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Single-particle model of a strongly driven, dense, nanoscale quantum ensemble
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We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic
ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the
pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville
equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much
faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the
driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces
the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics

of a dense ensemble.
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I. INTRODUCTION

The dynamics of a dense ensemble of quantum emitters
driven by an electromagnetic field is a topic of current interest
and much excitement. Experimental and theoretical research
on dense collections of atoms have studied numerous effects
such as superradiance [1-3], dipole blockade [4], collective
Lamb shift [5], etc. In nano-optics, the interest is in developing
the properties of hybrid systems such as quantum dots or
organic dye molecules in proximity to metal nanoparticles
[6-10]. In all these studies, the type and strength of interactions
between the quantum emitters (henceforth referred to as
“atoms”) are specific to the type of phenomenon studied.

The effects of interatomic interactions in dense ensembles
that are excited by low-intensity electromagnetic fields are
typically studied computationally. Large-scale simulations
have shown that interatomic interactions can shift resonance
absorptions in cold dense gases [11,12], modify spontaneous
emission rates and decoherence rates [3,13-15], and affect
overall scattering processes [ 15]. These large-scale simulations
are computationally intensive as they require the evaluation of
the interaction between numerous atoms (or lattice sites). The
best scaling that we have found in the literature is one that scales
as the fourth power of the number of lattice sites in Ref. [3].
A popular approximation is mean-field approximation such
as the one used in Refs. [1,16—18]. This indeed reduces the
computational effort, however, is still quite computationally
intensive. Thus many calculations use further approximations
such as short pulse methods [17,18] or quantum basis sets that
are of reduced dimension [16,18]. The first broadband or short-
pulse approximation is used in scattering calculations of driven
ensembles of classical dipoles [18-21]. In this methodology, a
broadband short pulse illuminates the system and the scattered
field is tracked and Fourier transformed to yield an appropriate
intensity spectrum. In the latter approximation, the quantiza-
tion axis of the quantum emitter is along one direction—the
polarization of the incident electromagnetic field [16,18], or a
time-independent quantization axis is used [3]. However, these
approximations may not be able to accurately capture sponta-
neous emission from the ensemble or inelastic scattering [19].
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In this study, we show that these approximations are inadequate
for studying a strongly driven, dense quantum ensemble.

We examine the ensemble behavior of a dense collection
of approximately 4000 atoms, modeled as two-level quan-
tum systems (2LS), that is driven by a strong plane-wave
electromagnetic field. Each two-level atom interacts with
the environment, and the interaction is modeled by a radiative
decay rate (y). The states of the individual atoms therefore
significantly affect local electromagnetic field intensities and
the local fields mediate the interatomic interactions. In our
methodology, we model the quantum evolution of the state of
each atom, the spontaneous emission which, in turn, changes
the electromagnetic field that is perceived by a neighboring
atom. Thus both the field propagation and the density-matrix
evolutions must be calculated simultaneously. We solve both
Maxwell’s equations and the Liouville—von Neumann equation
concurrently using a pseudospectral time domain (PSTD)
method discussed in Sec. IIC. This is a method based on a
self-consistent, mean-field approach that is free of problematic
self-interactions [18,19].

By examining the dynamics of the strongly driven, dense
ensemble of 2LLS, we find that interatomic interactions create
strong disorder in the ensemble states over a characteristic
time that is much shorter than the excited-state lifetime of
a single 2LS. This disorder imposes an effective lifetime
for quantum scattering effects in an ensemble. This implies
that in order to understand the long-term dynamics of a
driven, dense quantum ensemble, short-pulse—broadband tech-
niques are inadequate. The interatomic interactions also lead
to excitation of atoms in directions other than the incident
field polarization. This indicates that for modeling a general
ensemble of dense emitters, a full, three-dimensional state
basis is required. Our calculation therefore goes beyond the
standard approximations by using a plane-wave excitation,
and uses a full three-dimensional state basis as discussed in
Sec. IT A. For an example case of an ensemble of 1 eV emitters,
our calculation shows that there is a transient upshifting of
incident photons that disappears in the steady state. This
disappearance is correlated with the onset of disorder in the
ensemble-averaged quantum state of the ensemble.
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We propose that the overall behavior of these dense ensem-
bles can be modeled by a single-particle, rotating wave approx-
imation, solution to the Lindblad—von Neumann equation. In
this model, interatomic excitations are modeled by introducing
decoherence terms inspired by models of the Forster resonance
energy transfers (FRET) process in biophysical systems. This
approach allows the response of a dense quantum ensemble
to be rapidly approximated with a single-atom model. This
representation also isolates the processes that are most signifi-
cant in determining the optical response of a nanoscale, dense
quantum ensemble to strong electromagnetic excitation.

In Sec. II, we discuss the computational and numerical
approach that was implemented to calculate the response
of nanoscale dense ensembles driven at high intensities. In
Sec. III, we discuss, via a practical example, the effects
that strong driving fields and its associated decoherence have
on the ensemble-averaged quantum state of a nanospherical
ensemble. Section IV describes the approximation technique
in which we use a single-particle model to simulate the average
behavior of the ensemble. Lastly, Sec. V summarizes our main
conclusions and future outlook of this work.

II. THEORY AND IMPLEMENTATION

We model a dense ensemble of two-level atoms driven
by a strong, linearly polarized, electromagnetic field. Though
the driving field is polarized in one direction, spontaneous
emission from each atom excites transitions in nearby atoms
in other directions. Each of the atoms contributes to a “mean
field” that mediates the interactions between various quantum
emitters. This mean field in the ensemble is a spatially varying,
3D vector. Therefore, the dynamics of an individual quantum
system involves a ground state and three excited states, one for
each Cartesian direction of the atomic dipole interacting with
the mean field as suggested in Ref. [22]. The calculation in-
volves numerically evaluating the coupled Maxwell-Liouville
equations in a computational space that includes the ensemble.

The electromagnetic field evolves in time according to
Maxwell’s equations:
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where H 7,0 andﬁ (7,t) are the magnetic and electric fields,
respectively, and J(7,t) is the free current density.

The quantum state of each emitter evolves in time according
to the Lindblad—von Neumann equation

p(F.1) = —%[H(F,t),p(it)] — L(p(7,1)). 3)

In this evolution equation, the Lindblad superoperator,
L(p(#,t)), models the decoherence in the system. This term
is linear in the state density operator and is of the form
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In this equation, o, are the Lindblad operators, which are
assumed to model spontaneous emissions from an excited state
to the ground state, and y; is the rate of spontaneous emission.
For the emission from |i) — |j), these operators would take
the form o4 = 0;; = |j) (i|. All nonallowed emissions have
va = 0, and each allowed emission has a spontaneous emission
rate determined by Fermi’s golden rule [23].

The quantum states of the atoms contribute to_the elec-
tromagnetic field via the free current density (J), whose
directional components (n = x,y,z) can be found by [19]
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where N, is the number density of emitters, o(7) is the density
matrix of an emitter located at position 7, and iy, 1is the
transition dipole moment operator corresponding to the nth
Cartesian component of the dipole moment. The transition
dipole moment operator is directly related to the Hamiltonian
of the atom as

:U:n:__- (6)

A. Generalized directional state basis

In the quantum control of a single two-level atom by an inci-
dent electromagnetic field, the quantization axis is assumed to
be along the direction of polarization, and the two atomic levels
|g) and |e) are coupled with a transition strength proportional to
wE(7). In a driven ensemble of atoms, though the driving field
is polarized in one direction, spontaneous emission from each
quantum system excites transitions in nearby quantum systems
in other directions. This requires the consideration of all three
components of the dipole moment operator. Rather than work
in the angular momentum basis, a simpler way to approach
this problem is to introduce a “directional” state basis [22].
These directional states are those accessed by transitions that
are driven by a single field polarization as depicted in Fig. 1.
This results in an effective four-level system which can display
quantum interference.

The Hamiltonian of a two-level atom interactive with an
electromagnetic field in this directional state basis is

0 %, $. 7.
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h, 0 0 E

where the energy of the ground state is set to zero; the
degenerate, excited, directional states have energy E, and
the dipole-field interaction takes the form Qe, g = “”T‘E],
where 1 = (x,y,z). In the ensemble of two-level atoms, the
interactions between atoms take place through a mean field
as described in the next section. Therefore, instead of being
explicitly present in Eq. (7), these interactions appear in €2, ¢
through the electric-field term and allow the systems to display
collective behavior.
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FIG. 1. (a) When the polarization of an electromagnetic field sets the quantization axis of an atom, the effective quantum system is a
two-level system with the direction of the transition dipole oriented along that polarization direction. (b) When the polarization of an incident
control field is different from the quantization axis of an atom, the effective quantum system is a four-level system with a dipole transition
oriented along each field component. Q2’s represent the field-atom interaction frequency, A’s are the detuning between the frequency of the
driving field and the transition frequency of the 2LS, and y’s are the spontaneous emission rates from the excited states to the ground state.

B. Mean-field interatomic interaction

A microscopic representation of a large number of open
quantum systems interacting with one another is computa-
tionally intensive. Since the Lindblad—von Neumann equa-
tion involves matrix multiplication, this computation becomes
onerous for a large number of atoms in the ensemble, since
even the most modern, optimized methods scale more slowly
than M? [24], where M is the total number of states [for N
atoms, M = 4N for the atomic structure in Fig. 1(b)].

Therefore, we describe the interaction between the members
of the ensemble using a mean-field method. In this method,
spatially separated atoms do not directly interact with one an-
other through the Hamiltonian or Lindblad operators. Instead
each atom interacts with and contributes to a local mean field
and sees the behavior of other atoms through this mean field.
The mean field is a sum of the external incident field that
excites the ensemble and a local field created by the driven
and spontaneously emitting atoms (quantum emitters) in the
ensemble:

E(F,1) = Einc(F,1) + Eocar(F ). (®)
This method of using a mean-field interaction is used in
numerous areas in computational physics, such as in polymer
self-consistent field theory [25] and computational electrody-
namics [26]. For clarity, the “mean” in the mean field refers to
a mean of the interactions between molecules and not a spatial
mean of the fields themselves.

This simplification allows the overall quantum state space to
remain relatively small. For a system consisting of N four-level
systems, the total directional state space (M = 4N) is reduced
to 4N quantum states and 3N local quantum interactions.
This greatly simplifies the equations, and allows us to solve
the problem by evolving the density matrices locally with an
efficient parallel implementation. In this study, we model an
ensemble of approximately 4000 atoms. With the ensemble

state basis reduced to a more manageable size, one now needs
to determine how the quantum emitters create local fields.

C. Numerical implementation

To implement this calculation numerically, we modify and
extend the methodology used by Sukharev and Nitzan [19].
In our method, Maxwell’s equations are solved numerically
in time for a coarse-grained grid using a pseudospectral time
domain method (PSTD) [27,28]. The choice of using a PSTD
method over the FDTD method used in Ref. [19] is largely
because the PSTD method is computationally more efficient
than the FDTD method [27,28]. There is also the added benefit
of using a single lattice grid as opposed to the staggered
grid required of the FDTD method [29]. A uniaxial perfectly
matched layer (PML) [30,31] is used to eliminate reflection
at the boundaries, and to strongly attenuate the signal so as to
prevent signal wraparound in the simulation [27]. For a plane
wave, we modify the PML size and coefficients to reduce the
relative reflected and wraparound field amplitudes to at most
1073 of the incident field amplitude.

The simulation space is broken into a 3D computational
grid, with each cell having associated with it an electric and
magnetic field. This grid is chosen to be cubic with spacing
of / =1 nm; this spacing corresponds to the interatomic
spacing associated with the approximate atomic density used in
the calculations (N4 = 1 x 10*” m~3 = [~3). The individual
quantum emitters are assumed to be point emitters. The order
of operations at each time step is as follows.

(1) The fields of the “source cells” are updated analytically
so that a plane wave is produced [27].

(i1) Maxwell’s equations are solved numerically in time for
this coarse-grained grid using the pseudospectral time domain
method. First, the magnetic field H (F) is updated.

(iii) If there is a quantum emitter present in a cell, the
density matrix of that cell is evolved by solving the Lindblad—
von Neumann equation (3) using a fourth-order Runge-Kutta
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method [32] and the electric fields at the previous time step as
input. Going beyond previous studies [19], we include inter-
atomic interactions in all three directions by implementing a
generalized three-directional state basis described in Sec. ITA.

(iv) The free current in each cell J (¥) is determined for cells
containing one or more quantum emitters.

_ (v) The free current is used to update the local electric field,
E(7), using Maxwell’s equations.

(vi) The process is repeated and items of interest are
recorded.

Each simulation is run until the density matrix of the
ensemble reaches an approximate steady state. For a collection
of 4000 emitters, a simulation takes between 8 and 12 CPU
days on 8 cores [33].

III. EXAMPLE APPLICATION: INCREASING
SOLAR-CELL EFFICIENCY

Thermal up-conversion is a very important process of
interest in the design of highly efficient solar cells [34]. In
silicon solar cells, electricity is only produced by photons
with A < 1100 nm due to the band gap in silicon; therefore,
solar photons of much higher wavelengths are “wasted” [35].
The goal of many in the scientific community is to design
a nanoscale system that can blueshift significant amounts of
infrared photons, thus recouping some of this underutilized
energy.

The Lorentz-Lorenz model of an atomic electron driven
by an incident electromagnetic field predicts that the induced
polarization has a frequency that is blueshifted [36]. It can
be expected that the induced electromagnetic field will also
be at a blueshifted frequency compared to the incident field.
According to this model, a driven neodymium atom, for which
the ground-to-excited-state transition energy is ~1 eV, when
placed onto silicon that has a band gap of just above 1 eV,
could theoretically blueshift the incident light, and increase the
silicon’s absorption. We speculate that a dense arrangement of
neodymium atoms on the silicon would be able to amplify this
blueshifting effect. Therefore, we model a dense ensemble of
atoms driven by a plane wave electromagnetic field, with an
aim to exploit the macroscopic and collective effects amplified
from the microscopic dynamics.

Using the methodology described in the previous section,
we calculate the response of a dense quantum ensemble to
a monochromatic, plane-wave, driving field of wavelength
197.5 nm (corresponding to 1.0 eV) in order to determine
whether or not the frequency of the near field around the
ensemble can be blueshifted. The collection of dense quantum
emitters is arranged in the form of a 10 nm nanosphere with an
origin of coordinates at its center. The incident monochromatic,
plane wave is polarized in the y direction and propagates
along the Z direction. We monitor the electric-field amplitude
a short distance (3 nm) outside the nanosphere for 200 fs
(0 fs to 200 fs). Taking a Fourier transform of this field
amplitude, we see that the electromagnetic field around the
nanosphere is no longer purely monochromatic [Fig. 2(a)] even
if the input is. There is a blueshifted component that appears.
Although this appears promising, if we continue the evolution
and take a Fourier transform of the field for the window from
100 to 300 fs, the spectrum transforms to that depicted in
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FIG. 2. Fourier transform of the electric field over a 200 fs time
window at 7 = (0,13 nm,0), a point outside a 10 nm radius spherical
ensemble of atoms centered at the origin. Each atom in the ensemble
has an energy level structure as shown in Fig. 1(b), with energy spacing
between the ground and excited states of 1 eV, and spontaneous
emission rates of 2.95 MHz. The number density of atoms in the
ensemble is 4 x 10¥7 atoms per cubic meter. The incident plane
wave electromagnetic wave of frequency 241 THz and electric field
amplitude 1.5 GV/m is polarized in the  direction and propagates
along the Z direction. (a) Frequency components that appear in the
time window 0-200 fs after the start of excitation include a distinct
blueshifted peak. (b) Frequency components that appear in the time
window 100-300 fs after the start of excitation. Notice that the
blueshifted frequency components have died out.

Fig. 2(b). The blueshifted peak has disappeared. This loss of
upshifted frequencies at long times indicates that an ensemble
of quantum emitters is not suitable for thermal upshifting in
solar cells.

As the time scale of the disappearance of the blueshifted
signal is largely controlled by the atomic number density (N4),
reducing this density increases the lifetime of the frequency-
shifted signal. However, it also reduces how far the signal is
shifted [36]. We speculate that it may be possible to reduce
this time scale by using precisely placed atoms or by exciting
with a specially designed shaped electromagnetic field. In our
current study, the time scale does not appear to be very tunable
apart from changing the number density of emitters.

In order to probe why the frequency-shifted components
disappear, we examine the spatial distribution of free-current
density components [Jn(?)] in the nanospherical ensemble
as a function of time. Snapshots of the free current in the
xy plane are depicted in Fig. 3. It is immediately seen that
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FIG. 3. Snapshots of the spatial distribution of free-current density components J;(?) [row (a)] and fx(f)(A/mz) [row (b)] in the x-y plane
(with § being horizontal) bisecting a 10 nm nanosphere of atoms at times (i) 10 fs, (ii) 100 fs, and (iii) 250 fs after start of excitation. Parameters
of the ensemble and the incident field are the same as in Fig. 2. The snapshots show that, at early times, there are ordered patterns in the spatial
distribution of the free current density and, as time goes on, disorder sets in due to interatomic interactions, finally ending in a disordered

“phase.”

the distribution of free currents in the ensemble becomes
disordered as time goes on. Initially, the ensemble responds
to the incident field in what is effectively an ordered phase;
all the individual atoms respond to the field by oscillating in
an identical manner. This phase is characterized by a near-
uniform free current distribution antialigned with the incident
field polarization. The spatial distribution of the free currents
in directions perpendicular to the incident field polarization
show weak, quadrupolar patterns. At later times, due to the
build-up of electric-field components perpendicular to the
incident polarization, the overall ordered pattern is lost, and
small instantaneous domains are formed that do not move
in phase with one another. These two phases that we refer
to as “ordered” and “disordered” correspond to the two time
windows: one that has a blueshifted frequency and one that
does not. The time scale of this onset of disorder (*28 fs)
in the free-current distribution is much faster than what one
would expect from the normal spontaneous emission rates of
the individual emitters (1/yy ~ 344 ns). Apart from the spatial
correlations that are present due to the symmetry of the system,
no exotic spatial correlations were observed in the evolution
of these free currents.

Examination of the spatially averaged ensemble density
matrix [p = % [ & p(F) = % Z,]lv on] reveals some interest-
ing connections between the macroscopic and microscopic
dynamics. In Fig. 4, we see that the ensemble-averaged excited-
state population that lies along the incident polarization axis
(0yy) appears to quickly reach a steady state. As the free-current
distribution quickly becomes disordered, non-directly-driven
excited states (|e,) and |e,)) gain and retain state population,
as seen from the increase in p,, and p,,. This directly shows
that interatomic interactions (mediated through a mean field)
with strong driving fields lead to a mixing of multidirectional
excited states. As all of the ensemble state populations rapidly
reach an approximate steady state that oscillates only with
the incident frequency, the time-averaged coherences in the
rotating frame reduce to a small net coherence oscillating in the

incident field polarization direction with the frequency of the
incident field. By examining the purity [Tr(52)] of the ensemble
in Fig. 4(b), it is seen that the ensemble state undergoes deco-
herence over the same time scale as the population leakage.
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FIG. 4. (a) Spatially averaged populations in the %, 9, and
Z-directional excited states and (b) ensemble-averaged purity for
a 10 nm radius nanosphere of atoms with atomic number density
Nj = 4.0 x 10°” m~3. Other parameters of the ensemble and the
incident field are the same as in Fig. 2.
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The onset of disorder in the current density distribution is
directly linked to the fact that population from the excited state
corresponding to the polarization direction of the incident light
(inour case ey )) is redistributed due to interatomic interactions
into the other excited states (|e,) and |e;)), which in turn is
linked to decoherence in the ensemble state. This “directional
state leakage” and associated decoherence effects occur on a
time scale that is much faster that what would be predicted by
normal spontaneous emission by several orders of magnitude
(the lifetime of the ensemble excited state about 28 fs in
comparison to the lifetime of a single 2LS, which is =344 ns).
Note that this disorder is purely an ensemble effect; the local
purity of individual coarse grains remains close to unity on
this time scale since the individual spontaneous emission rate
is low (2.95 x 10° Hz).

By examining the dynamics of the strongly driven, dense
ensemble of 2LS, we find that interatomic interactions create
strong disorder in the ensemble states over a characteristic time.
This disorder imposes an overall effective lifetime for quantum
scattering effects.

Figure 5 shows the ensemble-averaged excited-state pop-
ulations as a function of increasing number density. At very
low number density, the ensemble-averaged excited-state pop-
ulation oscillates much in the same way as a single, driven
two-level system with spontaneous emission. Since the inter-
atomic interactions are low, the population in the nondirectly
driven excited states isn’t much. As the number density of
atoms increases, the interatomic interactions cause population
leakage into the nondirectly driven excited states. At the same
time, we see that the oscillation in the directly driven excited
state is damped much more quickly than the low density case.
Increasing interatomic interactions appear to increase the rate
of spontaneous emission in the ensemble, which we already
saw is linked to the onset of disorder in the free-current density.
As the number density increases further, screening makes it
more difficult to excite population into the directly driven
excited state, and hence the populations in the nondirectly
driven excited states increase at slower rates.

The presence of these extremely strong, decoherent pro-
cesses in a driven quantum ensemble has immediate conse-
quences for the numerical modeling of a driven ensemble
of quantum emitters. First, these results indicate that the
“short-pulse method” [19] (the use of ultrashort, sub-fs pulses
to determine continuous scattering amplitudes) may not be
generally applicable when modeling quantum systems driven
at high intensities. Secondly, these results indicate that for an
ensemble of quantum emitters, a one- or two-directional basis
set (such as in Refs. [16,19,37]) is insufficient to fully capture
interatomic interactions, and can lead to overestimates in their
long-term coherent behaviors at high densities. This indicates
that for a general ensemble of dense emitters, a full directional
state basis is required. Our calculation therefore goes beyond
the standard approximations by using a plane-wave excitation
and a full three-dimensional state basis.

Quantifying disorder in driven, dense quantum ensembles

The ensemble-averaged excited-state density in the incident
field polarization direction p,, can be fit to a phenomenological
model of a driven two-level system in which there is sponta-
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FIG. 5. Spatially averaged populations (.., pyy, f.;) in the £, 9,
and Z-directional excited states for a 10 nm radius spherical ensemble
of atoms with varying number densities. Parameters of the incident
field are the same as in Fig. 2.

neous decay from the excited state to the ground state, as well
as a loss of population density,

Pyy = @ €Xp(—Yenst) cOs(82t) + b + ¢ exp(—gt), (9)

where a, b, and c are dimensionless constants, Yes is analogous
to the damping rate of the driven excited state (9) that we call
“the disorder-onset rate,” g represents the rate at which state
population “leaks” from the |e,) state to |e,) and |e;) excited
states, and €2 is the Rabi frequency that is proportional to the
electric-field amplitude of the near-resonance driving field.
Just as the spontaneous emission rate of an individual
quantum state tells us how long a 2LS can remain viable as
a qubit, the effective disorder-onset rate of the system tells us
how long true quantum behavior stays relevant in the ensemble.
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TABLEI Disorder-onsetrates (yeys), and excited-state population
leakage rate (g) for a 10 nm radius spherical ensemble of atoms with
varying number density (N,). The amplitude of the driving electro-
magnetic wave is E = 1.5 x 10° V/m. The spontaneous emission
rate of a single atom in the ensemble is 2.95 MHz.

Number density N4 (m~3) Yens (HzZ) g (Hz)

1 x 107 6.243 x 10! 8.983 x 10!
2.5 x 107 1.455 x 10" 6.173 x 10'?
4 x 107 3.555 x 1013 1.845 x 1013
5 x 10% 5.072 x 103 2.637 x 103
7.5 x 107 5.305 x 10"3 9.193 x 10'2
1x 108 5.194 x 10"3 1.475 x 1012

A summarization of the fits for disorder-onset rates and state
leakage rates as a function of increasing number density of the
atoms in the ensemble can be found in Table L.

As the number density increases, the disorder onset rate
Yens increases. At very high number density, y.ns becomes so
large that the |e,) state cannot be significantly populated, so
the “leakage” to other directional states starts to disappear. We
note that the onset of disorder in denser ensembles is largely
dominated by yens. The dependence of y.ns as a function of
number density (N,) is plotted in Fig. 6 for a dense ensemble
driven with strong fields (€2 >> yy). From this figure, it is clear
that a strongly driven, dense quantum ensemble experiences
a fast (compared to a single atom’s spontaneous emission
rate 1y = 2.95 x 10° Hz) onset of disorder, and the disorder-
onset rate increases as the density of atoms in the ensemble
increases. This indicates that both rapid onset of disorder and
leakage to three-directional states via interatomic interactions
are important in the dynamics of a strong driven ensemble of
atoms. Any quantum control calculations that are applied to
dense collections of atoms should not use short pulse methods
and/or reduced basis sets that ignore directional states unless
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FIG. 6. Effective ensemble disorder-onset rates (y.,s) for a 10 nm
radius spherical ensemble of atoms with varying number density (N, ),
for two different amplitudes of the driving plane-wave electromag-
netic wave. The spontaneous emission rate of a single atom in the
ensemble is 2.95 MHz. The data are fit to a logistic function as in
Eq. (10). The saturation value of the disorder-onset rate L increases
as the amplitude of the driving field increases. (See Table II.)

TABLE II. Effective ensemble disorder-onset rates (ye,s) for Fig. 6.

Intensity (V/m) L (Hz) a (m™3) k (m?)
1.5 x 10° 5.316 x 108 3.337 x 10% 1.353 x 1077
7.5 x 108 3.055 x 1013 1.762 x 107 2.286 x 107

they are driven by extremely rapid pulses or have a low number
density.

The dependence of ye,s on N4 is particularly interesting.
Figure 6 shows that this dependence is nonlinear and although
itincreases at low densities, the disorder-onset rate (Vens) Slows
down at high densities and converges to a saturation value. This
behavior appears to be best described by a saturation curve that
takes the form of the logistic function [38]

L
1+ exp[—k(x —a)]’

Vens = (10)

where L is the saturation value of e, k is a rate constant, x is
the number density, and a is the inflection point of the number
density at which the disorder onset rate begins to saturate.
This saturation curve is typically used in evolutionary systems
in which there is a competition between different processes
[39]. In this particular ensemble system, there is a competition
between the incident field that is trying to force the ensemble
to oscillate coherently, and the disorder (i.e., the mean-field
mediated interatomic interactions) that is trying to prevent this
coherent oscillation.

Figure 6 shows the fit of the disorder onset rate ye,s to
the logistic function [Eq. (10)] for two different incident field
intensities. (See also Table II.) One conclusion that can be
easily drawn from such fits is that, as the intensity of the
incident light is increased, the saturation point (L) of the
disorder-onset rate also increases. This is because, at higher
intensities, the coherent driving by the incident field excitation
is able to more strongly overcome the decoherence caused by
interatomic interactions.

This dependence of the disorder-onset rate (yens) on the
amplitude of the driving indicates that for strongly driven,
dense quantum systems, the disorder-onset rate is dependent
on the density matrix, and therefore is time dependent. For
dense collections of quantum emitters, a better model of Yens
than a constant value would be to estimate it by using the
quantum state of the ensemble.

IV. MODELING DENSE ENSEMBLE DYNAMICS
WITH SINGLE-PARTICLE TECHNIQUES

Examining the dynamics of a driven, nanoscale ensemble
of quantum systems, one notable observation is that the
evolution of the ensemble state population in the incident
field polarization direction is qualitatively similar to that of
a driven two-level system with two competing decoherence
mechanisms—spontaneous emission, and a loss of population
from the excited state parallel to the incident field polarization.
Therefore, we aim to approximate this behavior with a single-
particle model by modifying the decoherence scheme.
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This single-particle model should be similar in nature to
the individual particles that make up the ensemble. Its basis
consists of a ground state |g) and three directional excited
states, |ey), |ey), and |e;), and it is excited by an incident
plane wave. The Hamiltonian of this system, after making the
rotating wave approximation, is

hQ, hQ.
0 hQ2, 2

2 2 2
MeooA 00
H=| 2 , (11)
>0 —A 0
o0 0 -

2

where A represents the detuning between the atomic transition
frequency and the frequency of the incident light, and the
Rabi frequency-like terms €2;, i = x,y,z are proportional to
the electric-field amplitudes in each of the three Cartesian
directions.

For this Hamiltonian, the electric-field terms included are
the external incident field (E,) and perpendicular scattered
field components E, and E, that are much smaller than
the incident field. For the perpendicular scattered field com-
ponents, we assume they arise from the field of a dipole

with E, , ~ Eygsin(e)é [40]. In this case, r = ) 431\‘5 is the
separation between diagonal nearest neighbors, 8 = /4 is the
angle between them, e is the charge of an electron, and u is
the transition dipole moment. For dense systems, the magni-
tude of this scattered field is about 1-2 orders of magnitude
less than that of the incident field.

In the ensemble, an individual quantum system can spon-
taneously emit radiation from the |ey), |e,), and |e;) excited
directional states with rates yxg, y yg, and y zg, respectively.
This emitted radiation can then excite either the |g) — |ey),
lg) — ley), or |g) — |e;) transitions in nearby atoms. This
process is similar to the Forster-resonance energy transfer
(FRET) process commonly seen in biophysical systems [23].
We adopt this FRET model to the decoherence in our single-
particle model. Decoherence couplings are added that look
like forbidden electric-dipole transitions as shown in Fig. 7.
Although these transitions look similar to spontaneous emis-
sion, they do not result in net emission of a photon. Rather,
they represent the emission of a photon and the reabsorption
of that photon by another transition in an adjacent atom. This
makes these transition rates behave more like dephasing rates
(6ij), as they do not emit energy from the system. §;; represents
the dephasing rate due to emission of a photon from the state
le;) of one atom that is absorbed by a neighboring atom that
is excited to state |ej). 8y, 8y, and &, are referred to as
“parallel” dephasing rates, whereas 8, 8., and §,, are referred
to as “perpendicular” dephasing rates. A diagram of all the
decoherence processes in the two-level, directional state basis
of the single-atom model is provided in Fig. 7.

Estimating decoherence rates

We want to estimate the decoherence rates y;; and §;; that
will be inputs into the single-particle model. Let Ed be the
amplitude of the field driving the ensemble and Elocal be the
local field at the location of the atom. Let y be the vacuum
spontaneous emission rate of a single two-level atom.

lg>

FIG. 7. Modified decoherence structure in the single-particle
model of a driven atomic ensemble. When significant interatomic
interactions are present in an ensemble, it becomes possible for the
spontaneously emitted radiation from the excited state of one atom to
excite-state population from the ground state of a nearby atom. This
emission followed by absorption is modeled by a dephasing process
between states that have electric-dipole forbidden transitions (§;;’s in
red). These dephasing rates do not affect the total state population;
they only reduce the overall coherence of the single-particle state that
models the ensemble.

To calculate the spontaneous emission rate y; from an
excited state to a ground state of an atom in an ensemble, one
can define an “enhancement factor” by comparing the power
emitted by an atom in an ensemble P to that which it emits in
free space Py, calculated via the Larmor formula. This takes
the form

ﬁ P Re(]d Elocal)

=—=— " (12)
Y0 Py Re(]d Ed)

where ]d is the free current of the transition. The local field
Elma] is the sum of the driving field Ed and the field scattered
by other atoms Eext Therefore,

Re(;; : Eext)
Re(j; - Eq)

If the ensemble contains many strongly interacting quantum
elements, the decay rate enhancement in various directions
will be a complicated function of time and therefore cannot be
easily evaluated with a single, constant, enhancement. If the
transitions are oscillating dipole emitters, however, Eq. (13)
can be simplified to [23]

P

(13)
v P

Va P 6mey ¢3 % o
P P ER e(jo - Eex)s
6mey 1 -
=1+ l‘; SIMGE" - Eed. (14

In the single-particle model, there are no fields due to scattering
from other atoms, i.e., E¢ = 0. Therefore, the spontaneous
emission rates y;, are all equal to yy.

The dephasing rates (§;;) associated with energy transfer
between atomic transitions can be calculated by the following
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FIG. 8. Comparison between single-particle model calculation
and the mean-field PSTD calculation of spatially averaged excited-
state populations for a 10 nm radius spherical ensemble of atoms.
The amplitude of the driving electromagnetic wave is £ = 1.5 x
10° V/m. The number density of atoms in the ensemble are (a)
4.0 x 10% and (b) 2.5 x 10?7 atoms per cubic meter.

process [23]. The magnitudes of the dephasing rates depend
on the excitation transfer between atoms. At different spatial
locations, these dephasing rates can be quantified by

Simnj P (15)

Yo Py’
where §;_,; is the rate of energy transfer from transition i
in one atom (le;) — |g)) to transition j (|g) — |e;)) in a
neighboring atom, and P;_,; is the power received by the
“acceptor” transition (j) from the field created by the “donor”
transition (7). P;_. ; is computed by

Pij = iRe[ 1 (7)) - (7)), (16)

where ffk(r_'j) is the free current of the acceptor and E,- (r;) is
the field created by the donor.
Starting with the near field of a radiating point dipole

1 3(ii - PP — i
s 17
4neo< r3 ) an

where E;(7) is the electric field, W; is the dipole moment of
transition i in a single particle, and 7 is the spatial position,
we can assume that the atoms are spherically distributed two

atomic radii apart (1/r* = {2 N,)). This yields
B = ——~ N3G - 7 — i
i\r) = o i Pr — [
Areg8 3 M o
24 AB3(i - )P — ;] (18)

Therefore, the power transferred due to interaction betwgen
two individual particle transitions (i and j), assuming that j ~

W,

Pinj = iRe[ji(F) - B ~ foit; - Ex(F),  (19)
becomes
Pi;= lwlfj : (£|Mi|[3(/2i PP — /L'])- (20)
2 24¢g
Given that the dipole moments for each transition are the same
(I14i, ;1 = |11 (as all atoms are identical), this reduces to
P = M|M|2(ﬁj <[3(i - P)F — (1) 2D
4860
48 P Py - F) — (i - a)]. (22)

With this, we can calculate §;_, ; by normalizing to the power
output of a classical oscillating dipole

8,'4,1‘ _ PiA,j 4g€0|“’| [3(“/1 r)(/'l«] r)_(ll'] :le)]
- - A ul?
Yo Po Mlzn“fl
(23)
This yields

81‘_”‘ _ NaJTC3
Yo

Lastly we add a factor of ,/p0;ipgg/PjPeg Which serves as
an estimate of the fraction of atoms in the ensemble that

experience the |i) — |j) energy transfer:

Li - PY(j - F) — gy - il (24)

81'_)]' NT[C

= — 5 BGR - P)(hj - F) — 4L - 4]
70 4o
X (\/ PiiPgg/Pjj ;Ogg)' (25)

For the “parallel” transitions (for example, §, ), we use Eq. (25)
and normalize to the power of a radiating dipole of the
transition frequency o,

8,'_”‘ NT[C

Yo = 203 («/pupgg\/pjjpgg) (26)

For the transitions that are “perpendicular” (for example,
dyy), we use the nearest diagonal neighbor, instead of the near-
est neighbor, as this diagonal neighbor is the closest lattice site
in which a dipole can produce radiated fields in a perpendicular
direction to its dipole moment. This involves dividing Eq. (25)
by \/Lg, since ' = +/2r and therefore @ = 7 /4. The dephasing

rate of a perpendicular transition is calculated as

(S,'Ay 3N 7TC
L = («/ Pii Pgg/ pjjpgg) (27)
Yo 167203

Placing these decoherence parameters into the single-
particle Liouville equation, and solving numerically, yields
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excited-state populations depicted in Figs. 8(a) and 8(b). The
single-particle state calculation is overlaid with the ensemble-
averaged calculation described in the previous section. Com-
paring the results of the single-particle approximation to the
full ensemble calculation, we see that there is relatively good
agreement between the two methods. The two curves are
not identical; however, they are close enough to suggest that
this single-particle, modified-decoherence scheme captures
a significant amount of the underlying physical processes
involved and that the FRET process is a good model of
interatomic interactions in our mean-field calculation.

The success of the effective single-particle model shows
that a FRET-like decoherence process takes place in a dense,
driven ensemble. The full calculation required ~16 CPU
days of runtime; in comparison the single-particle calculation
required ~2 CPU minutes of runtime. Thus the single-particle
model can provide a reasonably accurate, quick estimate of
the quantum dynamics in an ensemble before attempting a full
calculation.

The main limitation of this single-particle model is that
it does not explicitly include coherent scattering of a field
emitted by one emitter from another emitter. That is, in the
Hamiltonian, only the incident electromagnetic field appears.
In reality, this Hamiltonian should also depend on the instan-
taneous state and overall geometry of the ensemble. Another
limitation of this model is that it assumes that only the single,
nearest-neighbor interactions are relevant to the couplings;
in truth, farther couplings and interference effects between
atoms are required to increase the model’s accuracy. In future
work, one could improve this model by adopting a more robust
coupling geometry to account for scattered driving fields and
farther neighbors.

V. CONCLUSION

We have studied the behavior of a dense ensemble of
quantum emitters driven by an intense, electromagnetic plane
wave. The state of each quantum emitter evolves according
to the Lindblad—von Neumann equation. The evolution of
the ensemble reflects not only the interaction between the

driving field and individual atoms, but also the interactions
between individual emitters. To study this evolution, we have
implemented a coarse-grained, mean-field method based on
the PSTD technique in which the Lindblad—von Neumann
equation for each quantum emitter is solved in conjunction with
a solution to Maxwell’s equations over the whole ensemble. In
order to correctly model the excitation of the quantum elements
in 3D due to spontaneous emission from nearby neighbors, we
have implemented a multidirectional basis for the quantum
state of each emitter.

The dynamics of the driven quantum ensemble is charac-
terized by a “disorder-onset rate” that is a function of number
density. This ensemble disorder-onset rate reflects the effect
of interactions between atoms and is relatively high for dense,
strongly interacting systems. The presence of this disorder is
immediately significant as it sets an effective time limit in
which quantum optical effects are relevant in ensemble dynam-
ics. It also serves as a limit on the applicability of theoretical
techniques such as the short-pulse method and simplified basis
sets, the use of which may lead to overestimates of coherent
effects in quantum ensembles.

Lastly, we have provided a theoretical method in which the
disorder produced during the evolution of a driven ensemble of
quantum emitters can be modeled as decoherence of a single
particle, specifically, a dephasing. We have used this model to
approximate the state evolution of a dense quantum ensemble
using an effective single-particle density matrix. This method
works by allowing for FRET-like coupling between multiple
quantum emitters in the ensemble. This method provides a
pretty close approximation to the full, mean-field simulation in
significantly less computational time than the full simulation.
This single-particle model also highlights how decoherence
processes affect overall ensemble behavior, which may prove
useful in designing protocols for decoherence control.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from the Dis-
covery Grant program of the Natural Sciences and Engineering
Research Council of Canada (Grant No. 311880). Calculations
were performed on the SharcNet supercomputing platform.

[1] T. Wang, S. E. Yelin, R. Coté, E. E. Eyler, S. M. Farooqi, P. L.
Gould, M. Kostrun, D. Tong, and D. Vrinceanu, Superradiance
in ultracold Rydberg gases, Phys. Rev. A 75, 033802 (2007).

[2] T. Zhou, B. G. Richards, and R. R. Jones, Absence of collec-
tive decay in a cold Rydberg gas, Phys. Rev. A 93, 033407
(2016).

[3] R. T. Sutherland and F. Robicheaux, Superradiance in inverted
multilevel atomic clouds, Phys. Rev. A 95, 033839 (2017).

[4] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. C6té, and M. D.
Lukin, Fast Quantum Gates for Neutral Atoms, Phys. Rev. Lett.
85, 2208 (2000).

[5] R. Friedberg, S. R. Hartmann, and J. T. Manassah, Frequency
shifts in emission and absorption by resonant systems of two-
level atoms, Phys. Rep. 7, 101 (1973).

[6] E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J.
Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt,

M. Moller, and D. I. Gittins, Fluorescence Quenching of Dye
Molecules Near Gold Nanoparticles: Radiative and Nonradiative
Effects, Phys. Rev. Lett. 89, 203002 (2002).

[7] C. S. DiLoreto and C. Rangan, Polarization control of sponta-
neous emission for rapid quantum-state initialization, Phys. Rev.
A 95, 043834 (2017).

[8] M. R. Singh, D. G. Schindel, and A. Hatef, Dipole-dipole
interaction in a quantum dot and metallic nanorod hybrid system,
Appl. Phys. Lett. 99, 181106 (2011).

[9] M. K. Dezfouli, R. Gordon, and S. Hughes, Modal theory of
modified spontaneous emission of a quantum emitter in a hybrid
plasmonic photonic-crystal cavity system, Phys. Rev. A 95,
013846 (2017).

[10] M. Sukharev and S. A. Malinovskaya, Stimulated Raman
adiabatic passage as a route to achieving optical control in
plasmonics, Phys. Rev. A 86, 043406 (2012).

013812-10


https://doi.org/10.1103/PhysRevA.75.033802
https://doi.org/10.1103/PhysRevA.75.033802
https://doi.org/10.1103/PhysRevA.75.033802
https://doi.org/10.1103/PhysRevA.75.033802
https://doi.org/10.1103/PhysRevA.93.033407
https://doi.org/10.1103/PhysRevA.93.033407
https://doi.org/10.1103/PhysRevA.93.033407
https://doi.org/10.1103/PhysRevA.93.033407
https://doi.org/10.1103/PhysRevA.95.033839
https://doi.org/10.1103/PhysRevA.95.033839
https://doi.org/10.1103/PhysRevA.95.033839
https://doi.org/10.1103/PhysRevA.95.033839
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1016/0370-1573(73)90001-X
https://doi.org/10.1016/0370-1573(73)90001-X
https://doi.org/10.1016/0370-1573(73)90001-X
https://doi.org/10.1016/0370-1573(73)90001-X
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevLett.89.203002
https://doi.org/10.1103/PhysRevA.95.043834
https://doi.org/10.1103/PhysRevA.95.043834
https://doi.org/10.1103/PhysRevA.95.043834
https://doi.org/10.1103/PhysRevA.95.043834
https://doi.org/10.1063/1.3658395
https://doi.org/10.1063/1.3658395
https://doi.org/10.1063/1.3658395
https://doi.org/10.1063/1.3658395
https://doi.org/10.1103/PhysRevA.95.013846
https://doi.org/10.1103/PhysRevA.95.013846
https://doi.org/10.1103/PhysRevA.95.013846
https://doi.org/10.1103/PhysRevA.95.013846
https://doi.org/10.1103/PhysRevA.86.043406
https://doi.org/10.1103/PhysRevA.86.043406
https://doi.org/10.1103/PhysRevA.86.043406
https://doi.org/10.1103/PhysRevA.86.043406

SINGLE-PARTICLE MODEL OF A STRONGLY DRIVEN, ...

PHYSICAL REVIEW A 97, 013812 (2018)

[11] S. D. Jenkins, J. Ruostekoski, J. Javanainen, R. Bourgain, S.
Jennewein, Y. R. P. Sortais, and A. Browaeys, Optical Resonance
Shifts in the Fluorescence of Thermal and Cold Atomic Gases,
Phys. Rev. Lett. 116, 183601 (2016).

[12] J. Javanainen, J. Ruostekoski, Y. Li, and S.-M. Yoo, Shifts of
a Resonance Line in a Dense Atomic Sample, Phys. Rev. Lett.
112, 113603 (2014).

[13] A. S. Kuraptsev and I. M. Sokolov, Spontaneous decay of
an atom excited in a dense and disordered atomic ensemble:
Quantum microscopic approach, Phys. Rev. A 90, 012511
(2014).

[14] E. Sela, V. Fleurov, and V. A. Yurovsky, Molecular spectra in
collective Dicke states, Phys. Rev. A 94, 033848 (2016).

[15] 1. M. Sokolov, D. V. Kupriyanov, and M. D. Havey, Microscopic
theory of scattering of weak electromagnetic radiation by a dense
ensemble of ultracold atoms, J. Exp. Theor. Phys. 112, 246
(2011).

[16] R. Puthumpally-Joseph, M. Sukharev, O. Atabek, and E.
Charron, Dipole-Induced Electromagnetic Transparency, Phys.
Rev. Lett. 113, 163603 (2014).

[17] M. Sukharev and E. Charron, Molecular plasmonics: The role
of rovibrational molecular states in exciton-plasmon materials
under strong-coupling conditions, Phys. Rev. B 95, 115406
(2017).

[18] A. Deinega and T. Seideman, Self-interaction-free approaches
for self-consistent solution of the Maxwell-Liouville equations,
Phys. Rev. A 89, 022501 (2014).

[19] M. Sukharev and A. Nitzan, Numerical studies of the interaction
of an atomic sample with the electromagnetic field in two
dimensions, Phys. Rev. A 84, 043802 (2011).

[20] Lumerical Solutions Inc., http://www.lumerical.com/
tcadproducts/fdtd/.

[21] H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Kill, and
P. Johansson, Unified Treatment of Fluorescence and Raman
Scattering Processes Near Metal Surfaces, Phys. Rev. Lett. 93,
243002 (2004).

[22] A. Fratalocchi, C. Conti, and G. Ruocco, Three-dimensional
ab initio investigation of light-matter interaction in Mie lasers,
Phys. Rev. A 78, 013806 (2008).

[23] L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge
University Press, Cambridge, UK, 2006), Chap. 8.

[24] A. M. Davie and A. J. Stothers, Improved bound for complexity
of matrix multiplication, Proc. R. Soc. A 143, 351 (2013).

[25] C. DiLoreto, The effect of chain rigidity on pore forma-
tion by peptide action in model polymeric bilayers, elec-
tronic theses and dissertations, University of Guelph, 2012,
http://hdl.handle.net/10214/3919.

[26] A. V. Gruzinov and P. H. Diamond, Self-Consistent Theory
of Mean-Field Electrodynamics, Phys. Rev. Lett. 72, 1651
(1994).

[27] Q. H. Liu, The PSTD algorithm: A time-domain method requir-
ing only two cells per wavelength, Microw. Opt. Technol. Lett.
15, 158 (1997).

[28] Q. H. Liu, Large-scale simulations of electromagnetic and
acoustic measurements using the pseudospectral time-domain
(PSTD) algorithm, IEEE T. Geosci. Remote 37, 917 (1999).

[29] K. S. Kunz and R. J. Luebbers, The Finite Difference Time
Domain Method for Electromagnetics (CRC Press, Boca Raton,
FL, 1993).

[30] J.-P. Bérenger, Perfectly matched layer (PML) for computa-
tional electromagnetics, Synth. Lect. Comput. Electromagn. 2,
1(2007).

[31] S. D. Gedney, Introduction to the finite-difference time-domain
(FDTD) method for electromagnetics, Synth. Lect. Comput.
Electromagn. 6, 1 (2011).

[32] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetter-
ling et al., Numerical Recipes (Cambridge University Press,
Cambridge, UK, 1989), Vol. 3.

[33] SHARCNET (www.sharcnet.ca) is a consortium of colleges,
universities, and research institutes operating a network of high-
performance computer clusters across southwestern, central, and
northern Ontario.

[34] A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, 1. Celanovi¢,
M. Soljacié, and E. N. Wang, A nanophotonic solar thermopho-
tovoltaic device, Nat. Nanotechnol. 9, 126 (2014).

[35] C. Striimpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui,
V. Svréek, C. Del Caiiizo, and 1. Tobias, Modifying the solar
spectrum to enhance silicon solar cell efficiency—An overview
of available materials, Sol. Energ. Mat. Sol. Cells 91, 238
(2007).

[36] H. A. Lorentz, The Theory of Electrons and its Applications
to the Phenomena of Light and Radiant Heat, 2nd ed. (Dover
Publications, Inc., New York, 1952).

[37] S. C. Rand, W. M. Fisher, and S. L. Oliveira, Optically induced
magnetization in homogeneous, undoped dielectric media,
J. Opt. Soc. Am B 25, 1106 (2008).

[38] N. A. Gershenfeld, The Nature of Mathematical Modeling
(Cambridge University Press, Cambridge, UK, 1999).

[39] P.F. Verhulst, Mathematical researches into the law of population
growth increase, N. M. Acad. R. Sci. Bell.-Lett. Brux. 18, 1
(1845).

[40] N. L. Sharma, E. R. Behringer, and R. C. Crombez, A study of
electric dipole radiation via scattering of polarized laser light,
Am. J. Phys. 71, 1294 (2003).

013812-11


https://doi.org/10.1103/PhysRevLett.116.183601
https://doi.org/10.1103/PhysRevLett.116.183601
https://doi.org/10.1103/PhysRevLett.116.183601
https://doi.org/10.1103/PhysRevLett.116.183601
https://doi.org/10.1103/PhysRevLett.112.113603
https://doi.org/10.1103/PhysRevLett.112.113603
https://doi.org/10.1103/PhysRevLett.112.113603
https://doi.org/10.1103/PhysRevLett.112.113603
https://doi.org/10.1103/PhysRevA.90.012511
https://doi.org/10.1103/PhysRevA.90.012511
https://doi.org/10.1103/PhysRevA.90.012511
https://doi.org/10.1103/PhysRevA.90.012511
https://doi.org/10.1103/PhysRevA.94.033848
https://doi.org/10.1103/PhysRevA.94.033848
https://doi.org/10.1103/PhysRevA.94.033848
https://doi.org/10.1103/PhysRevA.94.033848
https://doi.org/10.1134/S106377611101016X
https://doi.org/10.1134/S106377611101016X
https://doi.org/10.1134/S106377611101016X
https://doi.org/10.1134/S106377611101016X
https://doi.org/10.1103/PhysRevLett.113.163603
https://doi.org/10.1103/PhysRevLett.113.163603
https://doi.org/10.1103/PhysRevLett.113.163603
https://doi.org/10.1103/PhysRevLett.113.163603
https://doi.org/10.1103/PhysRevB.95.115406
https://doi.org/10.1103/PhysRevB.95.115406
https://doi.org/10.1103/PhysRevB.95.115406
https://doi.org/10.1103/PhysRevB.95.115406
https://doi.org/10.1103/PhysRevA.89.022501
https://doi.org/10.1103/PhysRevA.89.022501
https://doi.org/10.1103/PhysRevA.89.022501
https://doi.org/10.1103/PhysRevA.89.022501
https://doi.org/10.1103/PhysRevA.84.043802
https://doi.org/10.1103/PhysRevA.84.043802
https://doi.org/10.1103/PhysRevA.84.043802
https://doi.org/10.1103/PhysRevA.84.043802
http://www.lumerical.com/tcadproducts/fdtd/
https://doi.org/10.1103/PhysRevLett.93.243002
https://doi.org/10.1103/PhysRevLett.93.243002
https://doi.org/10.1103/PhysRevLett.93.243002
https://doi.org/10.1103/PhysRevLett.93.243002
https://doi.org/10.1103/PhysRevA.78.013806
https://doi.org/10.1103/PhysRevA.78.013806
https://doi.org/10.1103/PhysRevA.78.013806
https://doi.org/10.1103/PhysRevA.78.013806
https://doi.org/10.1017/S0308210511001648
https://doi.org/10.1017/S0308210511001648
https://doi.org/10.1017/S0308210511001648
https://doi.org/10.1017/S0308210511001648
http://hdl.handle.net/10214/3919
https://doi.org/10.1103/PhysRevLett.72.1651
https://doi.org/10.1103/PhysRevLett.72.1651
https://doi.org/10.1103/PhysRevLett.72.1651
https://doi.org/10.1103/PhysRevLett.72.1651
https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
https://doi.org/10.1109/36.752210
https://doi.org/10.1109/36.752210
https://doi.org/10.1109/36.752210
https://doi.org/10.1109/36.752210
https://doi.org/10.2200/S00030ED1V01Y200605CEM008
https://doi.org/10.2200/S00030ED1V01Y200605CEM008
https://doi.org/10.2200/S00030ED1V01Y200605CEM008
https://doi.org/10.2200/S00030ED1V01Y200605CEM008
https://doi.org/10.2200/S00316ED1V01Y201012CEM027
https://doi.org/10.2200/S00316ED1V01Y201012CEM027
https://doi.org/10.2200/S00316ED1V01Y201012CEM027
https://doi.org/10.2200/S00316ED1V01Y201012CEM027
http://www.sharcnet.ca
https://doi.org/10.1038/nnano.2013.286
https://doi.org/10.1038/nnano.2013.286
https://doi.org/10.1038/nnano.2013.286
https://doi.org/10.1038/nnano.2013.286
https://doi.org/10.1016/j.solmat.2006.09.003
https://doi.org/10.1016/j.solmat.2006.09.003
https://doi.org/10.1016/j.solmat.2006.09.003
https://doi.org/10.1016/j.solmat.2006.09.003
https://doi.org/10.1364/JOSAB.25.001106
https://doi.org/10.1364/JOSAB.25.001106
https://doi.org/10.1364/JOSAB.25.001106
https://doi.org/10.1364/JOSAB.25.001106
https://doi.org/10.1119/1.1575764
https://doi.org/10.1119/1.1575764
https://doi.org/10.1119/1.1575764
https://doi.org/10.1119/1.1575764



