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Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal
fiber by Raman coherence
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We present the results of an experimental and numerical investigation into temporally nonlocal coherent
interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core
photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal
grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe,
pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of
particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the
experiments reported, a DW is emitted at ~300nm and exhibits a wiggling effect, with its central frequency
oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created
in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics
of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.
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Introduction. Optical nonlinear effects are typically local
whereby nonlinear response of media to optical excitations
are described by the instantaneous nonlinear polarization
created by the optical excitation itself. However, systems with
“memory” where the response to an optical excitation, e.g.,
refractive index, depends on the prehistory of the excitation in
the medium offer a much richer dynamical behavior and open
the possibility of all-optical control of ultrashort laser pulses.
The temporal duration, central frequency, and timing of ultra-
fast light fields are crucial parameters in several research areas,
such as strong-field physics [1], time-resolved spectroscopy
[2], and femtochemistry [3]. Several schemes have recently
been used to control locally in space or time a given process
such as a chemical reaction [4], free-induction decays [5], or
even the emission of light pulses via high-harmonic generation
[6] or in free electron lasers [7]. Many biological samples and
photochemical processes require ultrashort pulses in the deep
ultraviolet (DUV; <300 nm) [8], where control techniques as
well as high repetition rate sources have proved challenging.
Here we report a pump-probe technique that makes use of
the long-lived Raman coherence [9—11] (“memory” [12,14])
in hydrogen to provide precise nonlocal control of light
fields, including the DUYV, although the technique is directly
transferable to the vacuum ultraviolet (VUV) as well.

The system we use is a gas-filled hollow-core photonic-
crystal fiber (HC-PCF), which has proven to be an ideal
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vessel for enhancing all kinds of gas-laser interactions [13,14].
Kagome-style HC-PCF (“kagome-PCF”) in particular has
been used to generate bright DUV and VUV dispersive waves
from few-uJ ~50 fs pump pulses in the near infrared [15-17].
Such sources are readily scalable to high average powers using
compact high repetition rate fiber lasers [18], providing similar
photon fluxes to sources based on high-harmonic generation,
and are finding applications in different spectroscopy methods,
such as angle-resolved photoemission spectroscopy of topo-
logical insulators [19]. Controlling the characteristics of these
ultrashort UV-VUYV pulses [16,20] is extremely challenging,
often requiring the development of new techniques.

At gas pressures of a few atmospheres in a hydrogen-filled
kagome-PCF, the coherence time 7, of the molecular oscilla-
tions is on the order of several 100 ps, representing the lifetime
of the driven refractive index temporal grating, which is more
than 1000 times longer than our pump and probe pulses. In our
experiments, a pump pulse first creates a Raman coherence
wave—the periodic refractive index temporal grating—and
then a probe pulse, arriving within time 7, is modulated
by the fast oscillations with THz modulation frequency. The
technique has similarities with the coherent control [21] of
plasma dynamics [22] and multiphoton transitions [23]. How-
ever, in our work the control technique is highly nonlocal in
time and allows us to control ultrashort probe pulses with
the same or even greater energy with respect to the driving
pump pulse, leading to richer nonlinear dynamics such as
pulse compression and broadening, along with the generation
of supercontinua and dispersive wave emission and control in
the DUV.

Physical model. The propagation of ultrashort pulses is
accurately described by the unidirectional pulse propagation
equation (UPPE) [24,25], as confirmed both in free-space
configurations [24,26] and in waveguide geometries such as
hollow dielectric capillaries and PCFs [15-17,25]. The UPPE
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can be written, for the LPy;-like core mode, in the form
jw? 511(2.0)
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where z is the position along the fiber, w the angular frequency,
atilde above a quantity denotes the temporal Fourier transform,
and E(z,t) is the electric field, defined over an effective mode
area A.g. The modal longitudinal wave vector component is
B(w), c is the speed of light in vacuum, &y the permittivity of
free space, pi1(z,w) the nonlinear polarization, v; the group
velocity of a pulse with central frequency at wy, and T = 1—z/v;
is the reduced time in a reference frame moving at velocity v;.

In order to isolate interpulse effects, we derive a propagation
model for the probe pulse by considering two highly delayed
pulses:

Ei0,1) = \/2P1/(neffSOCAeff)e_lz/zr’z’ cos(wot),
E>(0,t) = \/2PZ/(nefngCAeff)e_(l_Zm)z/h’% cos(wot), (2)

where 1 represents the pump pulse and 2 the delayed pulse.
P; is the peak power of the ith pulse, 7, its duration, and nef
is the effective modal index. The delay tj, between pulses is
defined so that E1(z,t) Ex(z,t) is effectively zero, i.e., Tin > 7).
In this highly nonoverlapping limit, the first pulse is described
by Eq. (1), but the second pulse obeys the equation

.
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In Egs. (1) and (3), p11 and p, account for any self-induced
nonlinear polarization waves created by the first and second
pulses. This may include any instantaneous and noninstan-
taneous nonlinear responses such as Kerr-induced self-phase
modulation and Raman- and ionization-induced nonlinear
polarization, and it can be straightforwardly extended to any
sequence of nonoverlapping pulse. Here, pj» accounts only
for any causal and long-lived (compared to the pump pulse
duration) nonlinear polarization acting on the probe pulse. For
example, the long-lived Raman coherence or the free-electron
density produced by the first pulse may survive to influence
the second pulse via the term p;,. Note that the Kerr-induced
cross-phase modulation (xE sz [27]) of the probe pulse does
not play any role in pi; in Eq. (2), since the two pulses do not
overlap in time.

Here we focus our attention on the effect of the long-lived
Raman coherence wave, excited impulsively [9-11,15,28] by
the pump pulse, on the probe pulse for delays T >> 7, but within
the lifetime of the Raman coherence wave T3, i.e., T K T>.
Under these circumstances pi»(z,7) can be written

P12(2,7) = 2np80An12(z,7)E2(2,7),
N[al%

[1(Qr,2)| sin(Qr7), “)
ZnQE()Fl

Anyp(z,T) =

where N, is the total molecular density and Ani(z,7) is
the resulting nonlinear refractive index modulation, which is
proportional to the z-dependent intensity spectrum of the pump
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FIG. 1. (a) Pump (purple) and probe (cyan) intensities together
with nonlinear modulation of the refractive index induced by the pump
Anj, (dashed purple) as a function of the normalized temporal delay
7/Txr. (b)—(e) Probe intensity and self-induced Raman nonlinear index
induced by the probe (dashed blue, An,;) and by the pump (dashed
purple, Any,), together with overall Raman nonlinear index Any, =
A}’lzz + Anlz.

pulse at the Raman frequency Qg /27:
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Figure 1(a) shows the resulting nonlinear refractive index
modulation Anj»(0,7) when the system is driven in the
impulsive regime, i.e., 7 K Tr = 27/ [28]. In contrast to
glass, where the Raman coherence time 7, ranges from a few
fs in fused silica to ~250fs in As;S3, 7> in molecular gases
ranges from hundreds of ps to a few ns, depending on the gas
pressure, making pump-probe measurements with fs-pulses
rather straightforward to carry out. Figure 1 illustrates such a
pump-probe experiment (numerically modeled), with identical
pump and probe pulses, as the delay of the probe is scanned
over Tgr. Figures 1(b)-1(e) show the total nonlinear refractive
index modulation Any = Any, + Any, (black curves) for the
four different values of 7, marked by black dots in Fig. 1(a).
Anyy carries information on the Raman-induced refractive
index change induced both by the first (An,) and the second
pulses (Anjyy). When 1, = mTg, where m is an integer, the
two Raman responses add (with relative phase ¢ = 0), so
that the probe pulse sees an increasing refractive index in
the vicinity of T = tj,. When 7, = (m + %)TR, however, the
Raman responses are 7 out-of-phase [Fig. 1(d)] and the probe
pulse sees a decreasing refractive index under its envelope.
When 1, = (m + i)TR the overall Raman response is bell-
shaped [Fig. 1(c)], with regions of increasing and decreasing
index under the probe pulse envelope.

These refractive index variations strongly affect the dy-
namics of the probe pulse as it propagates along the fiber
[Figs. 2(a)-2(d)]. For ¢ = 0 it is redshifted, with a steepened
trailing edge [Fig. 2(a)]. For ¢ = m there is an overall blueshift,
with a steepened leading edge [Fig. 2(c)], and for ¢ = 7 /2
there is either pulse compression [Fig. 2(b)] or for ¢ = 37 /2
decompression [Fig. 2(d)].
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FIG. 2. Left: Numerically simulated probe intensity as a function
of time t/Tr and fiber position for 7,/Tx = 6.5, 7, 7.5, and 8.
Right: Snapshots of the probe intensity profile at the fiber output
(red lines). All the probe intensities are normalized to the peak pump
intensity L.

Controlling self-compression of the probe pulse. In the
experiment, a pulse shaper (Dazzler) at the fiber input was
used to create, and control the delay between, two identical,
transform-limited (35 fs) pulses, each with 0.2 uJ energy.
These were delivered from a 1 kHz Ti:sapphire laser system
with central wavelength at 805 nm. The interpulse delay t;, and
pulse shapes at the fiber input were estimated from measured
FROG traces. A kagome-PCEF, with a flat-to-flat core diameter
of 25.3 um and length of 20 cm, was filled with 7 bars of
hydrogen. For these parameters the zero dispersion wavelength
is 498 nm, the second-order dispersion is —3.2 f 2 /cm, and the
pulses undergo moderate soliton self-compression [13,14] with
soliton order ~2.

Figure 3(a) shows the experimental spectra collected at
the fiber output as a function of the input delay tj,. The
spectral fringes observed at each value of t;, arise from the
interference of the two pulses in the spectrometer [29,30].
Periodic breathing of the spectral bandwidth, which occurs
every Tr = 57 fs (the period of the S(1) transition in ortho-
hydrogen [31] and marked by vertical lines) is evident as well
(note that the duration of the pump and probe pulses is not short
enough to excite vibrational transitions in H, (7g = 8fs) as in
[15]). The spectral bandwidth reaches its maximum extent for
Tin = (m + }—‘)TR, as expected from the numerical simulations
in Fig. 2(b). There is excellent agreement, without any free
parameters, between experiment and numerical modeling, as
seen in Fig. 3(b).

The spectral modulation at fixed i, is caused by spectral
interference of the pump and probe fields in the spectrometer,
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FIG. 3. (a) Experimental spectra at the fiber output as function of
Tin. (b) Corresponding numerical simulations. (c) Cross-correlation
function S(t;t;,) as a function of time and t;,, obtained from the
experimental spectra in (a). (d) Lower: Theoretically calculated
Raman-related refractive index modulation (black, arb. units). Upper:

Calculated central frequency w. (red curve, right-hand axis) and
temporal delay At = 7,,—T;, (left-hand axis).

and takes the form [29]

S(0; Tin) = |E1(0)* + |Ex(0)?
+2|E1(@)|| Ex(@)] cos[p1 (@) — ga(@)], (6)
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where ¢(w) and ¢,(w) are the spectral phases of the pump
and probe pulses at the fiber output. Equation (6) encodes
information on the phase difference between the two pulses.
The spectral fringe spacing in Fig. 3(a) is determined by their
separation T,y at fiber output. As result of the Raman-related
change in the refractive index [Eq. (4)], Tou “wiggles” around
Ti, with a period that equals T, as we will now discuss.

In order to extract information on the relative phase from
the observed spectral fringes, and thus the temporal separation
between the pulses at the fiber output, we take the inverse
Fourier transform of S(w; Tjy). The resulting function includes
the sum of the autocorrelation functions of the pump and the
probe pulses, I,.(t; tin) = E; * E; + E; x E,, and twice their
cross-correlation Iy.(7; 7i,) = E| * E», where * represents the
convolution and t is the pulse separation at the fiber output,
estimated from the fringe spacing in Fig. 3(a). Figure 3(c) plots
S(t; tin) = Lic(T; Tin) + 21x.(7; Tin), calculated from the exper-
imental data in Fig. 3(a). Since the cross- and auto-correlations
are even functions of 7, we plot only the T > 0 part. It consists
of a contribution at <t,/2 and two contributions centered at
|T| ~ Tin. The(T; Tin) maps the periodic change in probe pulse
duration, which is inversely related to the spectral bandwidth
breathing observed in Fig. 3(a). On the other hand, Ix.(t; tin)
maps the relative phase difference, and thus the temporal
spacing, at the fiber output. The black dashed line in Fig. 3(c)
is for T = 1y,. It is evident that I, has a peak at || ~ Tj,.
Defining the position of the peak as the actual temporal
separation T, between the two pulses at the fiber output (i.e.,
the reciprocal of the spectral fringe spacing), it is clear from
Fig. 3(c) that 7, oscillates around t;,. Note that the increase
in probe bandwidth is commensurate with its reduced pulse
duration.

Figure 3(d) plots At = 7oy — Tin Versus ti,, highlighting
the acceleration (At < 0) and deceleration (At > 0) experi-
enced by the probe pulse during propagation [32] and caused
by pump-induced rotational coherence. Since the pump pulse
is short enough to excite rotational Raman coherence in both
para- and ortho-hydrogen, both contributions must be taken
into account for a complete explanation of the observed
dynamics. Fourier analysis of At (t;,) reveals two strong side-
bands centered at 10 &= 1 THz and 17 & 1 THz, which match
the rotational S(1)-transitions of ortho- and para-hydrogen,
centered at 17.6 and 10.8 THz, respectively. Figure 3(d) shows
(black line, lower panel) the expected overall modulation of
nonlinear refractive index due to the cross-term:

2
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Equation (7) now includes both para- and ortho-hydrogen
contributions—as compared to Eq. (4)—where wp,, = 0.33
and wyppe = 0.67 are the relative populations of para- and
ortho-hydrogen under standard conditions. The oscillation of
the mean central frequency w.(7i,), obtained from the spectra
in Fig. 3(a) and plotted as the orange curve in Fig. 3(d), fits well
to the value estimated from Eq. (6) [Fig. 3(d), black curve].

From the experimental curves we observe an increase in
the redshift and probe deceleration for ¢ = 0, while for¢p = 7
we observe a blueshift and probe acceleration. The maximum
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FIG. 4. (a) Experimental spectra collected at the fiber output,
plotted against the pump-probe delay t;, at the fiber input. (b) The
wavelength A of the strongest redshifted part of the spectrum (RSS).
(c) The central wavelength Apw of the UV dispersive wave (black).

The purple line is the DW wavelength, calculated assuming A is the
central wavelength of the compressed probe pulse.

spectral bandwidth and minimum temporal duration of the 7,
contribution is observed for ¢ = 7 /2, and the minimum band-
width and largest duration for ¢ = 37 /2, in complete agree-
ment with the numerical simulations shown in Figs. 2(a)-2(d).

Dispersive wave wiggling. We now discuss interpulse
effects that occur when the input pulse undergoes strong
soliton self-compression, resulting in the generation of a
supercontinuum (SC) and emission of a dispersive wave. The
experimental parameters were chosen so that both pulses had
soliton order ~5. In contrast to the previous case, however,
the pump pulse carried slightly less energy so as to avoid
pulse breakup and dispersive wave (DW) emission, with the
result that the observed DW dynamics originated entirely
from the delayed probe pulse. Using a dispersion-balanced
Mach-Zehnder interferometer as pulse shaper, we increased
the temporal resolution to 1 fs and widened the range of the
interpulse delay to 3 ps. The resulting spectra, obtained in a
20 cm length of kagome-PCF with a 28 um core diameter
and filled with 15 bars of hydrogen, are plotted as a function
of input delay in Fig. 4(a). Both pulses are well within the
anomalous dispersion regime, and the pump pulse with energy
0.5 ©J, and the probe pulse 0.6 uJ. The pressure was chosen
so as to simplify the detection of the emitted DW, which is
at ~300 nm, well within the spectral range (200 to 1100 nm)
of the CCD-based spectrometer. The fiber length and pulse
energies were also optimized experimentally to obtain DW
emission at a position as close as possible to the fiber end, so
as to avoid any further nonlinear evolution of the DW [15].
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A complex periodic modulation of the spectra is observed as
a function of interpulse delay, spanning the whole spectrum
(300 to 1100 nm). There is a periodic enhancement of the
spectral power at longer wavelengths (800 to 1100 nm) and
a corresponding oscillation of the central frequency of the
~300 nm DW band. A SC spectrum, flat to better than 20 dB,
is clearly observed every 57 fs (ortho-hydrogen), as shown in
Fig. 4.

To understand these dynamics, we plot the delay depen-
dence of the wavelength A of the strongest contribution at
wavelengths longer than 800 nm [Fig. 4(a)], and the mean
wavelength of the emitted DW [Fig. 4(b)]. Taking XA to be the
effective central wavelength of the compressed probe pulse,
the wavelength of the emitted DW can be estimated from
phase matching [purple curve in Fig. 4(b)] [14]. The more the
compressed pulse is decelerated (redshifted) the larger is the
acceleration (blueshift) of the DW, which empirically explains
the anticorrelation observed between A and Apw in Fig. 4. As
Ty, 1s varied, the redshift and blueshift oscillate with a period

given by the 27 /Qr. We remark that this wiggling of the DW
frequency is a general phenomenon that will occur in many
different experiments, including those involving the breakup
of a single pulse [15].

Conclusions. The nonlinear dynamics of a probe pulse,
including self-compression, supercontinuum generation, and
dispersive wave emission, can be simply controlled by varying
its time delay relative to a pump pulse that creates coherent Ra-
man oscillations in a hydrogen-filled kagome-PCF. Excellent
agreement is obtained between experiment, analytical theory,
and numerical simulations. This system offers a versatile
highly noninstantaneous means of controlling of the dynamics
of ultrashort pulses in a gas-filled PCF—for example, in
pulse compression and spectral broadening of DUV light and
VUV emission, which are of paramount importance in time-
resolved molecular spectroscopy [33] and condensed matter
photoemission studies [34]—as well as showing a nonlinear
interaction regime among highly nonoverlapping ultrashort
pulses mediated by the molecular coherence.
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