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3Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany

(Received 21 June 2017; published 5 January 2018)

We derive the quantum mechanical description of light-matter interactions in optical cavities characterized
solely by radiative decay. Unique to radiative decay is the conservation of photon number and coherence, in stark
contrast to absorptive losses. This prohibits the description of such cavities by traditional means, e.g., coupling it
to a bath of harmonic oscillators into which energy is dissipated. Here, we propose a description of cavities with
radiative decay by introducing cavity and noise operators in terms of scattering modes. A multimode input-output
formalism to predict measurable far field quantities arises naturally. We apply our general model to the special
case of the single excitation regime. We find dynamics reminiscent of the dissipative Jaynes-Cummings model,
but with vanishing backaction and a rich temporal and spectral structure of the output modes.
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I. INTRODUCTION

The proper treatment of radiative decay in optical cavities
is an important issue. Over the course of time, optical cavities
have been shown to be of use to achieve strong-coupling
regime [1–5] of light and matter, to generate squeezed states of
light [6–8], entanglement [9–14], single photons [15–19], and
nonclassical light in general [20–22]. All these rely on influenc-
ing atomic transition properties in quantum systems through
tailored electromagnetic field modes [23–26], which in turn can
be controlled by the geometry of the optical cavity [27–29].

Cavity quantum electrodynamics (QED) models proto-
typical systems to study the quantum physical aspects of
light-matter interaction [30]. In the absence of decay, the
joint system of light and matter is closed and, therefore, its
temporal evolution can be described by the Hamiltonian of
the system alone. The canonical system consists of a single
electromagnetic cavity mode coupled to an atomic transition.
Such a system is described by the Rabi Hamiltonian, which
in many cases can be further simplified to yield the Jaynes-
Cummings Hamiltonian [31].

The disregard of any decay leads to a simple and reliable
theoretical model. However, it does not reflect realistic light-
matter interaction scenarios, that are always characterized by
some kind of decay, e.g., radiative decay or absorptive losses.
This decay is usually introduced by coupling system operators
to a bath of other excitations [32], e.g., phonons. Since realistic
systems contain a large number of such unwanted excitations,
the energy of the system is eventually distributed somewhat
evenly across all of them and is therefore effectively lost. In
the context of optical processes, this is clearly the way to
model absorption losses [33]. In contrast, radiative decay, e.g.,
photons emitted into the far field, constitute a different category
of decay that is based on a different mechanism and, hence,
requires a different modeling.
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Radiative decay does not lead to the loss of electromagnetic
energy. Instead, the energy is just displaced over time to a place
far away from the system of interest, i.e., the far field. Modeling
this as outlined above would be equivalent to placing a perfect
absorber around the cavity, effectively leading to the far field
being integrated out. Since experimental detection mostly takes
place in the far field, this would mean that information about
the observables of the theory is lost. Therefore, an accurate
theory is needed that can accommodate these specific aspects
of radiative decay. In this work, we solve the problem by
introducing a formalism that splits the electromagnetic field up
into one system operator and multiple bath operators (Fig. 1).
This leads to dissipative dynamics and provides insights
concerning the relation between scattering and cavity modes.
Apart from providing a more rigorous description of open
cavity QED, our formalism also introduces an unconventional
type of exactly soluble bath dynamics (i.e., relying neither on
Born nor Markov approximations) and paves the way towards
a unified description of classical and quantum processes in
arbitrary nanooptical structures, that can act as cavities.

This work is organized as follows: In Sec. II we derive the
quantum mechanical description of light-matter interaction in
optical cavities characterized by radiative decay. The resulting
model represents the core result of this paper. In Sec. III
we show how a multimode input-output formalism emerges
naturally within the model. This allows us to describe complete
experimental setups in a unified manner. In Sec. IV we
apply the general formalism to an exemplary single-photon
scenario. We find dynamics reminiscient of the dissipative
Jaynes-Cummings model, but with backaction from the bath
vanishing completely and a rich temporal and spectral signa-
ture in the far field. In Sec. V we summarize our findings and
provide a universal procedure for the quantum description of
nonabsorbing cavities with Lorentzian spectrum.

II. RADIATIVE LOSSES IN CQED

We consider the problem of a quantized electromagnetic
field coupled to a single two-level system (TLS) in electric
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FIG. 1. (a) System under investigation: An arbitrary optical cavity
is exposed to arbitrary incident illumination, which results in emission
into the far field. (b) Methodological change in formulation of
emission: Coupling to thermal bath is replaced by new coupling to
chain of noise operators.

dipole and rotating wave approximation. These approxima-
tions are justified whenever the TLS is small compared to the
size scale of electric-field modulations, typically given by the
wavelength, and whenever the light-matter coupling strength is
much smaller than all resonant frequencies of the system. Both
these approximations are typically very well applicable. The
latter condition can be checked using the interaction strength
derived below.

We assume the presence of a localized and lossless dielectric
structure giving rise to classical light scattering. The Hamilto-
nian of the system can be found in many textbooks on quantum
optics and reads [34]

H =
∑

λ

∫
d3kh̄ωka

†
k,λak,λ + h̄ωa

σz

2

+
∑

λ

∫
d3k(Ek,λ(ra) · da

†
k,λσ− + H.c.), (1)

where ωk = c0|k|, c0 is the speed of light in vacuum, d and
ra are the transition dipole moment and spatial position of
the TLS, σz is a Pauli matrix, σ− is the corresponding Pauli
lowering operator, and ak,λ are photonic annihilation operators
for scattering modes of wave vector k and polarization λ. For
the rest of this work we drop the mode index k from ωk, making
the dispersion relation implicit. We note here that we do not
consider any nonradiative losses of the TLS, as we assume them
to be negligible compared to radiative decay. However, they can
be introduced in the usual manner via a thermal bath without
affecting the following considerations. The electromagnetic
field modes are of the form [35],

Ek,λ(r) =
√

h̄ω

(2π )32ε0εb

êk,λe
ik·r + E(s)

k,λ(r), (2)

where εb is the permittivity of the background medium and
E(s)

k,λ(r) is the scattered field, which arises due to the spa-
tially inhomogeneous dielectric function ε(r,ω). The photonic
operators satisfy the usual harmonic oscillator commutation
relations,

[ak,λ,a
†
k′,λ′] = δ(k − k′)δλλ′, (3)

with all other commutators vanishing. The description offered
by the Hamiltonian in (1) is exact and general, but usually
not tractable. Luckily, many problems of practical interest
feature electromagnetic resonances, i.e., the electromagnetic
field at the position of the TLS only takes on appreciable
values over a set of comparatively narrow frequency ranges.
In the following we will assume the existence of a single
resonant electromagnetic mode in the vicinity of the transition
frequency ωa of the TLS. All other modes are assumed to
be far detuned when compared to the characteristic resonance
linewidth and, therefore, can be ignored. In practice most
resonances are well described by a Lorentzian lineshape [36–
38] and we, therefore, assume

Ek,λ(ra) = E0(ra)δλ,λ0

√
�

2π

g(k̂)

ω − ω0 − i�/2
, (4)

where ω0 is the central frequency, � is the linewidth of the
mode, and g(k̂) describes the angular dependence. In the
following, we always assume that the resonance is sharp,
i.e., � � ω0. This is the case for most practical scenarios
involving nonabsorptive cavities, since long lifetimes are gen-
erally advantageous for cQED applications and very high-Q
cavities are widely available [39–42]. The Kronecker delta
δλ,λ0 signifies that there is indeed only one electromagnetic
mode and not two degenerate ones of different polarization.
This constitutes no limitation since in practice one can describe
the polarizations in the coupled-uncoupled basis. Since only
one polarization couples to the TLS we shall drop polarization
indices λ from here on. In the following, we will show that the
above assumptions allow us to reduce the exact Hamiltonian to
an approximate but tractable form, with the only condition for
the approximation to hold being � � ω0. Consequently, the
error introduced by this approximation is of order O(�/ω0),
i.e., inversely proportional to the cavity Q factor. We note here
without providing explicit proof, that our formalism can be
generalized to scenarios that involve either multiple cavity
modes, multiple TLSs, multilevel systems, different multipo-
lar atomic transitions, ultrastrong coupling, or combinations
thereof. It is even possible to consider non-Lorentzian modes,
if the modified spectrum can be described as the product
of a Lorentzian with an analytical function. However, such
generalizations are beyond the scope of the present work.

Taking (4) into account, we can derive evolution equations
in the Heisenberg picture for the operators from (1) that read
as

ȧk = −iωak − i
E0(ra) · d

h̄

√
�

2π

g(k̂)

ω − ω0 − i�/2
σ−, (5)

σ̇− = −iωaσ− + i
E∗

0(ra) · d∗

h̄

×
∫

d3k

√
�

2π

g∗(k̂)

ω − ω0 + i�/2
σzak. (6)
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Inspection of (6) motivates the following definition of a
resonant mode annihilation operator:

a :=
∫

c
3/2
0 d3k√

Gω

√
�

2π

g∗(k̂)

ω − ω0 + i�/2
ak, (7)

G :=
∫

d	k|g(k̂)|2, (8)

where d	k = sin(θk)dθkdϕk denotes integration over solid
angles. Please note that the normalization constant G in (8) is
chosen in such a way that the harmonic oscillator commutation
relations are satisfied,

[a,a†] = 1, (9)

and all other commutators vanishing. The original evolution
Eqs. (5) and (6) can now be rewritten in terms of the newly
defined resonant mode operators. The process is detailed in
Appendix A and the results read

ȧ = (−iω0 − �/2)a − iκσ− − iF0, (10)

σ̇− = −iωaσ− + iκ∗
(

1 − i
�

2ω0

)
σza + i

κ∗

ω0
σzF0, (11)

where the effective light-matter coupling constant κ is defined
as

κ =
√

G

c
3/2
0

ω0
E0(ra) · d

h̄
=

√
G

4π

π

c
3/2
0

ω0

√
2�

Emax(ra) · d
h̄

,

(12)

with Emax(ra) being the field strength at resonance at the
location of the TLS. To the best of our knowledge this is the
first time that the coupling strength between an open cavity
mode and a quantum emitter has been calculated from first
principles rather than from phenomenological considerations,
e.g., by defining a mode volume for open cavities ad hoc [43].
The new operator F0 appearing in (10) and (11) belongs to a
family of operators defined as

Fn :=
∫

d3k

ω

c
3/2
0√
G

√
�

2π
g∗(k̂)(ω − ω0)nak. (13)

Comparing (7) and (13), we notice that the operators Fn are
not associated with the resonance mode at ω0, but rather with a
broad range of frequencies. For this reason we will call Fn noise
operators from here on. Please note that these noise operators
were retrieved without having introduced a thermal bath.

In order to construct a closed system of equations, we need
equations of motion for Fn. The derivation of these is detailed
in Appendix B. The results read

Ḟn = −iω0Fn − iFn+1. (14)

The set of Eqs. (10), (11), and (14) is closed in the sense
that equations of motion for all operators of the system can
be inferred and can, therefore, be used in its current form to
describe the system dynamics. In the spirit of the theory of open
quantum systems, however, we wish to find a set of equations
that only contains the system operators a and σ− as dynamic
quantities.

As is detailed in Appendix C, the equations of motion of
the noise operators (14) can be formally solved without further
approximations to yield

Fn(t) = e−iω0t

∞∑
m=0

(−it)m

m!
Fm+n(0), (15)

where the form of Fm(0) defines the type of illumination, as
can be seen from (13) and the examples of Sec. III. Please note
that the operators Fn(t) can be interpreted as input parameters,
because (15) tells us that there exists no backaction from the
system. Insertion of (15) into (10) and (11) now yields a set of
equations of motion for the operators a and σ−, which is closed
in the sense that equations of motion for all system operators
can be derived from them. The lowest order input operator
serves as a pump term,

ȧ(t) = (−iω0 − �/2)a(t) − iκσ−(t) − iF0(t), (16)

σ̇−(t) = −iωaσ−(t) + iκ∗
(

1 − i
�

2ω0

)
σz(t)a(t)

+ i
κ∗

ω0
σz(t)F0(t). (17)

Using (16) and (17) allows one to find equations of motion
for all observables of the system, i.e., expectation values of
arbitrary operators. The initial values of operators containing
a and Fn can be inferred from the initial state of the quantized
electrodynamic field using the definitions (7) and (13). Instead
of the simultaneous coupling of the system to a larger number
of bath operators, the operators that describe the evolution of
our actual system are only coupled to one noise operator. In a
sequential type of process, each noise operator then couples to
the next.

We have now succeeded not only at describing the internal
quantum dynamics of a cavity with radiative decay, but also at
linking it to the external field via the noise operator F0(t). In the
following section, this link will be used to formulate an input-
output scheme for scattering modes capable of describing real
experimental setups.

III. MULTIMODE INPUT-OUTPUT FORMALISM

At this point we have formulated the problem of evolution
of a cavity-matter system in a rigorous manner. However, this is
not yet sufficient to make predictions about actual experiments.
A typical quantum optical experiment consists of probing an
optical system with a beam of light and measuring the outgoing
radiation. In the following, we will establish a quantitative rela-
tion between the different parts of the systems. What makes this
challenging is the infinite amount of possible input and output
channels, one for each photon momentum. However, since the
cavity and noise operators of our model can be expanded in
terms of scattering operators according to Eqs. (7) and (13), we
are able to bridge the gap between internal and far field states
directly without introducing additional coupling mechanisms
or determining transfer operators. This enables an accurate
calculation of any given output channel for illuminating fields
of arbitrary angular and spectral composition.
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A. Input operators

Most experimental illumination schemes in optics use a
light beam with a waist diameter much larger than the system
under consideration. For all practical purposes such a light
beam can be considered as a plane wave with the wave vector
pointing along the beam axis. For this reason, the following
subsections describe how an illumination with a coherent plane
wave can be described by means of the noise operator F0(t).

1. Continuous pumping

One of the most common pumping schemes is excitation by
a continuous laser beam, i.e., the incident light is monochro-
matic, coherent, and polarized. In terms of the scattering
eigenmode operators this means

〈ak(t = 0)〉 = αP δ(k − kP ), (18)

where αP is the amplitude and kP is the wave vector of the
laser beam. Using (13) one finds

〈Fn(0)〉 = C(ωP − ω0)n,

C := c
3/2
0

ωP

√
�

2πG
g(k̂P )αP . (19)

Substitution of (19) into the expectation value of (15) now
yields

〈F0(t)〉 = Ce−iω0t

∞∑
n=0

(−i(ωP − ω0)t)n

n!

= Ce−iω0t e−i(ωP −ω0)t = Ce−iωP t . (20)

Equation (20) implies that the equation of motion for a contains
a pump term of constant amplitude, which oscillates at the
pump laser frequency. Terms of this form have been routinely
employed when discussing driven quantum systems, but now
we actually have the means to quantify the relation between
laser intensity and pump strength.

2. Pulsed pumping

Assume now that the laser used to pump the system is not
continuous, but pulsed. This means that a range of frequencies
centered around the laser frequency is excited according to

〈ak〉 = αP δ(k̂ − k̂P )e−�2(ω−ω0)2
. (21)

Inserting this into the expectation value of (13) leads to

〈Fn(0)〉 = C

∫ ∞

0
dωω(ω − ω0)ne−�2(ω−ω0)2

,

C = c
3/2
0

√
�

2πG
g∗(k̂P )αP . (22)

The frequency integral can be evaluated after extending the
lower integration boundary to −∞ to yield [44]

〈F2n(0)〉 = Cω0
√

π
(2n − 1)!!

2n�2n+1
, (23)

〈F2n+1(0)〉 = C
√

π
(2n + 1)!!

2n+1�2n+3
, (24)

where the double factorial is defined as

n!! =
	n/2
−1∏

k=0

(n − 2k). (25)

Insertion of (23) and (24) into the expectation value of (15)
now leads to

〈F0(t)〉 = e−iω0t

∞∑
n=0

(−it)n

(2n)!
〈F2n(0)〉

+ e−iω0t

∞∑
n=0

(−it)2n+1

(2n + 1)!
〈F2n+1(0)〉

= e−iω0t

√
πCω0

�

∞∑
n=0

(
− t2

2�2

)
(2n − 1)!!

(2n)!

+ e−iω0t
√

πC

( −it

2�3

) ∞∑
n=0

(
− t2

2�2

)
(2n + 1)!!

(2n + 1)!

= e−iω0t

√
πCω0

�

∞∑
n=0

1

n!

(
− t2

(2�)2

)

+ e−iω0t
√

πC

( −it

2�3

) ∞∑
n=0

1

n!

(
− t2

(2�)2

)

= e−iω0t

√
πCω0

�

[
1 − i

t

2ω0�2

]
e

(
− t2

(2�)2

)

≈
√

πCω0

�
e

(
− t2

(2�)2

)
e
−i

(
ω0− 1

2ω0�2

)
t
, (26)

where in the last step ω� � 1 was assumed, i.e., the Gaussian
envelope contains many oscillations of the field. We once again
arrive at the expected result, namely that the pump term gains a
Gaussian envelope with a temporal spread equal to the inverse
of the frequency spread.

B. Output operators

Up to this point we have only been concerned with the
internal dynamics of the system under external irradiation.
But in order to describe actual experiments, we also need to
consider the dynamics of output states, that are experimentally
accessible via detectors. If all detectors are placed in the far
field, have sufficiently small apertures, and are sensitive to only
a narrow frequency range, the output modes we are interested
in are of the form,

E(out)
k,λ (r) = Ck,λêk,λe

ik·r + E(i)
k,λ(r), (27)

where E(i)
k,λ(r) only contains incoming field components. A

solution to Maxwell’s equations of this form describes a
complicated scenario, in which the scattering responses of
all incident fields interfere destructively in all but one spacial
direction. This leads to a single plane wave as an outgoing
field.

One should of course ask whether solutions of the form
given by (27) exist and how one can find them. In order to
answer these questions, we first recall that the macroscopic
Maxwell equations are invariant under time reversal, if no
absorption losses are present [45]. This means that the system
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Hamiltonian is invariant under the antiunitary time-reversal
operator T [46]:

T HT = H. (28)

We can, therefore, exchange the electric field for its time-
reversed counterpart, without changing the structure of the
Hamiltonian. Therefore, the Heisenberg equations of motion
also keep their form under time reversal. The time-reversed
electric field operator reads

T E(r)T =
∫

d3k[T Ek,λ(r)akT + H.c.]

=
∫

d3k[E∗
k,λ(r)T akT + H.c.]

=
∫

d3k[E∗
−k,λ(r)T a−kT + H.c.]. (29)

We now define the time-reversed photon operators,

a
(out)
k = T a−kT ,

(
a

(out)
k

)† = T a
†
−kT , (30)

which satisfy harmonic oscillator commutation relations. In-
serting the scattering eigenmodes from (2) into (29), yields the
time-reversed field modes,

E∗
−k,λ(r) = C∗

−k,λê∗
−k,λe

ik·r + E(s)∗
−k,λ(r). (31)

We now see that the time-reversed scattering modes (31) are
indeed of the form given by (27), since the complex conjugate
of an incoming incident field is an outgoing scattered field. The
relevant output modes are therefore the ones described by the
operators a

(out)
k , which obey the Heisenberg equations,

ȧ
(out)
k = −iωa

(out)
k − i

E∗
0 · d
h̄

√
�

2π

g∗(−k̂)

ω − ω0 + i�/2
σ−. (32)

The important thing to notice now is that the dynamics of σ−
can be calculated without referring to any output mode, so that
σ− can be treated as an external parameter in (32). This enables
us to make output calculations without being required to keep
track of an infinite number of operators.

To summarize this section, we have established a way to
treat the internal dynamics of an open cavity under arbitrary
illumination with only a small number of operators. Further-
more, we have established a way to relate the results of the
internal calculations to the temporal dynamics of individual
Fourier components of the far field. Examples of this procedure
are demonstrated in the following section.

IV. EXAMPLE: RELATION
TO JAYNES-CUMMINGS MODEL

In order to offer a verification of the theory developed above,
we now turn to the task of retrieving the well-established
Jaynes-Cummings model from our formalism. Consider an
input state of the form,

|�〉 :=
∫

d3k
c

3/2
0

ω
√

G′ g
′(k̂)

√
�

2π

1

ω − ω0 − i�′/2
a
†
k |0〉 ,

(33)

where the normalization factor G′ is defined as

G′ :=
∫

d	k|g′(k̂)|2. (34)

It is easy to check that the initial state |�〉 is properly
normalized, i.e., 〈�|�〉 = 1. We will now proceed to derive,
from (16) and (17), the Heisenberg equations for the number
operators a†a and σ+σ−, as well as the appropriate initial
conditions arising from the initial state |�〉.

We first want to determine the effect of the zero-time noise
operators Fn(0) on the initial state |�〉:

Fn(0) |�〉 =
∫

d3k
c3

0

ω2
√

GG′ g
′(k̂)g∗

× (k̂)

√
��′

2π
(ω − ω0)n

1

ω − ω0 − i�′/2
|0〉 .

(35)

Comparing (35) with (B1), we see that the frequency integrals
are formally identical. Since the frequency integral in (B1)
vanishes, as is demonstrated in Appendix B, we conclude that

Fn(0) |�〉 = 0. (36)

But since the zero order noise operator F0(t) is of the form (15)
at all times, we conclude that

F0(t) |�〉 = 0. (37)

Next we consider the action of the cavity operator at zero time
on the initial state:

a(0) |�〉 =
∫

d	k

g′(k̂)√
G′

g∗(k̂)√
G

√
��′

2π

×
∫

dω
1

ω − ω0 − i�′/2

1

ω − ω0 + i�/2
|0〉

=
(

g√
G

∗ g′
√

G′

) √
��′

(� + �′)/2
|0〉 , (38)

where the scalar product between two angular functions is
defined as

a ∗ b :=
∫

d	k[a(k̂)]∗b(k̂). (39)

From (38) it is now easy to obtain the initial photon number in
the cavity,

〈�| a†(0)a(0) |�〉 =
[

g√
G

∗ g′
√

G′

]2
[ √

��′

(� + �′)/2

]2

. (40)

Please note that due to the Cauchy-Schwarz inequality [47],[
g√
G

∗ g′
√

G′

]2

�
(

g√
G

∗ g√
G

)(
g′

√
G′ ∗ g′

√
G′

)
= 1,

(41)

and that the geometric mean of two numbers is always smaller
than the algebraic mean [47],

√
��′

(� + �′)/2
� 1. (42)
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FIG. 2. Results of numerical simulations of (44) with a single-excitation input state. (a) Temporal system dynamics for different values of
the coupling-to-decay-rate ratio κ/� when a single photon is injected into the system. Red (dark gray) colors correspond to the photonic and
blue (light gray) colors to the atomic excited state. (b) Same as (a) but with the atom initially excited. (c) Strong coupling case κ = � = 10−3ω0.
The characteristic Rabi oscillations are clearly visible. (d) Weaker coupling κ = 10−4ω0 and � = 10−3ω0. Please note the different time scales
of photonic and atomic decay. (e) Atomic decay for κ = 10−5ω0 and � = 10−3ω0 with the atom initially excited. The solid line refers to the
numerical solution of the complete equations of motion and the dashed line is the approximate result obtained from adiabatic elimination (AE).

Therefore, it follows that the initial number of cavity photons
in (40) is smaller than 1, as is required from the fact that only
a single photon is incident.

We now turn to the problem of deriving equations of motion
for the number operator expectation values a†a and σ+σ−. To
this end, we use σzσ− = −σ−, which follows from the Pauli
algebra, and 〈σza

†a〉 = − 〈a†a〉, which relies on the single
photon condition. Along with (16), (17), and (37) this leads to

d

dt
〈a†a〉 = −� 〈a†a〉 + 2Im[κ 〈a†σ−〉], (43)

d

dt
〈σ+σ−〉 = −2Im

[
κ

(
1 + i

�

2ω0

)
〈a†σ−〉

]
, (44)

d

dt
〈a†σ−〉 =

[
−i(ωa − ω0) − �

2

]
〈a†σ−〉

+ iκ∗ 〈σ+σ−〉 − iκ∗
(

1 − i
�

2ω0

)
〈a†a〉 ,

(45)

which indeed form a closed set of equations.
The above equations of motion are very similar to the ones

derived from the Jaynes-Cummings (JC) Hamiltonian in the
single photon case, except for the damping terms and the small
asymmetry in the light-matter coupling. We, therefore, expect

to find the well-known phenomena of the JC model when
solving them. In order to see if these expectations are accurate,
we present a number of numerical simulations for different
system parameters. We assume without loss of generality
that g′ = g and �′ = �, so that the initial photon number
in the cavity is exactly 1. Figure 2(a) shows the result for a
system in the strong coupling regime, i.e., κ > �/2. The Rabi
oscillations are clearly visible. The result for a weakly coupled
system is shown in Fig. 2(b). The cavity photon is seen to decay
rapidly, exciting the atom only weakly. The radiative decay of
the atom is also visible.

In order to further investigate the decay of the atom via the
cavity, we turn to the case where the atom is initially excited,
while the electromagnetic field is in its ground state:

|�〉 = |0,e〉 . (46)

One can easily convince oneself that the equations of motion
derived above still hold for the initial state in (46). The initial
conditions, however, have to be changed to 〈σ+σ−〉 = 1 and
〈a†a〉 = 0. If we restrict ourselves to the case κ � �, i.e., weak
coupling, we can obtain an approximate solution by adiabatic
elimination (AE) of the cavity mode [48]. The AE result reads

〈σ+(t)σ−(t)〉 = exp

(
−4

|κ|2
�

t

)
. (47)
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The numerical result for the complete set of equations of
motion is shown in Fig. 2(c) and compared to the AE re-
sult. We see an excellent agreement between the approx-
imate and the complete solution. The de-excitation of the
atom due to its coupling to the electromagnetic vacuum
is, of course, just the well-known phenomenon of spon-
taneous emission. The dependence of the emission time

on the coupling strength is a manifestation of the Purcell
effect [49].

If the decay of an initially excited atom is indeed due to
spontaneous emission, then the energy should be transferred
to the output modes described in Sec. III. In order to verify
this, we first derive from (16), (17), and (32) the single-photon
equations of motion,

d

dt

〈
a

(out)†
k a

(out)
k

〉 = 2Im[ζk 〈a(out)†σ−〉], (48)

d

dt

〈
a

(out)†
k σ−

〉 = −i�k
〈
a

(out)†
k σ−

〉 + iζ ∗
k 〈σ+σ−〉 − iκ∗ 〈

a
(out)†
k a

〉
, (49)

d

dt

〈
a

(out)†
k a

〉 =
(

−i�k − �

2

) 〈
a

(out)†
k a

〉 + iζ ∗
k 〈σ+a〉 − iκ

〈
a

(out)†
k σ−

〉
, (50)

where the definitions,

ζk :=E∗
0 · d
h̄

√
�

2π

g∗(−k)

ωk − ω0 + i�/2
, (51)

�k :=ω0 − ωk, (52)

were used. Since we assume κ � �, Eq. (50) can be adiabatically eliminated. Equation (49) then becomes

d

dt

〈
a

(out)†
k σ−

〉 =
[
−i�k − |κ|2

i�k + �/2

] 〈
a

(out)†
k σ−

〉 + iζ ∗
k 〈σ+σ−〉 + ζ ∗

k
κ∗

i�k + �/2
〈σ+a〉 . (53)

Using the AE result,

〈σ+a〉 ≈ −i
κ

�/2
〈σ+σ−〉 � 〈σ+σ−〉 , (54)

Eq. (53) can be solved to yield

〈
a

(out)†
k σ−

〉
t
= iζ ∗

k

∫ t

0
dt ′ exp

([
−i�k − |κ|2

i�k + �/2

]
[t − t ′]

)
〈σ+σ−〉t ′ , (55)

where the indices of the expectation values denote the time of evaluation. Inserting (55) into (48) and integrating the resulting
equation leads to

〈
a

(out)†
k a

(out)
k

〉 = 2|ζk|2Re

{∫ t

0
dt ′

∫ t ′

0
dt ′′ exp

[(
−i�k − |κ|2

i�k + �/2

)
(t ′ − t ′′)

]
〈σ+σ−〉t ′′

}
. (56)

Using the AE result (47), the integrations in (56) can be easily performed. The result reads

〈
a

(out)†
k a

(out)
k

〉 = |ζk|2Re

{
�/2

|κ|2
1

i�k + |κ|2/(i�k + �/2) − 2|κ|2/(�/2)

[
1 − exp

(
−2

|κ|2
�/2

t

)]

+2
1

−i�k − |κ|2/(i�k + �/2)

1

i�k + |κ|2/(i�k + �/2) − 2|κ|2/(�/2)

[
1 − exp

(
−i�kt − |κ|2

i�k + �/2
t

)]}
.

(57)

Considering the denominators in (57), it becomes clear that the number of photons with frequency detuning �k is small, unless
�k � |κ|2/(�/2). But due to the adiabatic assumption this means �k � �/2, which allows for the following simplification
of (57):

〈
a

(out)†
k a

(out)
k

〉 ≈ |ζk|2 1

�2
k + [|κ|2/(�/2)]2

[
1 − 2 cos (�kt) exp

(
− |κ|2

�/2
t

)
+ exp

(
−2

|κ|2
�/2

t

)]
. (58)

Likewise, the expression (51) for ζk can be simplified to yield

|ζk|2 ≈
∣∣∣∣E0 · d

h̄

∣∣∣∣ �

2π

|g(−k̂)|2
(�/2)2

= c3
0

ω2
0

|g(−k̂)|2
G

|κ|2
π (�/2)

. (59)
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To acquire the total output photon number, the result in (58) has to be integrated over the wave vector. Using (59) and writing the
cosine in terms of exponential functions, one finds

∫
d3k

〈
a

(out)†
k a

(out)
k

〉 ≈
∫ ∞

−∞
dω

ω2

ω2
0

|κ|2
π�/2

1

�2
k + [|κ|2/(�/2)]2

×
[

1 + exp

(
−2

|κ|2
�/2

t

)
− exp

(
− |κ|2

�/2
t + i�kt

)
− exp

(
− |κ|2

�/2
t − i�kt

)]

≈
[

1 − exp

(
−2

|κ|2
�/2

t

)]
= 1 − 〈σ+σ−〉t , (60)

where the integrations are performed with standard contour
integral techniques. We, therefore, find that the total excitation
number is a constant of motion and that the number of photons
asymptotically reaches 1 for large times. This is in perfect
agreement with the requirements of the original Hamiltonian
(1), as well as the physical intuition regarding spontaneous
emission.

V. CONCLUSION

We demonstrated the extension of the unitary internal
cavity dynamics in QED by a rigorous quantum description of
radiative decay. Unlike the canonical formulation based on a
phenomenological coupling to a thermal bath, we have derived
a description employing a chain of noise operators. Further-
more, we added input and output channels to the formalism
that allow for a complete description of the dynamics: starting
from an incident far field illumination, incorporating all unitary
cavity related processes, and culminating in far field emission.
Over the course of the derivation we made the following
assumptions and approximations: Electric dipole and rotating
wave approximation, single Lorentzian cavity mode, absence
of nonradiative losses, and cavity Q factor large compared to
one. The formalism can be generalized to lift all but the last of
these requirements, but this is beyond the scope of this work.

The procedure suggested here consists of the following
steps:

(1) Characterize the cavity mode classically by determin-
ing the resonance frequency and linewidth as well as the
dependence on the illumination direction according to Eq. (4).

(2) Calculate the light-matter coupling constant from the
properly normalized field strength (according to [35]), the
cavity parameters, and the emitter’s transition dipole moment
according to Eq. (12).

(3) Evaluate F0(t) by means of the zero-time noise opera-
tors Fn(0) and the initial photonic state according to Eq. (15).

(4) Calculate the internal dynamics of the cavity mode
according to Eqs. (16) and (17).

(5) Solve the equations of motion for the output modes of
interest according to Eq. (32).
We discussed the example of single-photon dynamics in a
leaky cavity coupled to a single atom and retrieved the familiar
Jaynes-Cummings model, but with the added possibility of
calculating the far field dynamics. However, the formalism
presented here can be employed to describe a multitude of
different scenarios of light-matter interaction, which go beyond
the simple Jaynes-Cummings model. We hope that this work
will pave the way towards a more rigorous description of open
optical cavities and their interaction with the far field.
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APPENDIX A: DERIVATION OF SYSTEM OPERATOR HEISENBERG EQUATIONS

Using the definition (7) together with the Heisenberg equation of motion (5), one derives

ȧ =
∫

d3k
c

3/2
0√
Gω

√
�

2π

g∗(k̂)

ω − ω0 + i�/2
ȧk

=
∫

d3k
c

3/2
0√
Gω

√
�

2π

g∗(k̂)

ω − ω0 + i�/2
(−iω)ak − i

E0 · d
h̄

σ−
∫

d3k
c

3/2
0√
Gω

�

2π

|g(k̂)|2
(ω − ω0)2 + (�/2)2

= − i

∫
d3k

c
3/2
0√
Gω

√
�

2π
g∗(k̂)ak

ω − ω0 + i�/2 + ω0 − i�/2

ω − ω0 + i�/2
− i

√
G

c
3/2
0

E0 · d
h̄

σ−
∫ ∞

0
dω

�

2π

ω − ω0 + ω0

(ω − ω0)2 + (�/2)2 . (A1)

Since we assume � � ω0, the lower integration boundary in the second term can be approximately shifted to −∞. Noticing
that the part of the second integral antisymmetric in ω − ω0 vanishes and splitting up the fracture under the first integral, one
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arrives at

ȧ = − i

∫
d3k

c
3/2
0√
Gω

√
�

2π
g∗(k̂)ak +

(
−iω0 − �

2

) ∫
d3k

c
3/2
0√
Gω

√
�

2π

g∗(k̂)

ω − ω0 + i�/2
ak − i

√
G

c
3/2
0

E0 · d
h̄

σ−. (A2)

Employing the definitions in (7), (12), and (13) this becomes

ȧ ≈ (−iω0 − �/2)a − iκσ− − iF0. (A3)

Turning now to the atom dynamics, the equation of motion (6) can be written

σ̇− = − iωaσ− + i
E∗

0 · d∗

h̄

∫
d3k

ω

√
�

2π

g∗(k̂)ω

ω − ω0 + i�/2
σzak

= − iωaσ− + i
E∗

0 · d∗

h̄

∫
d3k

ω

√
�

2π
g∗(k̂)σzak

ω − ω0 + i�/2 + ω0 − i�/2

ω − ω0 + i�/2

= − iωaσ− + i
E∗

0 · d∗

h̄
σz

∫
d3k

ω

√
�

2π
g∗(k̂)ak + i

(
ω0 − i

�

2

)
E∗

0 · d∗

h̄
σz

∫
d3k

ω

√
�

2π

g(k̂)

ω − ω0 + i�/2
ak. (A4)

Using once again the definitions in (7), (12), and (13) this can be written

σ̇− = − iωaσ− + i
E∗

0 · d∗

h̄

∫
d3k

√
�

2π

g∗(k̂)

ω − ω0 + i�/2
σzak. (A5)

APPENDIX B: DERIVATION OF NOISE OPERATOR
HEISENBERG EQUATIONS

Using the definition in (13) together with the Heisenberg
Eqs. (5) and (6) we arrive at

Ḟn = − iω0Fn − iFn+1 − i
κ

ω0

�

2π
σ−

×
∫ ∞

0
dωω(ω − ω0)n

1

ω − ω0 − i�/2
. (B1)

As can be easily seen, the above frequency integral is highly
divergent. This is due to the fact that we assumed a per-
fect Lorentzian frequency dependence of the electromagnetic
field at the emitter position. In a real system, however, one
would not expect this assumption to hold for frequencies
far off-resonance. Especially for very high frequencies one
expects rapid oscillations of the field strength, so that the
high frequency contributions average out to zero. Equation (4)
therefore has to be modified to take the off-resonance contribu-
tions into account. We do this by adding a Gaussian envelope
that decays on time scales large compared to the Lorentzian
linewidth �, but small compared to ω0:

Ek,λ(ra) = E0δλ,λ0

√
�

2π

g(k̂)e−(ω−ω0)2/β2

ω − ω0 − i�/2
,

� � β � ω0. (B2)

Using (B2) instead of (4), the integral in (B1) becomes∫ ∞

0
dωω(ω − ω0)n

e−(ω−ω0)2/β2

ω − ω0 + i�/2

≈
∫ ∞

−∞
dωω(ω − ω0)n

e−(ω−ω0)2/β2

ω − ω0 + i�/2
, (B3)

where the lower integration boundary has been approximately
extended to −∞, since the exponential function decays much
faster than any polynomial can grow.

The integral in (B3) can now be solved by contour inte-
gration techniques, if one introduces an auxiliary factor of
exp(±iεω). But while ε can just be chosen to be infinitesimally
small, the choice of sign in the exponent leads to very
different results. This is due to the fact that the integrand
only possesses a pole in the upper half-plane. Hence, in
order to find a meaningful result we need to eliminate one
of the two possibilities by physical reasoning. This is similar
to choosing the retarded instead of the advanced Green’s
function, since the latter violates causality. However, in the
current case it is not immediately obvious which solution is
the unphysical one. After obtaining the solutions for both
possible equations, it will be obvious which one to choose.
For this reason we consider, for the moment, both possible
solutions:

Ḟn = −iω0Fn − iFn+1 (lower half-plane), (B4)

Ḟn = −iω0Fn − iFn+1 − iκ

[
1 + i

�

2ω0

]

× 2

(
i
�

2

)n+1

(upper half-plane). (B5)

The details of solving both of these equations will be presented
in Appendix C, where we show that the solution for integration
over the lower half-plane is the physical one.

APPENDIX C: SOLUTION OF NOISE OPERATOR
HEISENBERG EQUATIONS

We start by considering (B4), for which the formal solution
reads

Fn(t) = e−iω0tFn(0) − i

∫ t

0
dt ′e−iω0(t−t ′)Fn+1(t ′). (C1)
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Iteration of (C1) then leads to the form,

Fn(t) = e−iω0t

∞∑
m=0

Fn+m(t)(−i)mIm(t), (C2)

Im(t) =
∫ t

0
dt1 . . .

∫ tm−1

0
dtm. (C3)

The elements of the series Im(t) can be easily calculated by
induction. First we notice that the base case,

I0(t) = 1, (C4)

is in agreement with the assumption,

Im(t) = tm

m!
. (C5)

We now proceed with the inductive step,

Im+1(t) =
∫ t

0
dt1Im(t1) =

∫ t

0
dt1

tm1

m!
= tm+1

(m + 1)!
, (C6)

hence proving our assumption. Substitution of (C6) into (C2)
gives the final result,

Fn(t) = e−iω0t

∞∑
m=0

(−it)m

m!
Fn+m(0). (C7)

Now we need to solve the equation of motion (B5) in order to
demonstrate its unphysical nature. Formally solving and then
iterating the equation leads to

Fn(t) = e−iω0t

∞∑
m=0

(−it)m

n!
Fn+m(0)

+ �κ

[
1 + i

�

2ω0

] ∞∑
m=0

(
�

2

)m

Jm(t ; t), (C8)

where the operator valued terms Jn(t ; t0) read

Jn(t ; t0) =
∫ t

0
dt1 . . .

∫ tn

0
dtn+1e

iω0(tn+1−t0)σ−(tn+1). (C9)

We can now use induction to calculate the values of Jn(t ; t).
Since J0(t ; t) is of the form,

J0(t ; t) =
∫ t

0
dt1e

iω0(t1−t)σ−(t1), (C10)

the following induction hypothesis is consistent with the base
case:

Jn(t ; t0) =
∫ t

0
dt ′eiω0(t ′−t0)σ−(t ′)

(t − t ′)n

n!
. (C11)

Performing the induction step is now straightforward,

Jn+1(t ; t) =
∫ t

0
dt ′′Jn(t ′′; t)

=
∫ t

0
dt ′′

∫ t ′′

0
dt ′eiω0(t ′−t)σ−(t ′)

(t ′′ − t ′)n

n!

=
∫ t

0
dt ′eiω0(t ′−t)σ−(t ′)

∫ t

0
dt ′′

(t ′′ − t ′)n

n!
�(t ′′ − t ′)

=
∫ t

0
dt ′eiω0(t ′−t)σ−(t ′)

∫ t

t ′
dt ′′

(t ′′ − t ′)n

n!

=
∫ t

0
dt ′eiω0(t ′−t)σ−(t ′)

(t − t ′)n+1

(n + 1)!
, (C12)

which is of the required form. Inserting (C12) into (C8) now
yields

Fn(t) = e−iω0t

∞∑
m=0

(−it)m

n!
Fn+m(0)

+ κ

[
1 + i

�

2ω0

]
�

∫ t

0
dt ′e(−iω0+�/2)(t−t ′)σ−(t ′),

(C13)

where the infinite sum was performed to yield an exponential
function. Close inspection of (C13) reveals that the second
term is divergent in time due to the factor exp[(�/2)t], which
can be pulled in front of the integral. But this would mean that
the noise operators grow without limit, driving the temperature
of the system towards infinity. The equation of motion (B5) is
therefore clearly unphysical.
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