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The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems.
Many important processes, including those in more complicated systems, can be modeled and understood through
the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding
dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation
has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly,
significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for
more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact,
tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on
three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically
only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem.
Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly
in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the
conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the
explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models
of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch
equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame
is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal
and transverse rates. These rates are functions of the applied field, which provides information towards control
of the dissipative process. The Bloch equation also describes a system of three coupled harmonic oscillators,
providing additional perspective on dissipative systems.
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I. INTRODUCTION

The Bloch equation needs little formal introduction. It
was proposed originally as a classical, phenomenological
model for the dissipative dynamics observed in magnetic
resonance [1]. However, its impact has been more widespread.
It is applicable to general quantum two-level systems, which
can be modeled [2] by the classical torque equations that
underpin Bloch’s analysis. As a result, the Bloch equation
is employed in such diverse fields as quantum optics, spin
models, atomic collisions, condensed matter, and quantum
computing. Quantum control theory (see, for example, reviews
in [3–5]) is another field for which the Bloch equation is
increasingly relevant. Dissipation must be minimized to meet
its ambitious goal of manipulating quantum systems to desired
ends. Dissipative processes are of special topical interest for
quantum computing, where coherence must be preserved.

The dynamics of this fundamental model for arbitrary,
dissipative two-level quantum systems is therefore a topic
of more than passing interest. One might well expect the
landscape of the Bloch equation to be fully explored after
70 years. However, existing solutions [6–9] share some or
all of the following limitations, leaving room for further
development. They (i) are not sufficiently general to allow for
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arbitrary fields and relaxation models; (ii) depend on roots
of a cubic polynomial that are not specified or related in any
meaningful way to the physical parameters of the problem; (iii)
divide by zero when the roots are degenerate, which occurs at
values of the system parameters that are not specified; (iv)
are cumbersome, conflated with the initial conditions, and/or
linked to tables of multiply nested variables with obscure
connection to the physical parameters of the problem; and (v)
provide only a small measure of the physical insight that might
be expected from an analytical solution.

In some respects, the complexity of the solutions make them
only marginally better than a recipe for a numerical solution,
which, in addition, is not completely general. As a separate
issue, there are currently no intuitive visual models of system
dynamics. Such models assist in the physical interpretation
of the phenomena and often inspire further development in
the field. Addressing the preceding matters might stimulate
further advances towards understanding dissipative systems
and controlling them for a desired outcome.

The paper proceeds as follows to address the aforemen-
tioned issues. A theoretical overview is provided in Sec. II. The
intent is to give a fairly complete general understanding of the
problem and the formal simplicity of the solution for arbitrary
Bloch equation models. A benchmark for a more complete
solution is defined at the outset by comparing previous Bloch
equation solutions to the well-known solution for the damped
harmonic oscillator. In addition, most previous treatments
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embed the initial conditions in the solution. The focus of the
current solution is the propagator for the time evolution of
the system. The initial conditions are disentangled from the
dynamics. The physics does not depend on the initial condi-
tions, so neither can the dynamics. Different initial conditions
merely generate different trajectories for the system evolution,
all driven by the same physics. The clarity provided in empha-
sizing the propagator contributed significant insight towards
developing the intuitive dynamical models in the paper.

Section III is devoted to the explicit form of the propagator
obtained formally in the previous section. A compact, complete
solution to the Bloch equation is derived which is simpler
than previous solutions, yet valid for arbitrary constant input
parameters. The solutions are therefore applicable to more
general but previously unsolved modified equations [10–22]
proposed to address the failure of the original, conventional
Bloch equation (OBE) to fully explain experimental data
[23–25]. Moreover, the exact solutions are sufficiently simple
that approximate limiting solutions [6–8] no longer provide any
significant simplification. Conditions that result in division by
zero in previous solutions are fully identified and addressed in
the complete solution obtained here. A streamlined framework
for obtaining and evaluating the roots of a cubic polynomial
is presented that greatly facilitates the analysis. The roots
required in the solution, i.e., system eigenvalues, are reduced to
one real root obtained as a straightforward function of the phys-
ical parameters. Knowing this basic real root is sufficient to de-
termine the others, simply and immediately. As is well known,
the real parts of the roots are the dynamical relaxation rates, and
the imaginary part, when it exists, is an oscillation frequency.

Section IV then focuses on the OBE. There the dependence
of the solutions on the physical parameters is characterized
simply and in detail. The arithmetic difference between the
spin-spin (transverse) and spin-lattice (longitudinal) relaxation
rates provides a convenient and particularly useful frequency
scale for representing system parameters in the analysis of the
OBE. Quantitative bounds for oscillatory (underdamped) and
nonoscillatory (critically damped and underdamped) dynamics
are derived. A simple graphical representation is obtained for
the fundamental root as a function of the system parameters.

Models developed in Sec. V reveal the underlying simplicity
of the dynamics. The Bloch equation is shown to represent a
system of three mutually coupled damped harmonic oscilla-
tors. This model can also be cast in the form of frictionless
coupled oscillators that are, nonetheless, damped. Both models
provide a different perspective on dissipative systems. The
harmonic-oscillator models are particular and explicit imple-
mentations of a more general result, namely, any quantum
N -level system, can be represented as a system of coupled
harmonic oscillators [26,27]. Although the dynamics are the
same in either case, “there is a pleasure in recognizing old
things from a new point of view” [28]. A different perspective
can open the door to new insights. This treatment sets the
stage for a simple vector model of Bloch equation dynamics.
The trajectory of a system state in the model coordinates
is simply a rotation followed by relaxation, which is easily
visualized without recourse to the detailed analytical solution.
A modified system of relaxation rates that emerges from the
dynamics plays a role analogous to standard longitudinal and
transverse relaxation effects. The modified rates result from

the interaction and coupling between the fields and the phe-
nomenological relaxation parameters of the particular Bloch
model under consideration. Additionally, and incidentally, a
method for finding eigenvectors emerges that does not appear
to be widely known or utilized.

Details of the results and calculations in the text are deferred
to the Appendixes. Appendix G checks the solutions by
applying them to a representative set of cases whose solutions
can be straightforwardly obtained by other methods. Finally,
the acronym OBE used henceforth also includes the optical
Bloch equation (e.g., [29]).

II. THEORETICAL OVERVIEW

We first summarize the basic framework of the Bloch
equation to recollect and define the fundamental parameters
of the problem. The equation describes the dynamics of a
magnetization M subjected to a static polarizing magnetic
field H0 = H0 ẑ and a sinusoidal alternating field 2Ha cos ωat

applied orthogonal to H0. For Ha � H0, the equilibrium mag-
netization is not appreciably affected by the applied field and
is therefore, to a good approximation, the time-independent
value M0 = χH0 ẑ produced by the polarizing field.

One then considers a reference frame rotating about H0 at
an angular frequency ωa equal to the frequency of the applied
field [30]. In this frame, the resulting effective field He is also
time independent. The evolution of the magnetization in this
frame, neglecting dissipative effects, is simply a rotation about
the field at the Larmor frequency ωe = −γ He due to the
torque γ M × He on M, with He = (Ha cos φ,Ha sin φ,H0 −
ωa/γ ). Here γ is the gyromagnetic moment. The phase φ

relative to the x axis in the rotating frame is arbitrary in the
context of a single applied field and has typically been set
equal to zero in previous analyses of the Bloch equation.
However, the relative phase is required for problems involving
sequentially applied fields. An exact representation of the
linearly polarized field 2Ha cos ωat also requires a counterro-
tating component. The rotating frame (NMR) or rotating-wave
(optics) approximation safely neglects this other frame when
Ha � H0, since then He ≈ He ẑ in the counterrotating frame
and has negligible effect on the initial magnetization M0 ẑ.

Relaxation rates Ri are then assigned to each component Mi

to include dissipative processes. The torque can be written as
a matrix-vector product [31], which, together with relaxation,
gives the matrix

� =
⎛
⎝ R1 ω3 −ω2

−ω3 R2 ω1

ω2 −ω1 R3

⎞
⎠, (1)

comprised of the rates and the components of ωe. In the
original Bloch equation, the rates governing relaxation of
the transverse magnetization components are equal, R1 = R2.
More generally, modified Bloch equations can be considered
in which the Ri are not equal and, moreover, �ij �= −�ji , as
occurs for sufficiently strong fields and intensity-dependent
damping [10–22]. Including the initial polarization M0 or
analogous equilibrium state relevant to a given application then
gives a general Bloch equation of the form

Ṁ(t) + �M(t) = M0R3. (2)
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The matrix � that drives the dynamics is completely general
in what follows, within the context of time-independent fields
and relaxation rates. Both He and ωe are referred to as fields
in the OBE, since they are proportional. We further define the
transverse field ω12 as a component of the total field ωe, with
respective magnitudes (squared)

ω2
12 = ω2

1 + ω2
2,

ω2
e = ω2

1 + ω2
2 + ω2

3. (3)

In the optical Bloch equation, the preceding fields become
electric fields, magnetic moments are atomic dipole moments,
ω1 and ω2 are proportional to the corresponding components
of the applied electric field, and the resonance offset ω3 is
the difference between the atomic transition frequency and the
frequency of the applied electric field.

A. Instructive analogy

The damped harmonic oscillator can be used to illustrate
how the OBE solutions might be viewed as incomplete,
notwithstanding the need for a more generally applicable
solution. Consider first the original Torrey [6] solution. All
other solutions to date are similar in content. As mentioned
in the Introduction, any solution will depend on the roots of a
cubic polynomial. The formula for these roots is well known,
if somewhat unwieldy, giving three roots of the form a and
b ± is, in Torrey’s notation, with a and b real and s either real
or imaginary. No further details of the roots are given. The
magnetization components Mi can then be obtained as

Mi(t) = Aie
−at + e−bt

[
Bi cos st + Ci

s
sin st

]
+ Di. (4)

The coefficients Ai , Bi , Ci , and Di are complicated functions
of the physical parameters and the initial magnetization Mi(0),
typically listed in tables in terms of multiply nested variables.
The Di are the components of the steady-state magnetization.
The roots are not specified further. In one instance [8], they
are given in complicated form. Either way, none of the
solutions provide any physical insight into the dependence of
the decay and oscillation rates on the physical parameters of
the problem. In addition, s = 0 results in doubly degenerate
roots. The further condition a = b gives a triple degeneracy.
These degeneracies have not been fully noted or addressed.

Consider next the equation of motion for a damped har-
monic oscillator under the influence of a constant force such
as gravity. It can be written in the form

ẍ + 2ξ ẋ + ω2
0x = g. (5)

The natural frequency of the oscillator is ω0, with the velocity-
dependent damping parameter ξ scaled by a factor of 2 to
eliminate this factor from the solution. The standard approach
tries a solution of the form ert for the g = 0 solution to the
homogeneous equation, giving a quadratic polynomial in r .
The two roots of a second-order polynomial are known to be
of the form r± = −b ± is, with b real and s either real or
imaginary depending on the sign of the discriminant in the
quadratic formula. The particular solution to Eq. (5) is x(t) =
g/ω2

0, by inspection. With this minimal analysis, the solution
obtained from er±t can be written in the form

x(t) = e−bt

[
A1 cos st + A2

s
sin st

]
+ D. (6)

The steady-state D = g/ω2
0 is the constant displacement of the

oscillator from the unperturbed, g = 0, equilibrium position.
The coefficients Ai determined from the initial conditions are
considerably simpler than the corresponding coefficients in
Eq. (4).

Solutions for the Bloch equation proceed only this far. The
damped oscillator is a much simpler system that is readily
solved in more detail. The coordinates are typically shifted
to define D as the new equilibrium position. The quadratic
formula gives simple expressions for the roots and immediately
shows that the decay rate will be the physical damping factor ξ .
One easily proceeds further to obtain s = (ω2

0 − ξ 2)1/2, giving
(i) underdamped (ω2

0 > ξ 2), (ii) overdamped (ω2
0 < ξ 2), and

(iii) critically damped (ω2
0 = ξ 2) solutions. The domain of

applicability for each solution is clearly delineated as a function
of the physical parameters ξ and ω0. When s = 0, there is a
single doubly degenerate root. The second linearly independent
solution is te−bt , giving

xs=0(t) = e−bt [A1 + A2t] + D, (7)

with b = ξ . The constants Ai and D are also the same as
before, which is consistent with Eq. (6) in the limit s → 0,
using l’Hôpital’s rule. We will show in Sec. III that the same
limiting process is valid for Eq. (4) by more formally finding the
linearly independent solutions in the case of degenerate roots.

The failure of the OBE solutions to match the completeness
of the damped oscillator solution is not particularly surprising.
The OBE appears to have five independent parameters [the
elements of � in Eq. (1) with R1 = R2]. Analysis of the system
is far more complex, appearing perhaps too complex for a more
illuminating result. However, a simpler realization of cubic
roots developed here and more detailed investigation of the
roots resulting from the OBE show only three independent
parameters, two of which can be scaled in terms of the third to
give a two-parameter problem similar to the damped oscillator.

One might also be intrigued by the similarity of the solu-
tions for the damped oscillator and the Bloch equation. This
correspondence is not accidental, and will be pursued further
in Sec. V, where the Bloch equation is modeled exactly by a
system of three coupled, damped harmonic oscillators. In addi-
tion, the dynamics of a single damped oscillator is known to be
simple in the (x,ẋ) phase plane (see, for example, Ref. [32]).
The underdamped trajectory is related to a logarithmic spiral,
while the overdamped trajectory traces out a nonoscillatory
asymptotic decay to zero. The analogous visual model for
Bloch equation dynamics is developed in Sec. V C.

However, first, we extend the Bloch equation solution to
arbitrary (constant) parameter models. Our solution is simpler
and more convenient to use than existing OBE solutions,
which, in addition, are problematic for particular configura-
tions of the parameter space.

B. Bloch equation solution

A standard approach to solving a system of inhomogeneous
equations such as Eq. (2) is to transform it to a homogeneous
form [33] by appending the inhomogeneous term M0R3 as a
column to the right of � and then adding a correspondingly
expanded row of zeros at the bottom. The vector M would
then be augmented by including a last element equal to one.

013815-3



THOMAS E. SKINNER PHYSICAL REVIEW A 97, 013815 (2018)

Increasing the dimensionality of the problem in this way can
be rather trivially avoided by defining

M(t) ≡ M(t) − M∞, (8)

where M∞ = �−1 M0R3. This is the same shift in coordinates
to the equilibrium (steady-state) position that is commonly
employed for the harmonic-oscillator example of Eq. (5). There
the result of a constant force is a shifted equilibrium position
x → (ω2

0)−1g, which gives a homogeneous equation in the
shifted coordinates. Since M∞ is constant, we have

Ṁ(t) = −�M(t), (9)

with the solution

M(t) = e−�tM(0) (10a)

M(t) = e−�t [M(0) − M∞] + M∞ (10b)

= e−�t M(0) + (1 − e−�t )M∞ (10c)

as a function of the steady-state M∞ and transient M(0)
responses. The crux of the problem, then, is a solution for the
propagator e−�t . Framing the problem most generally to in-
clude arbitrary � might be expected to complicate the solution
compared to previous treatments. However, emphasizing the
solution for the propagator results in a compact and relatively
simple solution.

C. Propagator e−� t

There are numerous methods, both analytical and numer-
ical, for calculating a matrix exponential (see Ref. [34] and
references therein). The Laplace transform will be employed
here, both for historical reasons (it has been utilized in previous
Bloch equation solutions) and because most of the other
analytical methods can be derived from it. This is a topic worth
developing in its own right that is beyond the scope of the
present article.

The Laplace transform L of e−at is equal to (s + a)−1 for
constant a. The matrix exponential e−�t for constant � is then
the inverse Laplace transform L−1[(s1 + �)−1], where 1 is the
identity element. The inverse Laplace transform of a function
f (s) can be written in terms of the Bromwich integral as (see,
for example, Ref. [35])

L−1[f (s)] = 1

2πi

∫ γ+i∞

γ−i∞
f (s)estds

= F (t), (11)

where the real constant γ is chosen such that Re(s) < γ for
all singularities of f (s). Closing the contour by an infinite
semicircle in the left half plane ensures convergence of the
integral for t > 0. The desired F (t) is then the sum of the
residues of the integrand.

For f (s) = (s1 + �)−1, recall the textbook theorem for the
inverse of a matrix A, with terms defined as follows.

(i) A(i|j ) is the matrix obtained by deleting row i and
column j of A.

(ii) The cofactor of Aij is Cij = (−1)i+j times the determi-
nant det A(i|j ).

(iii) The adjugate of A is the matrix (adjA)ij = Cji , i.e., the
transpose of the cofactor matrix for A, which is the same as
the cofactors of A transpose.

Then

A−1 = adjA/ det A. (12)

The matrix

A(s) = s1 + � (13)

gives

det A(s) = p(s), (14)

where p(s) is the characteristic polynomial of (−�).
The desired solution for F (t) = e−�t is then the sum of

the residues of the integrand in Eq. (11), with f (s) → (s1 +
�)−1 = adjA(s)/p(s) giving

e−�t =
∑
res

adjA(s)

p(s)
est (15)

for any �. The poles clearly occur at the roots of p(s), i.e., the
eigenvalues of −�. The propagator is therefore constructed
fairly simply from � and its eigenvalues. Recall for reference
in what follows that for a function g(s) with a pole of order
k at s = s0, the coefficient of (s − s0)−1 in the Laurent series
expansion of g(s) about s = s0, i.e., the residue at s0, is

res(s0) = 1

(k − 1)!
lim
s→s0

dk−1

dsk−1
[(s − s0)kg(s)]. (16)

III. SOLUTIONS FOR THE PROPAGATOR

The results obtained so far provide the basis for a complete,
compact, general solution of the Bloch equation, developed in
detail next. The solution for the matrix exponential e−�t is valid
for any time-independent 3 × 3 matrix �. Degenerate roots of
the characteristic polynomial, which give rise to division by
zero in previous solutions, are fully addressed in the form of
the solution given in Eq. (15).

A. Roots of the characteristic polynomial

The solution for e−�t given in Eq. (15) requires the roots of
p(s) in Eq. (14). The resulting third-degree polynomial is

p(s) = c0 + c1s + c2s
2 + s3, (17)

with the coefficients

c0 =
∏
j

Rj − 1

2

∑
j �=k �=l

Rj�kl�lk

+ �12�23�31 + �21�32�13

OBE−→
∏
j

Rj +
∑

j

Rjω
2
j ,

c1 = −
∑
j �=k
j<k

�jk�kj +
∑
j<k

RjRk

OBE−→ ω2
e + R1R2 + R1R3 + R2R3

= ω2
e +
∑
j<k

RjRk,

c2 =
∑

i

Ri .

(18)
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As is well known, the substitution s = z − c2/3 reduces
Eq. (17) to the standard canonical form

p(z − c2/3) = z3 + c̃1z + c̃0

= q(z), (19)

where

c̃0 = 2

(
c2

3

)3

− c1

(
c2

3

)
+ c0,

(20)
c̃1 = c1 − c2

2/3.

Solutions for the roots zi are then available as functions of c̃0

and c̃1 from standard formulas. However, these formulas are
relatively complicated functions of the polynomial coefficients
(and hence the physical parameters in the Bloch equation),
which hinders physical insight. In Appendix C, simpler ex-
pressions are derived for the roots that reduce their complexity
compared to previous treatments. The fundamental results are
summarized below.

Any polynomial with real coefficients has at least one
real root, assigned here to z1. The solutions can then be
consolidated in a convenient form that does not appear to be
widely employed. The other two roots are written as a function
of z1,

z2,3 ≡ z± = − 1
2z1 ± i	, (21)

in terms of a discriminant

	 2 = 3[(z1/2)2 + c̃1/3], (22)

which will be positive, negative, or zero depending on the value
of z1, the sign of c̃1, and their relative magnitudes.

The roots are further characterized here in terms of the
positive parameter

γ = |c̃0/2|
|c̃1/3|3/2

, (23)

leading to the following delineation of the roots: (i) c̃1 > 0 or
c̃1 < 0 and γ > 1 [three distinct roots (one real, two complex
conjugate)], (ii) c̃1 < 0 and γ < 1 (three distinct real roots),
(iii) c̃1 < 0 and γ = 1 (twofold degenerate roots z+ = z− =
− 1

2z1), and (iv) c̃0 = 0 = c̃1 (threefold degenerate roots zi =
0). The physical parameters that define these effective domains
for the roots are derived for the OBE in Sec. IV.

In addition, we will find that the sign of c̃0 determines the
sign of z1. Thus, in all cases, the set of three roots for a given
c̃0 < 0 is equal and opposite to the set obtained for parameters
that flip the sign of c̃0. The case c̃0 = 0 (i.e., γ = 0) reduces
simply to z1 ∼ sgn(0) = 0. From Eqs. (21) and (22), there are
then two additional real or imaginary roots depending on the
sign of 	 2. The roots of p(s = z − c2/3) are then

si = zi − c2/3, (24)

where, referring to Eq. (18),
c2

3
= 1

3

∑
i

Ri ≡ R̄ (25)

is the average of the relaxation rates.

B. Cayley-Hamilton theorem

The expression for e−�t in Eq. (15) also depends on adjA(s).
The elements of adjA(s) are simple (2 × 2) determinants,

giving

adjA(s) = A0 + A1s + 1s2, (26)

a polynomial in s with coefficient matrices

A0 = c11 − c2� + �2, A1 = c21 − �, (27)

as shown in Appendix A. The result can be readily generalized
to higher-dimensional matrices, but this exceeds the scope of
the present work.

Substituting Eq. (27) into Eq. (26) and rearranging terms
gives

adjA(s) = (c1 + c2s + s2)1 + (c2 + s)(−�) + �2

=
2∑

j=0

pj (s)(−�)j , (28)

which defines the polynomial coefficients pj (s). Further defin-
ing

aj (t) =
∑
res

pj (s)

p(s)
est , j = 0,1,2 (29)

then yields a solution for the propagator in the form

e−�t =
2∑

j=0

aj (t)(−�)j = (1, − �,�)

⎡
⎣a0(t)

a1(t)
a2(t)

⎤
⎦, (30)

where the sum has been expressed as multiplication of a row
and column matrix. We therefore have a concise implementa-
tion of the Cayley-Hamilton theorem, which states that every
square matrix is a solution to its characteristic equation. As a
consequence, −� is a solution of Eq. (17). One can solve for
�3, and subsequently for all higher powers of �, in terms of
the set {1, − �,�2}. The series expansion of e−�t can then be
expressed in terms of the same set, as above.

The coefficient polynomial pj (s) multiplying (−�)j can be
defined recursively as

p−1(s) ≡ p(s), pj (s) = pj−1(s) − cj

s
, (31)

i.e., pj (s) is obtained by dividing p(s) by sj+1 and removing
all terms with s in the denominator from the result. The matrix
exponential given in Eq. (30) is then readily generalized to
matrices of arbitrary dimension.

C. Convenient matrix partitioning

We first seek to avoid transforming the characteristic
polynomial to canonical form, solving for these roots, and
then transforming back to obtain the roots of the original
polynomial. The result of this endeavor leads to additional
simplifications in what follows.

Partition � as the sum of commuting matrices

� = R + �p = R̄1 +
⎛
⎝R1p �12 �13

�21 R2p �23

�31 �32 R3p

⎞
⎠, (32)

where, as before, R̄ is the average of the Ri as in Eq. (25) and
the diagonal elements of �p are

Rip = Ri − R̄ = 2

3
Ri − 1

3

∑
j �=i

Rj . (33)
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The coefficients cip in the characteristic polynomial for−�p are
obtained from Eq. (18) with Ri → Rip. Then c2p =∑i Rip =
0 and p(s) is in the standard canonical form q(z) of Eq. (19),
with coefficients cip ≡ c̃i . We then have

e−�t = e−R̄t e−�pt . (34)

The focus henceforth will be the solution for e−�pt using
Eq. (30), with the obvious substitutions � → �p, pj → qj ,
and cj → c̃j . The roots si = zi are given in Eq. (C6).

D. Simple pole solution

When the roots zi of q(z) are distinct, the residues are
due to simple first-order poles zn. Factor q(z) as

∏
i(z − zi).

Then (z − zn)/q(z) =∏i �=n(z − zi), as needed to evaluate
the residue at zn. The derivative q ′(z) =∑j

∏
i �=j (z − zi)

evaluated at zn is also equal to
∏

i �=n(zn − zi), since the other
terms in the sum vanish at z = zn. Summing the residues in
Eq. (29) at the three roots gives

aj (t) =
3∑

i=1

qj (zi)

q ′(zi)
ezi t . (35)

The derivative of the characteristic polynomial can be
calculated from either the factored form involving the roots or
the polynomial form in Eq. (17). Each provides information
that might be useful for different applications. The matrix
exponential e−�pt can then be written compactly as matrix
multiplication in the form

e−�pt = (1, − �p,�
2
p

)⎡⎣a0(t)
a1(t)
a2(t)

⎤
⎦

= (1, − �p,�
2
p

)
[W1(z1)u1(t)],

W1(z1) =
⎛
⎝z2

1 + c̃1 z2
2 + c̃1 z2

3 + c̃1

z1 z2 z3

1 1 1

⎞
⎠,

u1(t) =
⎛
⎝ez1t /q ′(z1)

ez2t /q ′(z2)
ez2t /q ′(z2)

⎞
⎠. (36)

For parameter values (i) c̃1 > 0 or c̃1 < 0 and γ > 1, 	 is
real from Eqs. (C6a) and (C6b), so two of the roots are complex
conjugates. Although Eq. (36) is the most straightforward form
of the solution and readily used in numerical calculations, in-
dividual terms are complex. A more transparently real-valued
expression is obtained by performing the sum in Eq. (35) after
rationalizing complex denominators and writing the roots z2,3

in terms of z1 using Eqs. (21) and (22), as detailed in Appendix
D. The result is of the form in Eq. (36) with

W1(z1) → 1

3z2
1 + c̃1

⎛
⎝z2

1 2z2
1 −c̃1z1

z1 −z1
3
2z2

1 + c̃1

1 −1 − 3
2z1

⎞
⎠,

u1(t) →

⎛
⎜⎝

ez1t

e−z1t/2 cos 	t

e−z1t/2 sin 	t

	

⎞
⎟⎠.

(37)

The coefficient c̃1 can be found in terms of the roots zi upon
expanding the factored form for q(z) to obtain c̃1 = z1z2 +
z1z3 + z2z3. The solution for the matrix exponential is thus
separable into a term that depends directly on the physical
parameters of the problem through �p, a term that depends on
the roots zi , and a term that gives the time dependence, which
in turn is solely a function of the roots.

For the case (ii) c̃1 < 0 and γ < 1, 	 is imaginary, as
given by Eq. (C6c), so there are three real roots. There is
no oscillatory behavior in the straightforward result given
in Eq. (36). The solution can be written alternatively, using
Eq. (37), in terms of μ = |	 |, with 	 = iμ giving cos 	t →
cosh μt and sin 	t/	 → sinh μt/μ.

E. Second-order pole solution

For (iii) c̃1 < 0 and γ = 1, we have 	 = 0 in either
Eq. (C6b) or (C6c), which implies c̃1 → −3(z1/2)2 according
to Eq. (22). Then two of the three real roots are equal, giving
a doubly degenerate root z2 = z3 = −z1/2. The characteristic
polynomial q(z) → (z − z1)(z − z2)2. The contribution from
the first-order pole at z1 is obtained as before, i.e., the first
column of W1(z1) and the first element of u1(t) in Eq. (37)
remain the same. The residue at z2 is calculated in Appendix
D, leading to a solution

e−�pt = (1, − �p,�
2
p

)
[W2(z1)u2(t)],

W2(z1) =

⎛
⎜⎜⎜⎜⎝

1
9

8
9

1
3z1

4
9z−1

1 − 4
9z−1

1
1
3

4
9z−2

1 − 4
9z−2

1 − 2
3z−1

1

⎞
⎟⎟⎟⎟⎠,

u2(t) =
⎛
⎝ ez1t

e−z1t/2

te−z1t/2

⎞
⎠.

(38)

There is thus a term linear in the time t . Note that Eq. (38)
is also the limit of Eq. (37) as 	 → 0 and c̃1 → −3(z1/2)2,
providing an independent verification of the simple-pole result.
One could anticipate on physical grounds that the separate
solutions obtained for distinct and degenerate roots should be
continuous in this limit. However, it is an assumption that is
verified by properly calculating the solution for a second-order
pole.

F. Third-order pole solution

The case (iv) c̃0 = 0 = c̃1 gives a triply degenerate, real root
z1 = 0 for q(z) → z3. The aj (t) are evaluated in Appendix D,
giving a0(t) = 1, a1(t) = t , and a2(t) = t2/2, so that

e−�pt = 1 − �pt + 1
2�2

p t
2. (39)

There is now a term that is quadratic in the time. The same
result is obtained from Eq. (38) in the limit z1 → 0 upon series
expansion of the exponential terms. In addition, the Cayley-
Hamilton theorem is simple to apply directly in this case, since
q(−�p) = −�3

p = 0. The series expansion of e−�pt is therefore
truncated, giving the Eq. (39) result directly and verifying the
self-consistency of the solutions.
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G. Steady-state solution

The steady-state response M∞ defined in Eq. (10) is equal
to �−1 M0R3, with �−1 = adj�/ det(�). Most typically, M0

is along ẑ. The dependence on adj� is then only in the third
column, with det(�) = p(0) given by c0 in Eq. (18). Then

M∞ = M0R3

c0

⎡
⎣ �12�23 − �13R2

�13�21 − �23R1

−�12�21 + R1R2

⎤
⎦ (40a)

OBE−→ χH0R3

R1R2R3

(
1 +

∑
i �=j �=k

ω2
i

RjRk

)
⎡
⎣ω1ω3 + ω2R2

ω2ω3 − ω1R1

ω2
3 + R1R2

⎤
⎦.

(40b)

Letting R1 = R2 = 1/T2 and R3 = 1/T1 gives

M∞
OBE−→ χH0

1 + T1T2ω
2
12 + T 2

2 ω2
3

⎡
⎣T2(ω1ω3T2 + ω2)

T2(ω2ω3T2 − ω1)
1 + T 2

2 ω2
3

⎤
⎦,

(41)

which reduces to Bloch’s result [1], obtained for ω2 = 0.
For the specific case of the OBE on resonance (ω3 = 0),

Lapert et al. [36] give a geometric interpretation of the steady
state as points on the surface of an ellipsoid satisfying the
equation

M2
x + M2

y

T2
+ (Mz − 1/2)2

T1
= 1

4T1
. (42)

We note here that the result is more general. The components
of M∞ in Eq. (41) for the off-resonance OBE also satisfy
Eq. (42), as does the result in Eq. (40a) when �ji = −�ij and
R1 = R2. The magic plane defined for ω3 in that work is also
independent of resonance offset.

IV. CONVENTIONAL BLOCH EQUATION

The solutions can be further simplified when applied to
the specific parameters of the OBE. The approach taken
here allows us to delve deeper than previous analyses to
obtain additional insight into the nature of the solutions and
the constraints that determine root multiplicities. Substituting
R1 = R2 gives the rates Rip in �p of Eq. (32). Define

Rδ = R2 − R3

3
� 0, (43)

since the transverse relaxation rate R2 is greater than or equal
to the longitudinal rate R3 in physical systems. Then

R1p = R2p = Rδ, R3p = −2Rδ. (44)

The coefficients of the characteristic polynomial for −�p then
simplify to

c̃0 = Rδ

[
ω2

e − 2R2
δ − 3ω2

3

]
, c̃1 = ω2

e − 3R2
δ . (45)

The rate Rδ provides a convenient and simplifying frequency
scale for characterizing the solutions in the sections which
follow.

A. Criteria for the existence of degenerate roots

The resulting simpler form for the polynomial coefficients
makes possible a straightforward analysis of the conditions
for which there are degeneracies in the roots. As discussed in
Sec. III A, there is a twofold degeneracy in the roots for γ = 1.
This is equivalent, using Eq. (23) for γ , to

D(c̃0,c̃1) = (c̃0/2)2 + (c̃1/3)3

= 0. (46)

The trivial solution c̃1 = 0 = c̃0 gives a threefold-degenerate
root zi = 0.

Details are deferred to Appendix E, where the existence of
degenerate roots is characterized in terms of

ω2
3 = λ3R

2
δ /3, ω2

12 = λ12R
2
δ /3. (47)

For each ω3 defined by the range 0 � λ3 � 1, one finds two
solutions for λ12 that satisfy D(c̃0,c̃1) = 0 and give real values
for ω12. Thus, for each ω3 ∈ [0,R2

δ /3], there are two values of
ω12 that produce degeneracies in the roots zi . The two solutions
for λ12 can be expressed concisely in the form

λ12,i = ηi − λ3 + 9
4 , i = 1,2

ηi = 9
2

√
8λ3 + 1 sin ϑi

ϑ1 = sgn(λ3 − λb) 1
3 sin−1 |8λ2

3 + 20λ3 − 1|
(8λ3 + 1)3/2

,

ϑ2 = π/3 − ϑ1

(48)

for λb = 3
4 (

√
3 − 5

3 ). The solutions converge at λ3 = 1 to
η1 = η2 = 27/4, giving ω2

12 = 8(R2
δ /3). Then c̃1 = 0 = c̃0

from Eq. (45), giving the threefold-degenerate root zi = 0 of
Eq. (19) mentioned above.

The following simple and explicit criteria characterize the
poles in Eqs. (15) and (29).

(i) ω2
3 > R2

δ /3. There is no real-valued solution for ω2
12

such that γ = 1, i.e., D(c̃0,c̃1) = 0, and hence the roots zi are
distinct.

(ii) ω2
3 < R2

δ /3. There are two different real-valued solu-
tions for ω2

12 as a function of λ3 that each give a twofold
degeneracy in the roots zi , requiring the second-order pole
solution of Eq. (38). Otherwise, the roots are distinct.

(iii) ω2
3 = R2

δ /3 for λ3 = 1 gives ω2
12 = 8(R2

δ /3), resulting
in a threefold-degenerate root zi = 0 which requires the third-
order pole solution of Eq. (39).

B. Characterization of the damping

Solutions for the roots zi are characterized according to
whether the discriminant 	 2 of Eq. (22) is positive, negative,
or zero and can be described, respectively, as underdamped,
overdamped, or critically damped, analogous to a damped
harmonic oscillator. The solution for the propagator in the
case of degenerate roots (γ = 1) has a term linear in time,
characteristic of a critically damped harmonic oscillator. For a
threefold degeneracy in the roots, there is an additional term
that is quadratic in the time. The values of ω2

3 that allow
degeneracies are restricted to the narrow range parametrized
according to 0 � λ3 � 1, as discussed in the preceding section.
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FIG. 1. Parameter values of ω2
12 that give degenerate roots of the

characteristic polynomial (γ = 1) and critically damped solutions to
the Bloch equation are plotted as a function of ω2

3, shown as red
(solid) lines calculated using Eq. (48). The parameters are scaled
to R2

δ /3 as in Eq. (47). In the interior of the region delineated by
these curves (light red), there are three distinct real roots (c̃1 < 0 and
γ < 1) resulting in overdamped solutions. Outside this region (light
blue), one real and two complex-conjugate roots produce oscillatory
underdamped solutions, with c̃1 > 0 above the overdamped region
and c̃1 > 0 and γ > 1 below the overdamped region. In addition,
underdamped solutions are obtained for any ω2

3 > 1 (normalized to
the units shown in the figure).

The two solutions ω2
12,1 and ω2

12,2 for each ω2
3, as determined

from Eqs. (47) and (48), are the solid curves plotted in Fig. 1.
Using the same scaling of ω3 and ω12 as in Eq. (47), we also

have

c̃0(λ12,λ3) = (λ12 − 2λ3 − 6)R3
δ /3,

c̃1(λ12,λ3) = (λ12 + λ3 − 9)R2
δ /3,

γ (λ12,λ3) = 9

2

|λ12 − 2λ3 − 6|
|λ12 + λ3 − 9|3/2

.

(49)

Solutions in the range ω2
12,1 < ω2

12 < ω2
12,2 bounded by the

critical damping parameters give c̃1 < 0 and γ < 1, resulting
in three distinct real roots and overdamped evolution. The range
of bounding values is fairly narrow, becoming increasingly so
with increasing λ3 and converging to a single value ω2

12 =
8R2

δ /3 as λ3 → 1, as shown in the figure. Underdamped
oscillatory solutions are obtained for all other field values,
either ω2

3 > R2
δ /3 (i.e., λ3 > 1) or ω2

12 � ω2
12,1, and ω2

12 �
ω2

12,2 for λ3 � 1.

C. Characterization of the roots

The solution to the Bloch equation has a relatively simple
form and can be expressed in terms of a single root z1 of the
characteristic polynomial for −�p. Although the solutions for
z1 have also been expressed in relatively simple functional
form, these forms provide little physical insight. It remains to

shed some light on the dependence of this root on the field ωe

and the relaxation rates.

1. Physical limits of the roots

Since the roots zi are functions of c̃0, c̃1, and γ , they also
scale as Rδ . The associated decay rates are Re(si) = Re(zi) −
R̄, from Eq. (24). Defining

λz = Re(zi)/Rδ (50)

and using Eq. (43) for Rδ gives the decay rates

Re(si) = λzRδ − R̄ = −2 − λz

3
R2 − 1 + λz

3
R3. (51)

The limiting rates are R2 and R3, which therefore constrains
λz to the range

−1 � λz � 2. (52)

The damping has equal contributions from R2 and R3 for λz =
1/2, with a larger contribution from either R2 or R3 if λz is less
than or greater than 1/2, respectively.

The dependence of z1 on ωe and Rδ , calculated according
to Eqs. (C6), is shown in Fig. 2, where contours of λz ∝ z1 are
plotted as a function of λ12 ∝ ω2

12 and λ3 ∝ ω2
3. As discussed

earlier, there is only one real root for λ3 > 1. When λ3 � 1,
there is also a single real root for values of λ12 outside the
narrow bounds that define critical damping. Within these
bounds where the solutions represent overdamping, any of
the three real roots can be designated as z1, with z± from
Eq. (C6c) giving the other two. For ω12 = 0, the relaxation rate
is R3 (i.e., λz = 2), independent of the offset parameter λ3, as
is well known. As ω12 increases for fixed ω3, the relaxation
rate approaches R2 (λz = −1), with the drop-off from λz = 2
becoming increasingly steep at lower values ofω3. For the other
roots in which Re(z±) = −1/2z1, the upper limit in Eq. (52)
becomes 1/2.

2. Linear relation for the roots

Equation (19) evaluated at the real root z1 yields the linear
relation

c̃0 = −z1c̃1 − z3
1. (53)

The slope and intercept are determined by z1. Substituting the
expressions for c̃0 and c̃1 given in Eq. (49), rearranging, and
collecting terms after writing 9λz = 6λz + 3λz gives

λ12 = msλ3 + λint
12 , (54)

with slope ms and intercept λint
12 given by

ms = 2 − λz

1 + λz

, y int
12 = 3(2 − λz)(1 + λz). (55)

There is thus a simple graphical representation for the value
of the root z1 as a function of the physical parameters ω12, ω3,
and Rδ . There is a continuum of field values for a given Rδ

that gives the same z1. Lines of constant z1 as a function of
λ12 and λ3 become hyperbolas when Eq. (54) is rewritten in
terms of ω2

12, ω2
3, and R2

δ using Eq. (47). A similar graphical
analysis for any cubic polynomial with real coefficients reveals
the parameter space yielding either one real and two complex-
conjugate roots, three real roots, or degenerate roots.
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FIG. 2. Contours of the characteristic polynomial’s guaranteed real root z1, calculated according to Eqs. (C6) and normalized to Rδ , are
plotted as a function of ω2

12 and ω2
3 normalized as in Fig. 1. The root satisfies −1 � z1 � 2, as expected from Eq. (51), with lines of constant

z1 as derived in Eqs. (53)–(55). The z1 = 0 contour is shown as a dashed line. Contours of the frequency 	 from Eq. (22) that appears in the
oscillatory underdamped solutions of the Bloch equation are also plotted in the rightmost panels. Within the overdamped region defined in
Fig. 1 and expanded in the bottom panels, there is no oscillation or frequency 	 , and only one of the three real roots is plotted.

V. INTUITIVE REPRESENTATIONS OF
SYSTEM DYNAMICS

There are few, if any, simple models that interpret the
solutions. In this section, we develop four, three of which are
completely general. The reader is also referred to an abstract
model for the on-resonance (ω3 = 0) geometrical structure of
OBE dynamics [36].

In most cases, the parameters of the Bloch equation yield
three distinct roots for the characteristic polynomial p(s) of
Eq. (17), described as cases (i) and (ii) in Sec. III A. Exceptions
were considered in more detail in Sec. IV for the OBE. To
provide additional physical insight, we first develop a damped
oscillator model for the Bloch equation. Modeling dissipative
processes in this manner provides a different perspective within
the context of well-understood coupled harmonic oscillations.
Fresh perspectives can yield new insights. Conversely, the

dynamics of a damped oscillator can be represented by a
Bloch-like equation for a single rotor in two dimensions. As
noted in Sec. II A, a parametric plot of ẋ(t) as a function of
x(t) is a decaying spiral in the phase plane (for underdamped
motion). The comparison provides insight towards developing
an easily visualized vector model of Bloch equation dynamics
for the trajectory of M(t) given by Eq. (10). An alternative
vector model is then also considered.

A. Bloch equation as a system of coupled oscillators

Any quantum N -level system can be represented as a system
of coupled harmonic oscillators [26], albeit requiring negative
or even asymmetric couplings. The Bloch equation is perhaps
particularly interesting, since it incorporates dissipation for the
most elementary case, i.e., two-level systems.
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To compare the Bloch equation to Eq. (5) for the damped
harmonic oscillator, first eliminate the inhomogeneous term
from either equation by the appropriate shift of coordinates,
as discussed previously. Differentiating Eq. (9) with respect
to time, writing � as the sum of diagonal matrix (�d)ii = Ri

and off-diagonal elements �od, and substituting Ṁ = −�M
in the resulting �od term gives, for �2 ≡ −�od�,

M̈(t) + �dṀ + �2M = 0, (56)

with

�2 = −
⎡
⎣�12�21 + �13�31 �13�32 + �12R2 �12�23 + �13R3

�31�23 + �21R1 �12�21 + �23�32 �13�21 + �23R3

�21�32 + �31R1 �31�12 + �32R2 �13�31 + �23�32

⎤
⎦

OBE−→ −

⎡
⎢⎣

−(ω2
2 + ω2

3

)
ω1ω2 + ω3R2 ω1ω3 − ω2R3

ω1ω2 − ω3R1 −(ω2
1 + ω2

3

)
ω2ω3 + ω1R3

ω1ω3 + ω2R1 ω2ω3 − ω1R2 −(ω2
1 + ω2

2

)
⎤
⎥⎦. (57)

Referring to the system of three coupled oscillators in
Fig. 3, the displacement ri of mass mi from equilibrium is
equal to Mi . The natural frequency of mi is (�2)ii , with
associated damping coefficient Ri multiplying componentMi .
For unit masses, the force equation for mi gives (�2)ii =
kii +∑j �=i kij and a simple solution for the kii . Up to this point,
a mechanical implementation of the oscillator system would
be possible. However, the coupling constants kij = −(�2)ij
are asymmetric, which is a distinguishing feature of two-level
systems with dissipation and cannot be implemented with a
system of springs or other mechanical contrivances.

The effect of asymmetric couplings can be seen more clearly
by keeping � intact throughout the previous derivation, giving

M̈(t) − �2M = 0. (58)

The elements of �2 are similar to those of �2. They differ
by the addition of R2

i to each diagonal element of −�2

and Ri�ij to each element of −(�)ij . This version of the
oscillator model is in the form of ideal, frictionless couplings
but is, nonetheless, damped. How might dissipation arise in a
“frictionless” system?

The couplings kij are still asymmetric. For a given positive
kij , a positive displacement of mass mj results in a positive

FIG. 3. The Bloch equation is shown in the text to model the
displacements, from equilibrium positions ri = 0, of a system of
three unit masses coupled by springs of stiffness kij . One model
identifies velocity-dependent damping terms. An alternative model is
expressed as an ideal frictionless system that is, nonetheless, damped.
Asymmetric couplings kij �= kji provide a dissipative mechanism
in both models. The mechanical springs depicted in the figure are
therefore only an analogy.

force on mi . The resulting positive displacement of mi provides
a different force on mj due to kji �= kij . Energy transferred
from mj to mi is not reciprocally transferred back from mi to
mj and the motion is quenched. Asymmetric couplings can act
as a negative feedback mechanism to curb system oscillations
in the models represented in Eqs. (56) and (58), similar to
pushing a swing at a nonresonant frequency. Damped solutions
are obtained in both models even if Ri → 0 in the diagonal
elements of (�)2 or �2.

Further insight is obtained by converting the simple damped
oscillator to a system of coupled first-order differential equa-
tions, i.e., in the same format as the Bloch equation. Defining
a two-element vector r with components r1 = x − g/ω2

0 and
r2 = ẋ gives

ṙ(t) = −
(

0 −1
ω2

0 2b

)
r(t) = −�̃r(t) (59)

with solution r(t) = e−�̃t r(0). The propagator is easily calcu-
lated directly or deduced using the solution in Eq. (6). Either
way, the action of the propagator on any initial state r(0) is a
decaying spiral in the (r1,r2) plane, as discussed previously.
One might then wonder whether there is a similarly simple
vector model of system dynamics for the Bloch equation.

B. Bloch equation dynamics: Simple limiting cases

As a point of departure, consider first the OBE. For simple
limiting cases, the dynamics are already well known and
readily visualized. In the absence of relaxation, i.e., all Ri = 0,
any magnetization vector M rotates about the total effective
field ωe at constant angular frequency ωe. The time evolution of
a vector under the action of the propagator has a simple solution
in a coordinate system rotated to align one of the axes with
the effective field. The component of M along ωe is constant
and the components in the plane perpendicular to ωe rotate at
angular frequency ωe in the plane. By contrast, the solution for
each component Mi(t) in the standard (x1,x2,x3) coordinate
system is more complicated and it is not immediately apparent
by inspection that the solution is a rotation.

If the relaxation is switched on with equal rates Ri = R

(i = 1, 2, 3), the diagonal relaxation matrix R1 commutes
with the remaining rotation matrix. The simplification it affords
has not been acknowledged in any of the previously cited
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FIG. 4. Trajectories for initial vector M0 acted upon by propagator e−�t are displayed in the {s̃1,s̃2,s̃3} coordinates developed as the natural
system for describing propagator dynamics. The component of M0 along s̃1 decays at the rate R̄ − z1, while components in the (s̃2,s̃3) plane
rotate in the plane and decay at the rate R̄ + z1/2. The different panels represent different M0, fields ωe, transverse relaxation rate R2, and
longitudinal relaxation rate R3, with details of the predicted system evolution described in more detail in the text. Physical parameters are
in units of inverse seconds. (a) Initial state M0 = (−1,1,1). Physical parameters ωe = (0,0,104), R2 = 400, and R3 = 200 give coordinates
s̃1 = ẑ, s̃2 = ŷ, and s̃3 = x̂ and the well-known rotation about ωe = ω3 followed by longitudinal and transverse relaxation. (b) Initial state
M0 = (1, − 1,0). Parameters ωe = (5000,0,0), R2 = 400, and R3 = 200 lead to coordinates s̃1 = x̂, s̃2 = (0, − 1,.02), and s̃3 = ẑ. Rotation
is also about ωe for ω3 = 0 (on resonance), but now s̃2 is not perpendicular to s̃3, so the rotation in the plane transverse to s̃1 is not at constant
angular frequency. (c) Parameters ωe = (0,300,300), R2 = 100, and R3 = 1 lead to nonorthogonal oblique coordinates s̃1 = (0.12,0.69,0,71),
s̃2 = (0.99,0.04,0.12), and s̃3 = (0.,0.72, − 0.70). Initial M0 = (−0.12,0.69,0,71) is normal to the (s̃2,s̃3) plane, but has components in the
plane and along s̃1 in the oblique coordinate system, so spirals about s̃1 as shown. (d) InitialM = (−0.99,0.17,0) is orthogonal to s̃1. Parameters
ωe = (0,3000,3000), R2 = 1000, and R3 = 1 lead to nearly identical coordinates as in (c). Here M0 projects onto s̃1 in oblique coordinates
and therefore decays along this direction, resulting in the spiral as shown.

solutions. The solution is a simple dynamic scaling e−Rt of
the rotating vector M, as obtained by Jaynes [31] via a more
circuitous route. In addition, for ω12 = 0 and R1 = R2 �= R3,
the relaxation matrix still commutes with the rotation about
nonzero ω3. The evolution is then in terms of noninteracting
longitudinal and transverse components. We have exponential
decay e−R3t of component M3 and decay e−R2t of the trans-
verse component M12, which rotates at angular frequency ω3

in the plane perpendicular to ω3, as illustrated in Fig. 4(a).
In the case of pure relaxation, with all the field compo-
nents ωi = 0, the solution is a nonoscillatory exponential
decay e−Ri t for each component Mi along the coordinate
axis xi .

C. Bloch equation dynamics: A more general vector model

With the exception of the above simple cases, there has
been no analogous picture of system dynamics when the
rotation and relaxation do not commute. The combined,
noncommutative action of arbitrary fields and dissipation
rates appears to require something more complex. Yet the
simple visual model shown in Fig. 4(a), which is comprised
of independent relaxation and rotation elements, is readily
extended to the general case of arbitrary � when viewed in an
appropriate coordinate system. This requires the action of the
propagator e−�t on an arbitrary vector.

The eigensystem for � is considered in the sections that
follow, but one can substitute notation for the partitioned matrix
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�p in the expressions which are derived, since, as defined
in Eq. (32), the matrices differ by a constant R̄ times the
identity matrix. The difference in the eigenvalues is also R̄,
from Eqs. (24) and (25). Thus −� and −�p have the same
eigenvectors si ≡ zi . Simple analytical expressions for the
eigenvectors and other constituents of the model are derived
in Appendix F. Each (unnormalized) eigenvector, which can
assume different analytical forms depending on the scaling,
comprises the columns of adjA(si) = adjAp(zi), as derived in
Appendix B. This provides a useful method for calculating
an eigenvector, especially in symbolic form as a function of
matrix parameters.

1. One real and two complex-conjugate roots

The solution for each component Mi is known to be a
combination of oscillation and biexponential decay [6], as is
also evident from the propagator derived in Eq. (15). The under-
lying simplicity of the system dynamics can be demonstrated
starting with the eigensystem for � (or, alternatively, �p, as
noted above).

The real eigenvalue s1 of −� has a real eigenvector s1 which
can be used as one axis of a physical coordinate system, but
the complex roots s+ and s− = s∗

+ have associated complex
eigenvectors s+ and s− = s∗

+. Define the real vectors

s̃1 = s1, s̃2 = 1
2 (s+ + s−) = Re[s+],

s̃3 = − i

2
(s+ − s−) = Im[s+]. (60)

The eigenvectors above are most generally not orthogonal for
arbitrary �, but they are linearly independent, given the distinct
eigenvalues. The set {s̃1,s̃2,s̃3} of real vectors is then also
linearly independent and can be used as an alternative physical
basis for describing the system evolution. The new coordinate
system will most generally also be nonorthogonal (oblique).
System states and operators are transformed between bases in
the usual fashion by a matrix P comprised of the {s̃i} entered
as column vectors. The vector M̃ and the propagator in the
new basis are given by

M̃ = P −1M,

e−�̃t = P −1e−�tP = e−(P −1�P )t , (61)

with P invertible since the s̃i are linearly independent.
The potentially tedious process of calculating e−�̃t from

Eq. (61) can be bypassed, with e−�̃t deduced from the action
of � on its eigenvectors (see Appendix F). In terms of constants

s̃1 = −(R̄ − z1), s̃23 = −(R̄ + z1/2), (62)

and 	 of Eq. (22), the solutionM̃(t) = e−�̃tM̃(0) for the time
dependence of state vector M̃ in the new basis is found to be

M̃(t) =
⎛
⎝es̃1t 0 0

0 es̃23t 0
0 0 es̃23t

⎞
⎠

×
⎛
⎝1 0 0

0 cos 	t sin 	t

0 − sin 	t cos 	t

⎞
⎠M̃(0). (63)

Viewed in the {s̃i} coordinate system,M evolves according
to independent, commuting rotation and relaxation operators.
The component of M along s̃1 (i.e., M̃1) decays at the rate
s̃1 = R̄ − z1, while components in the (s̃2,s̃3) plane rotate in
the plane and decay at the rate s̃23 = R̄ + z1/2. Thus, even in
the most general case of three unequal rates R1, R2, and R3,
there emerges a single planar relaxation rate R2s and a new
longitudinal relaxation rate R1s defined as

R1s = |s̃1| = 1/T1s , R2s = |s̃23| = 1/T2s . (64)

Defining M̃(t) as the state M(t) − M∞ expressed in the
{s̃i} coordinates and working backward from Eq. (63) gives
the Bloch equation in this basis as

d

dt
M̃(t) + �̃M̃(t) = 0, �̃ =

⎛
⎝R1s 0 0

0 R2s 	

0 −	 R2s

⎞
⎠. (65)

The diagonal matrix consisting of the relaxation rates Ris

commutes with the matrix of off-diagonal elements. This
antisymmetric matrix comprised of ±	 generates a rotation
about s̃1 and one immediately obtains the solution given in
Eq. (63). This extends the result of Sec. V B for the simple
OBE with ω12 = 0 and R1 = R2 �= R3 to completely general
Bloch equations.

We should emphasize that one has considerable latitude in
the choice of s̃2 and s̃3, since all components in the plane they
define decay at the same rate. Rotating these coordinate axes in
the plane by any angle results in an equally valid set of axes for
representing the dynamics. The vectors s̃2 and s̃3 constructed
from a particular column in the coefficient matrices of Eq. (F7)
are related to axes constructed from one of the other columns
by a rotation (excepting when one of the columns returns the
irrelevant zero vector). By contrast, s̃1 defines the unique axis
for longitudinal decay, so the s̃1 chosen from different columns
must be related by a scale factor.

Note also that the rotation in the plane is not at a constant
angular frequency 	 unless s̃2 and s̃3 are orthogonal. A
component aligned with s̃2 rotates to s̃3 during a time defined
by the condition 	t = π/2 and then rotates from there to
−s̃2 in the same time. In an oblique coordinate system, the
rotations are through different angles in the same time, so
clearly the angular frequency of the rotation in physical space
is not constant.

Although Eq. (63) is perhaps reminiscent of a normal
mode analysis, recall that the normal mode coordinates are
the eigenvectors of −�, two of which are complex and hence
unphysical. The physical {s̃i} coordinate system is comprised
of linear combinations of the eigenvectors, which have distinct
eigenvalues. The {s̃i} as a set are therefore not the eigenvectors
of −� (although {s̃1} is, by definition).

2. Three real roots

In this case, all the eigenvectors are real and the new basis
is simply the eigenbasis {s1,s2,s3} obtained from the roots

si = −(R̄ − zi) (66)

defined in Eq. (24). The real roots zi are obtained for 	 2 < 0
in Eq. (22). Substituting 	 → iμ in Eq. (21) gives z2,3 =
−1/2z1 ∓ μ.
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The matrix � is obviously diagonal in its eigenbasis and,
by extension, so is the propagator in this basis. Thus

M̃(t) =
⎛
⎝es1t 0 0

0 es2t 0
0 0 es3t

⎞
⎠M̃(0). (67)

Each component of M along s̃i decays at the rate determined
by si . In contradistinction to the rates that emerge from the
oscillatory solutions, here, even in the typical case of equal
transverse ratesR1 = R2 and longitudinal rateR3, we find three
distinct rates

Ris = |si | = 1/Tis (68)

due to the coupling of the field with the relaxation processes.
Given e−�̃t as obtained in Eq. (63) or (67), the propagator

in the standard coordinate basis is e−�t = Pe−�̃tP −1 from
Eq. (61). One obtains a simple factored solution for the
propagator derived by different methods in Sec. III. The
physical interpretation of the dynamics is correspondingly
simple, with oscillation frequencies and decay rates hinging
upon the primary real root z1. The dependence of this root on
the fields and relaxation rates has been shown previously in
Fig. 2.

3. Degenerate roots

The vector model approach to obtaining the propagator is
only applicable to the case of distinct eigenvalues. Degenerate
eigenvalues do not give the linearly independent eigenvectors
necessary to define a new coordinate system. However, the
degeneracies are a relatively trivial component of the parameter
space, at least for the OBE, as shown in Fig. 1. Moreover, the so-
lution has to be continuous as the degeneracies are approached,
with a smooth transition from oscillatory, decaying solutions
to pure decay as one crosses the parameter-space boundary
identifying the degenerate solutions.

4. Discussion and representative examples

The solutions of Sec. III are represented in the standard
coordinate system, expressed in a general form for arbitrary
driving matrix �. Here they are applied to specific physical
examples applicable to the OBE, with R1 = R2. The trajec-
tories of initial states under the action of the propagator are
plotted to illustrate the underlying simplicity of the dynamics
and corroborate the alternative coordinate system that defines
the vector model. Parameters for the examples are chosen to
demonstrate the damping and rotation that are characteristic
of the dynamics for all but a small region of the parameter
space. A purely damped solution and model dynamics given
by Eq. (67) is rather featureless, by comparison. Unless stated
otherwise, the first column of adjAp is chosen to calculate the
eigenvectors and coordinate basis {s̃i}.

(a) Free precession ωe = (0,0,ω3). When the only field in
the rotating frame is the offset from resonance ω3, the matrix
�p is the sum of a diagonal relaxation matrix and the matrix
which generates a rotation about ω3. Since they commute,
the propagator factors into the product of exponential decay
and a rotation, leading to the standard interpretation of the
dynamics discussed previously in Sec. V B. This example also
provides a simple illustration of the more general vector model.

The eigenvalues are easily obtained as z1 = 2Rδ and z± =
−Rδ ± iω3. Then Eq. (F6) gives, upon identifying 	 ≡ ω3

and eliminating common factors in individual columns,

s̃1 ←
⎛
⎝0 0 0

0 0 0
0 0 1

⎞
⎠,

s̃2 ←
⎛
⎝ ω3 −3Rδ 0

3Rδ ω3 0
0 0 0

⎞
⎠,

s̃3 ←
⎛
⎝3Rδ ω3 0

−ω3 3Rδ 0
0 0 0

⎞
⎠.

(69)

As noted earlier, there is always only one unique nonzero
result for s̃1, with any apparent differences between columns
simply a matter of scale. The nonzero columns for s̃2 are
orthogonal, as are those of s̃3. The columns thus differ, as
expected, by a rotation in the (s̃2,s̃3) plane, in this case by
90◦. Choosing the second column and a left-handed rotation
by φ = tan−1(3Rδ/ω3) or the first column and a right-handed
rotation by 90◦ − φ gives the more typical result s̃2 = (0,1,0)
and s̃3 = (1,0,0) depicted in Fig. 4(a). The model dynamics
for an initial state M0 is a spiral about ωe, which is aligned
along the z axis, with rotation at constant angular frequency
ωe in the (x,y) plane, as required. The relaxation rate obtained
from Eq. (51) or (62) for z1 = 2Rδ , with λz = 2, is R1s = R3,
while the roots z± with λz = −1 give R2s = R2, as expected.

(b) On resonance ωe = (ω1,ω2,0). The effective field is
now in the transverse plane instead of along the z axis as
in the preceding example. Yet there has been no intuitive
representation of the resulting dynamics, analogous to the
preceding free precession example, for even this simple change
in the orientation of ωe. This is the simplest example for the
vector model. What does the model predict?

The root z1 = −Rδ , and 	 2 = ω2
e − (3/2Rδ)2 from

Eq. (G14). The associated eigenvector s̃1 is obtained by in-
spection from Eq. (F5), with s̃2 and s̃3 obtained from Eqs. (F6)
and (F7), giving

s̃1 =
⎛
⎝ω1

ω2

0

⎞
⎠, s̃2 =

⎛
⎝ −ω2

ω1

− 3
2Rδ

⎞
⎠, s̃3 =

⎛
⎝0

0
1

⎞
⎠. (70)

Thus, on resonance, the propagator still generates a spiral
about the effective field ωe = s̃1 with precession in the (s̃2,s̃3)
plane orthogonal to s̃1. However, as considered in Sec. V C 1,
the rotation frequency driven by 	 is not constant, since s̃2

is not perpendicular to s̃3. The deviation from orthogonality,
determined by the third component of s̃2, is small for fields that
are large compared to Rδ . The respective decay rates R1s and
R2s are R2 and 1/2(R2 + R3), using λz = −1 and λz = 1/2 as
determined from z1 and −z1/2. Components along s̃1, i.e.,
in the (x,y) plane, decay at the usual spin-spin relaxation
rate, as would be expected. Components rotating in the plane
orthogonal to s̃1 experience equal influence, on average, from
their projection onto the longitudinal z axis defining ω3 and
their projection into the (x,y) plane, so one might predict
from the model that they decay at the average of the usual
spin-spin and longitudinal relaxation rates. These values for
the decay rates have been obtained previously as elements of
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the solution in the standard coordinate system [6] without the
physical interpretation presented here.

The trajectory for an initial state M0 due to the action of
propagator e−�t with ωe = (ω1,0,0) and nonzero relaxation is
shown in Fig. 4(b). Values of the parameters are given in the
caption. For nonzero ω2, the figure is simply rotated about the
z axis by an angle φ = tan−1(ω2/ω1). The state M0 has been
chosen with equal components parallel and orthogonal to ωe

to most clearly illustrate the dynamics predicted by the vector
model. The slight misalignment between s̃2 and the y axis,
which makes s̃2 and s̃3 nonorthogonal, is evident in the figure
and becomes more prominent as the magnitude of the field ω12

is reduced relative to Rδ .
(c) Off resonance general ωe. Most generally, s̃1 is not

aligned with ωe. Dividing column j of the matrix in Eq. (F5) by
(nonzero) ωj quantifies the degree to which s̃1 deviates from
ωe due to the coupling between the fields and the relaxation
rates Ri . The result is an expression of the form s1 = ωe + δv,
where the vector δv is comprised of the second term in each
row of the j th column divided by ωj .

In addition, s̃1 is typically not orthogonal to the (s̃2,s̃3)
plane. One then has to further modify intuitions developed
from orthogonal coordinate systems. For example, in Fig. 4(c),
M0 is aligned with the normal to the (s̃2,s̃3) plane. It therefore
has no orthogonal projection in the plane and might naively
be expected to have no evolution in the plane. However, s̃1

is distinctly different from the normal and M0 is the vector
sum of a component along s̃1 and a component parallel to the
plane, which are the quantities relevant for the vector model.
As shown in the figure, the parallel component rotates and
decays in the plane while the component along s̃1 strictly
decays. Similarly,M0 orthogonal to s̃1 as in Fig. 4(d) nonethe-
less has a component along s̃1 in the oblique coordinates.
This component decays to generate the spiral shown in the
figure.

Contrast this with the dynamics viewed in standard coor-
dinates, where the solution for each component Mi(t) is an
oscillation combined with relaxation at two separate rates. As
in simpler examples, it can be decoupled into two independent
dynamical systems, one of which rotates in a plane and decays
at one rate and another which decays along a fixed axis, albeit
in an oblique coordinate system. The deviation of s̃1 from the
normal to the plane is quantified in Appendix F for ω12 of either
the x or y phase and also for ω1 = ω2 = ω3.

D. Alternative vector model

The Bloch equation, considered here in matrix form, is
typically represented in vector form. Its physics is the torque
on a magnetic moment in a magnetic field subject to relaxation
of the magnetization. The effects of this physics on the OBE
solution can be made more explicit by returning to the original
vector operations, motivated by the treatment by Jaynes [31]
for the rotation of a vector about the field.

Partition �p into its diagonal elements Rip and off-diagonal
ωi , writing �p = Rp + �. The diagonal matrix Rp scales each
component Mi of a vector M by Rip and � implements the
cross product (−ωe×). According to Eq. (30), the propagator
acting onM generates three separate vectors vn = �n

pM (n =

0,1,2), which can be represented starting with v0 = M as

�pM = (Rp + �)v0

= (RpM) − (ωe × M)

= v1,

�2
pM = (Rp + �)v1

= (R2
pM
)− Rp(ωe × M) − ωe × (RpM)

+ωe × (ωe × M)

= (R2
pM
)− Rp(ωe × M) − ωe × (RpM)

+ωe(ωe · M) − ω2
eM

= v2. (71)

Each succeeding vn is a nonuniform scaling of the previous
vn−1 added to a vector (vn−1 × ωe) that is orthogonal to vn−1.
The time dependence of vn is given by the associated term
an(t)e−R̄t found in Eqs. (37)–(39). The an(t) are factored as
the product of a matrix W (z1) and vector u(t). Each an(t) is
merely a different linear combination of the same three simple
functions ui(t) that comprise the components of u, weighted
according to the corresponding elements from row n of the
matrix W . A given vn(t) thus maintains a fixed orientation,
changing length with a time dependence consisting of the
different weightings of the ui(t) for different vn. The trajectory
M(t) =∑n vn(t) can thus be represented in terms of the
decaying oscillations of three vectors fixed in place.

Alternatively, expand (1,�p,�2
p)W (z1)u(t) and group terms

of the same time dependence ui(t). The propagator applied to
M gives three different linear combinations of the vn, with a
time dependence ui(t) for the ith combination. The resulting
interpretation of M(t) is similar to the preceding paragraph,
but the functional form of the decaying oscillations is simpler
using this different set of vectors.

VI. CONCLUSION

A more comprehensive solution of the Bloch equation has
been presented together with intuitive visual models of its dy-
namics. The solution is valid for arbitrary system parameters,
yet is simpler than previous solutions. It can be expressed as
the product of three separate terms: one which depends directly
on the physical parameters of the problem through the driving
matrix �, a term that depends on its eigenvalues, and a term that
gives the time dependence, which in turn is solely a function
of the eigenvalues. Moreover, the time evolution of the system
as a function of the physical parameters has been made more
explicit and apparent.

System dynamics depend critically on the eigenvalues, with
(i) oscillatory, underdamped evolution for one real and two
complex-conjugate values, (ii) nonoscillatory, overdamped
evolution for three real values, and (iii) nonoscillatory, crit-
ically damped evolution for doubly or triply degenerate (real)
values. The damping rates and the frequency driving the
oscillatory behavior have been reduced to simple functions of
a primary real eigenvalue that is obtained as a straightforward
function of the system parameters. For the conventional Bloch
equation, simple quantitative relations have been derived that
delineate the three categories of dynamical behavior in terms
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of the physical parameters. A linear relation has also been
derived in this case relating critical system parameters to
the primary eigenvalue, which provides a straightforward
graphical realization of the damping rates and frequency for a
given physical configuration. The damping rates are a function
of the field parameters, providing some leeway for controlling
the dissipative process.

An intuitive dynamical model developed here transforms
the general Bloch equation to a frame in which damping
commutes with a rotation, providing a propagator for the time
evolution of the system that is the product of a rotation times a
decay, in either order. The decay rates in this frame result from
the interaction and coupling of the fields with the spin-lattice
and spin-spin relaxation processes. The model was motivated
by well-known visual models for simple conventional cases
such as equal relaxation rates or free precession (no fields
transverse to the longitudinal z axis). The system state in such
cases rotates about the effective field, with concurrent exponen-
tial decay of the longitudinal and transverse components. The
extended model retains the same essential features: rotation,
exponential decay of the invariant component in the rotation
(analogous to the longitudinal axis), and a separate decay of
the rotating components in an analogous transverse plane. The
model also includes solely damped solutions (i.e., no rotation).
An alternative vector model has also been provided, as well as
a representation of the Bloch equation as a system of coupled,
damped harmonic oscillators. The net result of the solutions
and models is a framework for more direct physical insight
into the dynamics of the Bloch equation.
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APPENDIX A: PROOF OF EQ. (27)

Consider a general 3 × 3 matrix ϒ with characteristic
polynomial p(s) = det(s1 − ϒ) =∑3

j=0 cj s
j and polynomi-

als pj (s) derived from it as defined in Eq. (31). The claim is
that

adj(s1 − ϒ) =
2∑

j=0

pj (s)ϒj . (A1)

Note first that
∑2

j=0 pj (s)ϒj =∑2
j=0 pj (ϒ)sj , as is easily

verified by expanding the terms. Then Eq. (12) for the inverse
matrix (s1 − ϒ)−1 = adj(s1 − ϒ)/p(s) gives

p(s)1 = (s1 − ϒ)adj(s1 − ϒ)

= s

2∑
j=0

pj (s)ϒj − ϒ

2∑
j=0

pj (ϒ)sj . (A2)

For the j = 0 term, make the substitution sp0(s)1 = [p(s) −
c0]1 using Eq. (31). Similarly, ϒp0(ϒ) = p(ϒ) − c01. How-
ever, p(ϒ) = 0 from the Cayley-Hamilton theorem and we are
left with p(s) on both sides of the equation plus the remaining
sum, which is easily shown to equal zero upon evaluating
p1(x) = c2 + x2 and p2(x) = 1 for x = s and x = ϒ .

APPENDIX B: ALTERNATIVE METHOD FOR
CALCULATING AN EIGENVECTOR

Equation (A2) suggests the modest result, at the least not
widely recognized, that an eigenvector υ corresponding to a
distinct eigenvalue υ of operator ϒ can be obtained as

υ ∈ adj(υ1 − ϒ), (B1)

seen as follows. The characteristic polynomial p(s) equals zero
for eigenvalue s = υ. Then, starting with Eq. (A2), we have

p(s)1 = (s1 − ϒ)adj(s1 − ϒ),

0 = (υ1 − ϒ)adj(υ1 − ϒ), (B2)

∴ ϒ adj(υ1 − ϒ) = υ adj(υ1 − ϒ).

Only a single column of the adjugate matrix is required, so
the method is fairly efficient. However, the trivial zero eigen-
vector solution can be one of the columns, requiring further
completion of the adjugate to obtain the desired eigenvector.

For the case of degenerate eigenvalues, the method is
incomplete. When the nullity (dimension of the null space)
of (υ1 − ϒ) equals the order of the degeneracy k (i.e., the rank
equals the dimension of the operator n minus k), there are k

distinct eigenvectors, but the method fails, returning only the
zero eigenvector. If there is not a complete set of eigenvectors
(the degenerate eigenvalue is defective in that the nullity is less
than k) and the rank is greater than (n − k), the method appears
to return the eigenvectors that exist, but one rarely needs these,
since the matrix ϒ is not diagonalizable in this case.

APPENDIX C: CUBIC POLYNOMIALS WITH
REAL COEFFICIENTS

The standard solutions for the three roots of Eq. (19), cast
here in terms of

�± =
[
−c̃0/2 ±

√
(c̃0/2)2 + (c̃1/3)3

]1/3
, (C1)

are

z =
{
�+ + �−, − �+ + �−

2
± √−3

�+ − �−
2

}

= {z1,z±}. (C2)

These solutions can be consolidated in a convenient form that
does not appear to have been employed heretofore. Substi-
tuting (�+ − �−) = [(�+ + �−)2 − 4�+�−]1/2 and noting
�+�− = −c̃1/3 gives

z1 = �+ + �−,

z± = −1

2
z1 ± i

√
3

√(z1

2

)2
+ c̃1

3

= −1

2
z1 ± i	

(C3)

in terms of a discriminant

	 2 = 3[(z1/2)2 + c̃1/3]. (C4)

Any polynomial with real coefficients has at least one real root.
Therefore, 	 2 > 0 gives one real and two complex-conjugate
roots, with three real roots resulting from 	 2 � 0.
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One can then employ simple forms for z1 [37,38]. The
number of conditional dependences relating z1 in the cited
references to the signs and relative magnitudes of c̃1 and c̃0 is
simplified here in terms of

α = |c̃1/3|, β = |c̃0/2|, γ = β

α3/2
. (C5)

Then the roots can be calculated according to their domain of
applicability as follows: For c̃1 > 0,

ϕ ≡ 1
3 sinh−1 γ,

x1 ≡ sgn(c̃0) sinh ϕ,

z1 = −2
√

αx1,

	 =
√

3α
(
x2

1 + 1
) =

√
3α cosh ϕ,

z± = √
αx1 ± i	 ;

(C6a)

for c̃1 < 0 and γ � 1,

ϕ ≡ 1
3 cosh−1 γ,

x1 ≡ sgn(c̃0) cosh ϕ,

z1 = −2
√

αx1,

	 =
√

3α
(
x2

1 − 1
) =

√
3α sinh ϕ,

z± = √
αx1 ± i	

→ √
αx1, γ = 1;

(C6b)

for c̃1 < 0 and γ � 1,

ϕ ≡ 1
3 cos−1 γ,

x1 ≡ sgn(c̃0) cos ϕ,

z1 = −2
√

αx1,

	 = i

√
3α
(
1 − x2

1

) = i
√

3α sin ϕ

= iμ,

z± = √
αx1 ± μ

(C6c)

or, alternatively,

ϕ ≡ 1
3 sin−1 γ,

x1 ≡ sgn(c̃0) sin ϕ,

z1 = +2
√

αx1,

	 = i

√
3α
(
1 − x2

1

) = i
√

3α cos ϕ

= iμ,

z± = −√
αx1 ± μ;

(C6d)

and for c̃1 = 0,

z1 = −sgn(c̃0) 3
√

|c̃0|,
z± = − 1

2z1(1 ± i
√

3).
(C6e)

For c̃1 > 0 or for c̃1 < 0 and γ > 1, there is one real root and
complex-conjugate roots z±. For c̃1 < 0 and γ < 1, there are
three real roots. When γ = 1, both Eqs. (C6b) and (C6c) give
ϕ = 0 = 	 and two degenerate roots z+ = z−. Equation (C6d)
reorders the roots relative to Eq. (C6c), so the nondegenerate
root for the case γ = 1 is one of the z±. Results for c̃1 = 0
are straightforwardly obtained from Eqs. (C2) and (21), or
using the expressions in (C6a) and (C6b), with sinh−1 γ →
cosh−1 γ → ln(2γ ) in the limit γ → ∞. Terms then result
that are multiplied by

√
α, canceling the singularity at c̃1 = 0.

For the case c̃1 = 0 = c̃0, there are three equal roots zi = 0.

APPENDIX D: CALCULATION OF e−�p t

1. First-order pole

Consider the case of one real root z1 and two complex-
conjugate roots z2,3 = −1/2z1 ± i	 , as given by Eq. (21),
with 	 2 = 3(z1/2)2 + c̃1 > 0. Two of the terms in Eq. (35)
for the Cayley-Hamilton coefficients aj (t) are therefore also
complex conjugates of each other, of the form w + w∗ =
2 Re(w) for the sum of w and its complex conjugate. Then

aj (t) = qj (z1)

q ′(z1)
ez1t + 2 Re

[
qj (z2)

q ′(z2)
ez2t

]
, (D1)

with q ′(zi) =∏j �=i(zi − zj ), as discussed in Sec. III D. Eval-
uating the q ′(zi) and using Eq. (22) for 	 2 gives

q ′(z1) = (z1 − z2)(z1 − z3)

= ( 3
2z1
)2 + 	 2

= 3z2
1 + c̃1,

q ′(z2) = (z2 − z1)(z2 − z3)

= −q ′(z1)(z2 − z3)/(z1 − z3)

= −(3z2
1 + c̃1)2i	/

(
3
2z1 + i	

)
.

(D2)

The qj (z) are defined in Eq. (31), giving

q0(z) = c̃1 + z2, q1(z) = z, q2(z) = 1 (D3)

for a cubic polynomial in the standard canonical form of
Eq. (19). Evaluating Eq. (D1) gives

a0 ∼ ez1t (z2
1 + c̃1) + e−z1t/2

[
2z2

1 cos 	t − c̃1z1
sin 	t

	

]
,

a1 ∼ z1e
z1t + e−z1t/2

[
− z1 cos 	t +

(
3

2
z2

1 + c̃1

)
sin 	t

	

]
,

a2 ∼ ez1t − e−z1t/2

[
cos 	t + 3

2
z1

sin 	t

	

]
, (D4)

with a common factor (3z2
1 + c̃1)−1 multiplying each ai(t).

Arranging coefficients of each time-dependent term in a
matrix gives the result in Eq. (37). All three roots are real when
	 2 < 0, which is the case for c̃1 < 0 and γ < 1. Then 	 →
iμ in Eq. (37), with μ2 = |3(z2

1/2) + c̃1| and c̃1 = −|c̃1|.
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2. Second-order pole

The case 	 = 0 resulting from c̃1 = −3(z1/2)2 in Eq. (22)
gives doubly degenerate real roots z2 = z3 = −z1/2 and
q(z) → (z − z1)(z − z2)2. The residue at z = z2 in Eq. (29) for
the Cayley-Hamilton coefficients aj (t) requires the derivative
of eztqj (z)/(z − z1) with respect to z, evaluated at z = z2.
Calculating the residue according to Eq. (16) and substituting
z2 = −z1/2 gives

a0(t) = e−z1t/2
(

8
9 + 1

3z1t
)
,

a1(t) = e−z1t/2
(− 4

9z−1
1 + 1

3 t
)
,

a2(t) = −e−z1t/2( 4
9z−2

1 + 2
3 tz−1

1

)
.

(D5)

The contribution from the first-order pole at z1 is obtained as
before from the simple-pole term of Eq. (37), i.e., the first
column of W1(z1) and the first element of u1(t) remain the
same.

3. Third-order pole

When c̃0 = 0 = c̃1, the characteristic polynomial q(z) →
z3, with a triply degenerate real root z1 = 0. The residue at
z = 0 in Eq. (29) for the Cayley-Hamilton coefficients aj (t)
is one-half the second derivative of qj (z)ezt with respect to z,
evaluated at z = 0, giving

aj (t) = [ 1
2q ′′

j (z) + tq ′
j (z) + 1

2 t2q(z)
]
ezt |z=0,

a0(t) = 1, a1(t) = t, a2(t) = 1
2 t2. (D6)

APPENDIX E: EXISTENCE OF DEGENERATE ROOTS

The characteristic polynomial for the case R1 = R2 has
degenerate roots for D(c̃0,c̃1) = 0 [see Eq. (46)], which
requires c̃1 < 0. The special case c̃0 = 0 = c̃1 discussed in
Sec. IV A givesω2

3 = 1 andω2
12 = 8, normalized toR2

δ /3. More
generally, scale ω2

3 and ω2
12 in terms of the same normalization

as

ω2
3 = λ3R

2
δ /3, (E1)

where λ3 � 0, and

ω2
12 = (η − λ3 + 9/4)R2

δ /3. (E2)

Then D(c̃0,c̃1) = 0 gives

η3 + aηη + bη = 0, (E3)

with

aη

3
= −

(
3

2

)4

(8λ3 + 1),

bη

2
=
(

3

2

)6

(8λ2
3 + 20λ3 − 1).

(E4)

The roots η1(λ3) and η±(λ3) of Eq. (E3) can then be obtained
using Eqs. (C6) with the appropriate substitution of variables.
Only those solutions such that ω2

12 � 0 (i.e., ω12 is real) are
of interest. The results, outlined in detail below, are that (i)
there are no degenerate roots if ω2

3 > R2
δ /3 and (ii) for each

ω3 satisfying 0 � ω2
3 � R2

δ /3, there are two values of ω2
12 that

give degenerate roots.
Note for use in what follows that

· aη < 0 for all λ3 � 0
∴ no Eq. (C6a) solutions for η

· √
αη = √|aη/3| = 9

4

√
8λ3 + 1

· bη = 0 for λ3 = 3
4 (

√
3 − 5

3 ) ≡ λb ≈ 0.05

· D(aη,bη) = 312

26
λ3(λ3 − 1)3

· γη(λ3) = |8λ2
3 + 20λ3 − 1|

(8λ3 + 1)3/2
[see Eq. (C5)]

γη(0) = 1, γη(λb) = 0, γη(1) = 1.
(1) If λ3 > 1, then

· D(aη,bη) > 0, equivalent to γη > 1
· there is one real solution η1 from Eq. (C6b)
· Define ϕη = 1

3 cosh−1 γη

· bη > 0
· η1 = −2

√
αη cosh ϕη

cosh ϕη � 1 for all ϕη,
2
√

αη > 9
2 (3)

∴ η1 < − 27
2

⇒ ω2
12 ∼ (η1 + 9

4 − λ3) < − 45
4 − λ3 < 0

Therefore, there is no real ω12 such that Eq. (19) has
degenerate roots for ω2

3 = λ3 R2
δ /3 > R2

δ /3
(2) If λ3 � 1, then

· ω2
12 ∼ (η + 9

4 − λ3) � 0 for η � 0
· D(aη,bη) � 0, equivalent to γη � 1
· there are three real solutions η1,η± from Eq. (C6d)
· Define ϑ = 1

3 sin−1(γη)
(a) If λb � λ3 � 1, then

0 � γη � 1,
0 � ϑ � π/6,
bη � 0

· η1 = 2
√

αη sin ϑ

∴ η1 � 0
⇒ ω2

12 > 0
· η± = −√

αη sin ϑ ± √
3(αη − αη sin2 ϑ)1/2

= ±2
√

αη sin(π/3 ∓ ϑ)
∴ η+ � 0
⇒ ω2

12 > 0
(b) If 0 � λ3 � λb, then

1 � γη � 0,
π/6 � ϑ � 0,
bη � 0

· η1 = −2
√

αη sin ϑ

∴ − 9
4 � η1 � 0

⇒ ω2
12 ∼ η1 + 9

4 − λ3 � 0,
since η1 ∈ [− 9

4 ,0] as λ3 ∈ [0,λb]
· η± = √

αη sin ϑ ± √
3(αη − αη sin2 ϑ)1/2

= 2
√

αη sin(ϑ ± π/3)
∴ η+ � 0
⇒ ω2

12 > 0
Therefore, there are two real ω2

12 such that Eq. (19) has
degenerate roots for 0 � ω2

3 � R2
δ /3

The solutions for ω2
12 become equal at ω2

3 = R2
δ /3, as shown

in Fig. 1, corresponding to the case c̃1 = 0 = c̃0. There is
then a threefold-degenerate root z = 0 of Eq. (19). Recall
that a solution to D(c̃0,c̃1) = 0 for real c̃0 and c̃1 requires
c̃1 = ω2

12 + ω2
3 − 3R2

δ � 0, which is readily verified for the
solutions obtained above. Scaling c̃1 according to Eqs. (E1)
and (E2), dividing by R2

δ /3, and using the maximum value
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ηmax = √
αη = 27/4 at λ3 = 1 gives

c̃1 ∼ (η − λ3 + 9
4 ) + λ3 − 9 � 27

4 + 9
4 − 9 = 0. (E5)

APPENDIX F: VECTOR MODEL

There is a simple physical interpretation for the action of the
propagator e−�t when, as is most common, the matrix � has
three distinct eigenvalues. Supplementary details of the model
introduced in Sec. V C are presented here. Consider the case of
one real eigenvalue and two complex-conjugate eigenvalues.
Results for the other possibility, that of three real eigenvalues,
are obtained directly from Eq. (F5) in what follows.

The eigenvalues of −� are the roots s1 = z1 − R̄ and s2,3 ≡
s± = −z1/2 ± i	 − R̄, obtained from Eq. (24), with real z1

given in Eqs. (C6). The associated eigenvectors are s1 and the
complex-conjugate pair s±. The relation between s± and the
real vectors s̃2 and s̃3 defined in Eq. (60) is

s̃2 = 1
2 (s+ + s−), s̃3 = − i

2
(s+ − s−),

(F1)
s+ = s̃2 + i s̃3, s− = s̃2 − i s̃3.

Defining s̃1 ≡ s1 gives a set s̃i of three linearly independent
vectors that can be used as an alternative basis for representing
arbitrary system states. We then have

−� s̃2 = 1
2 (s+s+ + s−s−) = 1

2 (s+s+ + s∗
+s∗

+),

e−�t s̃2 = 1
2 (es+t s+ + es∗

+t s∗
+) = Re[es+t s+]

= e−(R̄+z1/2)tRe[ei	t (s̃2 + i s̃3)]

= e−(R̄+z1/2)t (cos 	t s̃2 − sin 	t s̃3). (F2)

Similarly,

e−�t s̃3 = − i

2
(es+t s+ − es∗

+t s∗
+) = Im[es+t s+]

= e−(R̄+z1/2)t Im[ei	t (s̃2 + i s̃3)]

= e−(R̄+z1/2)t (sin 	t s̃2 + cos 	t s̃3). (F3)

These relations, together with e−�t s̃1 = es1 s̃1, yield the propa-
gator e−�̃t for the evolution of statesM̃ =∑i M̃i s̃i expressed
in the {s̃i} basis, as given in Eq. (63).

As noted in Eq. (61), the matrix P generated from the {s̃i}
entered as column vectors transforms from the {s̃i} basis to the
standard basis, with P −1 = adjP/det P giving the desired M̃
starting with M in the standard basis. One easily shows that
det P = s̃1 · (s̃2 × s̃3) and row i, column l of adjP is (s̃j × s̃k)l
for cyclic permutation of i = 1, j = 2, and k = 3 to obtain

P −1 = 1

s̃1 · (s̃2 × s̃3)

⎡
⎣· · · (s̃2 × s̃3) · · ·

· · · (s̃3 × s̃1) · · ·
· · · (s̃1 × s̃2) · · ·

⎤
⎦. (F4)

The eigenvectors needed to construct the real basis are most
readily obtained as any column of adjA(si) = adj(si1 + �)
for each eigenvalue si (see Appendix B). Performing the
straightforward calculation gives the following result for the
eigenvectors, with the left arrow signifying that the columns
of the matrix map to si :

si ← adjA(si) =
⎡
⎣−�23�32 + (si + R2)(si + R3) �13�32 − �12(si + R3) �12�23 − �13(si + R2)

�31�23 − �21(si + R3) −�13�31 + (si + R1)(si + R3) �13�21 − �23(si + R1)
�21�32 − �31(si + R2) �31�12 − �32(si + R1) −�12�21 + (si + R1)(si + R2)

⎤
⎦

OBE−→
⎡
⎣ω2

1 + (si + R2)(si + R3) ω1ω2 − ω3(si + R3) ω1ω3 + ω2(si + R2)
ω1ω2 + ω3(si + R3) ω2

2 + (si + R1)(si + R3) ω2ω3 − ω1(si + R1)
ω1ω3 − ω2(si + R2) ω2ω3 + ω1(si + R1) ω2

3 + (si + R1)(si + R2)

⎤
⎦. (F5)

The three different forms of a given si are therefore related
by a scale factor, despite perhaps appearing otherwise. The
scaling can be verified by calculating the eigenvectors in the
usual fashion as solutions to (si1 + �)si = 0. This system of
equations is overdetermined, by construction, so any one of
the three equations is a linear combination of the other two
and is redundant. We are free to assign any (nonzero) value
to one of the components, leaving two equations and two
unknowns. There are three different but equivalent forms for
the eigenvector solution depending on which two equations
are chosen. Setting the third component equal to one gives an
expression for the other two components involving a common
denominator. Scaling each eigenvector by the denominator of
its other two components gives the result in Eq. (F5).

For the OBE in the absence of relaxation (Ri = 0), � gener-
ates a rotation about ωe, as is well known. The real eigenvalue
of −� is s1 = 0 with eigenvector s1 = (ω1,ω2,ω3), obtained

by dividing column j of adjA(s1) by (nonzero) ωj . This is
the expected rotation axis for the resulting time evolution. If
ωe = 0, then � is already diagonal and the coordinates reduce
to the standard coordinate system as required.

We also have adjA(si) = adjAp(zi), since si = zi − R̄ and
Ri − R̄ = Rip. The real basis vectors s̃2,3 ≡ z̃2,3 are equal to
the respective real and imaginary parts of z+ = adjAp(z+)
according to Eq. (60), with z+ = −z1/2 + i	 . Then, using
Eq. (26) for adjAp(zi) in polynomial form and eliminating
common scale factors, the real basis vectors defining the
oblique coordinate system can be written concisely as

s̃1 = z̃1 ← A0p + A1pz1 + 1z2
1,

s̃2 = z̃2 ← A0p − A1p
z1

2
+ 1
[(z1

2

)2
− 	 2

]
,

s̃3 = z̃3 ← A1p − 1z1.

(F6)
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The result for z̃1 can be obtained directly from Eq. (F5) with
the substitutions si → zi and Ri → Rip for the corresponding
parameters associated with �p. One can readily deduce the
coefficient matrices A0p and A1p by comparing Eq. (F5) with
the polynomial form in Eq. (26), also given above in the
expression for s̃1. Recall that

∑
i Rip = 0 by construction in

the original matrix partitioning, so we can simplify terms
such as R2p + R3p → −R1p and its cyclic permutations. The
coefficients can also be obtained as simple functions of �p

using Eq. (27). For the OBE parameters, each coefficient matrix
is

A0p =
⎡
⎣ ω2

1 + R2pR3p ω1ω2 − ω3R3p ω1ω3 + ω2R2p

ω1ω2 + ω3R3p ω2
2 + R1pR3p ω2ω3 − ω1R1p

ω1ω3 − ω2R2p ω2ω3 + ω1R1p ω2
3 + R1pR2p

⎤
⎦,

A1p = −�p =
⎡
⎣−R1p −ω3 ω2

ω3 −R2p −ω1

−ω2 ω1 −R3p

⎤
⎦, (F7)

with R1p = R2p = Rδ and R3p = −2Rδ from Eq. (44).

1. Measures of obliquity

Bloch equation dynamics are simple in the oblique co-
ordinates of the model, consisting of independent rotation
and relaxation elements. This section provides examples that
quantify the degree to which the plane of rotation is oblique
to the axis z̃1 representing simple exponential decay. In what
follows, the first column of adjAp is arbitrarily chosen to
calculate the coordinate basis { z̃i}, for R1 = R2. Similar results
are obtained using any of the other columns.

a. Off-resonance ωe = (0,ω2,ω3)

Off-resonance, in contrast to the on-resonance example of
Sec. V C 4 b, z̃1 is neither aligned with ωe nor orthogonal to the
( z̃2, z̃3) plane. Calculating the z̃i as above provides the normal
to this plane, ñ23 = z̃2 × z̃3. Then

z̃1 =
⎛
⎝(z1 + Rδ)(z1 − 2Rδ)

ω3(z1 − 2Rδ)
−ω2(z1 + Rδ)

⎞
⎠ (F8)

and

ñ23 =
⎛
⎝ 3ω2ω3Rδ

−ω2
(
c̃1 − z1Rδ + z2

1 + R2
δ

)
−ω3

(
c̃1 + 2z1Rδ + z2

1 + 4R2
δ

)
⎞
⎠ (F9)

using 	 2 = 3/4z2
1 + c̃1 from Eq. (22) in the expression for s̃2.

Although the normal bears little resemblance to z̃1, let us scale
z̃1 by fs = −(ñ23)1/( z̃1)1 so that the first component ( z̃1)1 →
−(ñ23)1. For the other two components, straightforward al-
gebra gives the relation fs z̃1 − ñ23 ∝ q(z1), the characteristic
polynomial for −�p, which is zero when evaluated at its root
z1. Thus, within a scale factor or, equivalently, when both both
vectors are normalized, we have

ñ23 =
⎛
⎝−( z̃1)1

( z̃1)2

( z̃1)3

⎞
⎠. (F10)

b. Off-resonance ωe = (ω1,0,ω3)

Similarly, for ω2 = 0,

z̃1 =
⎛
⎝ω2

1 + (z1 + Rδ)(z1 − 2Rδ)
ω3(z1 − 2Rδ)

ω1ω3

⎞
⎠ (F11)

and

ñ23 = −
⎛
⎝ ω1ω3

ω1(z1 + Rδ)
1
4 (z1 + 4Rδ)2 + 	 2 − ω2

1

⎞
⎠. (F12)

Scaling z̃1 by fs = −(ñ23)2/( z̃1)2 gives fs z̃1 − ñ23 ∝ q(z1) for
components 1 and 3, so

ñ23 =
⎛
⎝ ( z̃1)1

−( z̃1)2

( z̃1)3

⎞
⎠ (F13)

within a scale factor.

c. Case ω1 = ω2 = ω3 ≡ ω

In this case,

z̃1 =
⎛
⎝ω2 + (z1 + Rδ)(z1 − 2Rδ)

ω(ω + z1 − 2Rδ)
−ω(ω + z1 + Rδ)

⎞
⎠ (F14)

and

ñ23 = −
⎛
⎝

ω(2ω − 3Rδ)
1
4 (z1 − 2Rδ)2 + ω(z1 + Rδ) + 	 2 − ω2

1
4 (z1 + 4Rδ)2 − ω(z1 + Rδ) + 	 2 − ω2

⎞
⎠. (F15)

Scaling z̃1 by fs = (ñ23)1/( z̃1)2 gives both fs( z̃1)1 − (ñ23)2

and fs( z̃1)3 − (ñ12)3 proportional to q(z1), so the vectors can
be scaled to satisfy

ñ23 =
⎛
⎝( z̃1)2

( z̃1)1

( z̃1)3

⎞
⎠. (F16)

APPENDIX G: SOLUTION VERIFICATION

The solutions are evaluated here for R1 = R2 using a
representative set of limiting cases that are readily solved by
other methods to check the solutions.

1. Three distinct roots

Three examples are presented representing the separate
cases c̃0 = 0 and c̃1 = 0.

a. Case c̃0 = 0 and c̃1 �= 0

According to the defining relations for c̃0 and c̃1 in
Eq. (45), the condition c̃0 = 0 implies ω2

12 = 2R2
δ (1 + 1

3λ3),
using Eq. (3) for ω2

e and Eq. (47) for ω3. Then

c̃1 =
{
R2

δ (λ3 − 1), Rδ �= 0
ω2

e , Rδ = 0.
(G1)

The roots of Eq. (19) are easily obtained, giving

z1 = 0, 	 = √
c̃1. (G2)
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There are two cases, depending on the sign of c̃1.
Case (i): c̃1 > 0. Equation (37) gives

e−�pt = 1 − �p

	
sin 	t +

(
�p

	

)2

(1 − cos 	t). (G3)

There is no exponential decay contribution due to this term,
with the overall factor e−R̄t in the final expression for e−�t

providing a single system decay rate R̄.
Example 1. Choose Rδ = 0 to obtain c̃0 = 0, c̃1 = ω2

e , and
	 = ωe. Then Eq. (G3) represents a rotation about the field
ωe.

The propagator UR for a rotation about ωe is readily
obtained by transforming to a coordinate system with the new
z axis aligned with ωe, rotating by angle −ωet about this
axis, and then transforming back to the original coordinates.
Specifying the orientation of ωe in terms of polar angle θ and
azimuthal angle φ relative to the z and x axes, respectively,
one has UR = Uz(−φ)Uy(−θ )Uz(−ωet)Uy(θ )Uz(φ) in terms
of the elementary operators Uy and Uz for rotations about the
y and z axes, respectively. Then UR provides a verification of
the Eq. (G3) result upon substituting cos φ = ω1/ω12, sin φ =
ω2/ω12, cos θ = ω3/ωe, and sin θ = ω12/ωe.

Case (ii): c̃1 < 0. For λ3 < 1 gives 	 → iμ = i
√|c̃1| and

e−�pt = 1 − �p

μ
sinh μt +

(
�p

μ

)2

(cosh μt − 1). (G4)

Example 2. Choose ω2
1 = 2R2

δ , ω2 = 0, and λ3 = 0 to obtain
c̃0 = 0, c̃1 = −R2

δ , and μ = Rδ . Then Eq. (G4) gives

e−�pt =
⎛
⎝e−Rδt 0 0

0 2 − eRδt
√

2(1 − eRδt )
0 −√

2(1 − eRδt ) 2eRδt − 1

⎞
⎠. (G5)

For an independent calculation, the matrix −�p can be
diagonalized, with eigenvalues given by the zi and associated
real-valued eigenvectors. The simple exponential of the diag-
onalized matrix is then transformed back to the original basis
in the standard fashion using the matrix of eigenvectors and its
inverse to obtain e−�pt as given above.

b. Case c̃1 = 0 and c̃0 �= 0

The condition c̃1 = 0 implies ω2
e = 3R2

δ , leading to

c̃0 = R3
δ (1 − λ3) (G6)

and the root z1 = −sgn(c̃0)|c̃0|1/3 from Eq. (C6e). For
sgn(c̃0) = ±1 and the definition λ̃3 = |1 − λ3|1/3, we have

z1 = ∓λ̃3Rδ, 	 =
√

3

2
λ̃3Rδ. (G7)

Although the form of Eq. (37) does not simplify in this case as
appreciably as for c̃0 = 0, both the root z1, which determines
the decay rate, and the oscillatory frequency 	 are simple
multiples of Rδ .

Example 3. Choose ω2
e → ω2

1 = 3R2
δ and ω2 = 0 = ω3.

Then most off-diagonal elements of �p are equal to zero,
and λ̃3 = 1 for the Eq. (G7) input parameters to Eq. (37).
Defining κ = (

√
3/2)Rδ and combining the sums of trigono-

metric functions that appear on the diagonal gives the succinct

form

e−�pt

= eRδt/2

⎛
⎝e−3Rδt/2 0 0

0 −2 sin
(
κt − π

6

) −2 sin(κt)
0 2 sin(κt) 2 sin

(
κt + π

6

)
⎞
⎠.

(G8)

Again, the matrix −�p is diagonalizable, providing a simple
result for the matrix exponential in the eigenbasis and a
straightforward means for calculating e−�pt as obtained above.
The associated eigenvectors are complex valued in this case,
making the algebra slightly more tedious. Alternatively, one
can readily verify that d/dt (e−�pt ) = −�p (e−�pt ).

2. Two equal roots

Degenerate roots require γ = 1. For a given ω2
3 = λ3R

2
δ /3,

with 0 � λ3 � 1, there are two values ω2
12 that satisfy γ = 1,

derived in Appendix E and discussed in Sec. IV A. Consider
λ3 = 0, on resonance, in which case Eqs. (47) and (48) give

(ϑ1,ϑ2) = (−π/6,π/2),

(η1,η2) = (−9/4,9/2),(
ω2

12,1,ω
2
12,2

) = (0, 9/4R2
δ ).

(G9)

a. Case ω12 = 0

Then there is only relaxation, with �p reduced to the
diagonal elements {Rδ,Rδ, − 2Rδ}. We have c̃1 = −3R2

δ , c̃0 =
−2R3

δ < 0, and

z1 = 2Rδ, 	 = 0 (G10)

from Eq. (C6b). Equation (38) gives the expected result

e−�P t =
⎛
⎝e−Rδt 0 0

0 e−Rδt 0
0 0 e2Rδt

⎞
⎠. (G11)

b. Case ω2
12 = 9

4 R2
δ → ω2

1

We have c̃1 = −3R2
δ /4 < 0, c̃0 = R3

δ /4 > 0, and

z1 = −Rδ, 	 = 0, (G12)

resulting in

e−�pt = eRδt/2

⎛
⎝e−3Rδt/2 0 0

0 1 − ω1t −ω1t

0 ω1t 1 + ω1t

⎞
⎠. (G13)

Verifying that d/dt (e−�pt ) = −�p (e−�pt ) is fairly straightfor-
ward and represents the simplest test of the solution, since �p

is not diagonalizable.

3. Three equal roots

There is a threefold-degenerate root zi = 0 in the case
c̃0 = 0 = c̃1, since q(z) → z3. This requires ω2

e = 3R2
δ from

Eq. (45), which then forces ω2
3 = R2

δ /3 in the expression for c̃0.
As noted previously, the Cayley-Hamilton theorem is simple
to apply directly in this case, since q(�p) = �3

p = 0. The series
expansion of e−�pt is therefore truncated, giving the Eq. (39)
result.
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4. On resonance

When ω3 = 0, c̃0 can be written in the form Rδ(c̃1 +
R2

δ ) from Eq. (45), with c̃1 → ω2
12 − 3R2

δ . The characteristic
polynomial then becomes z3 + R3

δ + c̃1(z + Rδ), so that, by
inspection,

z1 = −Rδ, 	 =
√

ω2
12 − ( 3

2Rδ)2. (G14)

The solution for e−�pt using Eq. (37) with the above parameters
yields the solution for e−�t obtained originally by Torrey [6]
for 	 �= 0. As discussed above, if ω12 = 3Rδ/2 so that 	 = 0,
there is a twofold degeneracy in the roots, giving the solution
in Eq. (G13) for e−�pt . For ω12 < 3Rδ/2, the sinusoidal
terms become the corresponding hyperbolic functions, as noted
earlier, with cos 	t → cosh μt and sin 	t/	 → sinh μt/μ,

where now μ =
√

( 3
2Rδ)2 − ω2

12.
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