eigenfunctions:

{ψk,ψk} =
∫

dr̃ρ̃c
k , (C11)

where the subscript k indicates the type of solution we are
considering; namely, regular (r), evanescent (e), or singular (s).
We are particularly interested in the behavior of the singular
solution close to the event horizon. Following the procedure
described in Refs. [74,75], we write

N
(
{ξm,1s ,ξm,1s} + {ξm,2s ,ξm,2s}e

2π
sh�

ν̃

m

)
= −sign(̃νm). (C12)

Using the scalar product defined above, one can readily verify
that

{ξm,1s ,ξm,1s} = sign(̃νm), (C13)

and

{ξm,2s ,ξm,2s} = −sign(̃νm). (C14)

Hence, the normalization constantN , which serves as a spectral
density of the Hawking radiation, is

N =
(
e

2πν̃m
sh� − 1

)−1
. (C15)

It is worth mentioning that a similar result has been obtained
in the context of GR as well; see Refs. [3,59,64–66].
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