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The interference of single photons from independent sources is an essential tool in quantum information
processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely
been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons
generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation
maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we
demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic
sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of
the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat
of two independent narrow-band single photons, which may find potential application in frequency-encoded
photonic qubits in quantum information processing.
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I. INTRODUCTION

The interference of single photons from independent
sources is a crucial requirement for the implementation of
scalable quantum networks [1–4]. When two input single
photons meet at a beam splitter (BS), one would expect them
to coalesce and leave from the same output port if they are
indistinguishable [5]. This requires that the two interfering
photons share the same mode in all the degrees of freedom,
such as polarization, frequency, spatial-temporal modes, and
so on. In practice, matching all these degrees is known to be dif-
ficult when two physically different single-photon sources are
involved. Usually the photon sources emit correlated photon
pairs, where one is used as a trigger and the other is a heralded
single photon. Well-developed schemes include spontaneous
parametric down-conversion (SPDC) in nonlinear crystals
[6,7], spontaneous four-wave mixing (SFWM) in optical fibers
[8], and atomic ensembles [9–12]. Hong-Ou-Mandel (HOM)
interference is widely observed within the same kind of system
[13–19] or hybrid systems [20].

If the interference occurs for single photons with different
frequencies (colors), then the interference is termed particu-
larly as a quantum beat, the oscillation period of which is the
reciprocal of the frequency difference (FD) between the two
photons. This is an important proof of the irreplaceability of full
quantum theory compared to semiclassical theory. The phe-
nomenon of the quantum beat has been demonstrated through
the photon interference of multiple generation channels in a
quantum system [21–24]. A significant consequence of the
quantum beat is the generation of frequency-bin entangle-
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ment, which utilizes the color degree of freedom of photons
and potentially serves as an interface for quantum systems
with different excitation frequency. Moreover, the interference
curve of the quantum beat is useful in evaluating Bell’s
inequality factor for frequency-bin entanglement. However, the
quantum beat is observed by spatially altering the optical-path
difference between photon channels [25,26], because usually
the discrepancy of the frequency bin (approximately terahertz)
is much larger than the detector bandwidth. To reduce the
frequency difference and thus reveal the quantum beat directly
in temporal interference, long photons with narrow linewidths
are advantageous to avoid spectrum overlap [27,28].

Therefore, the direct observation of temporal interference
of single photons requires long photons with coherence time
much larger than the detection resolution. In this paper, we take
advantage of the narrow-band paired photons generated from
SFWM in dense cold atomic clouds [10,29]. In the SFWM
process, one of the paired photons is governed by the slow
light effect of electromagnetically induced transparency (EIT),
and furthermore its central frequency is determined by the EIT
window induced by a laser field. By altering the induced EIT
window in two different atomic clouds, we produce a quantum
beat between two independent single photons from separate
clouds. The first feature we emphasize is that the quantum
beat is obtained from coincidence measurement directly in
the time domain, which is particularly successful with long
photons with narrow linewidths. Secondly, the quantum beat
signifies the frequency-bin entangled state produced from
photons which are independently prepared. The visibility is
81 ± 2%, which is higher than what was reported in other
systems [30,31], ascribed to a pure single-photon source and
better mode matching among well-separated systems. Finally,
based on the narrow-band photon source with controllable
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FIG. 1. Experimental setup and energy-level scheme. (a) The
scheme of two-photon interference. (b) Experimental setup. Two
pairs of photons, Stokes (S) and anti-Stokes (AS), are generated
from independent cold atomic systems MOT1 and MOT2, each
illuminated by counterpropagating pump and coupling beams. The
AS photons of each pair are guided into the interference paths
through the polarization-maintaining fibers, while the S photons go
directly into single-photon counting modules (SPCM). (c) The SFWM
energy-level scheme. The atoms are initially prepared on the ground
state |1〉, and for each system the coupling beam is detuned positive
and negative, respectively.

frequency and temporal length, we give detailed discussion
about the achievable range of separation in the frequency-bin
domain. It is expected that long photons enable a lower bound
of the order of megahertz for frequency separation, which
may facilitate frequency-encoded photonic qubits in quantum
information processing.

II. TEMPORAL INTERFERENCE WITH
FREQUENCY-CONTROLLABLE PHOTONS

Generally we consider two single photons in temporal
modes b̂1(T ),b̂2(T + τ ) incident on a beam splitter, where T

is the arrival time of photon 1 and τ is the relative time delay of
photon 2, as shown in Fig. 1(a). The input two-photon state is
|�in〉 = b̂

†
1(T )b̂†2(T + τ )|0〉. Now we expand these operators

into the frequency domain using

b̂
†
i (t) =

∫
dωiφ

∗
i (ωi)b̂

†
i (ωi)e

iωi t ,i = 1,2, (1)

where t = T ,T + τ,φi(ωi) is the corresponding spectral func-
tion of each input single photon and can be normalized as∫

dωi |φ(ωi)|2 = 1. The BS gives a transformation of

b̂
†
1(ω1) = 1√

2
[iâ†

1(ω1) + â
†
2(ω1)], (2)

b̂
†
2(ω2) = 1√

2
[â†

1(ω2) + iâ
†
2(ω2)]. (3)

So the output state of the BS is

|�out〉 = 1

2

∫
dω1φ

∗
1 (ω1)eiω1T

∫
dω2φ

∗
2 (ω2)eiω2(T +τ )

× [iâ†
1(ω1)â†

1(ω2) − â
†
1(ω1)â†

2(ω2)

+ â
†
2(ω1)â†

1(ω2) + iâ
†
2(ω1)â†

2(ω2)]|0〉. (4)

Because the function of a photon detector is
counting photons’ number within its bandwidth,
we define a coincidence detection operator as D̂ =∫

dωa

∫
dωbâ

†
1(ωa)â†

2(ωb)|0〉〈0|â2(ωb)â1(ωa), where it is
assumed that each detector has a flat frequency response. Here
ωa and ωb are the detected frequencies in the modes â1 and
â2, respectively. Then we have the coincidence probability

P12(τ ) = 〈�out|D̂|�out〉 (5)

= 1

4

∫
dωa

∫
dωb|φ1(ωa)φ2(ωb)|2

× [2 − ei(ωa−ωb)τ − e−i(ωa−ωb)τ ]. (6)

In the derivation above, the imaginary terms turn out to be zero,
and ω1(ω′

1) and ω2(ω′
2) have been replaced by the detected

frequencies ωa (mode â1 with detector a) or ωb (mode â2

with detector b) accordingly, using the following commutation
relations (for i = 1,2):

[â1(ωi),â
†
1(ωa)] = δ(ωi − ωa),

[â2(ωi),â
†
2(ωb)] = δ(ωi − ωb). (7)

Because we only measure the case where both detectors
click, the values of ωa and ωb can be only chosen between
ω1 and ω2. To induce the beat signal pattern, we introduce
a frequency shift � to each of the two independent photons
as ω1 = ω0 + �1 + ω,ω2 = ω0 + �2 + ω, where ω denotes
deviation from the central frequency ω0 + �1(2). When the
spectral functions are rewritten as φ1(ω) and φ2(ω), the coin-
cidence probability can be simplified as

P12(τ ) = 1

2

∫
dω|φ1(ω)|2

∫
dω|φ2(ω)|2 − 1

4
2π

1

2π

×
∫

dω|φ1(ω)|2e−iωτ

∫
dω|φ2(ω)|2eiωτ ei(�2−�1)τ

− 1

4
2π

1

2π

∫
dω|φ1(ω)|2eiωτ

×
∫

dω|φ2(ω)|2e−iωτ e−i(�2−�1)τ (8)

= 1

2
− 1

2
2πF[|φ1(ω)|2]F[|φ2(ω)|2]cos(�ωτ ). (9)

Here e−iω0τ and eiω0τ cancel each other out, and �ω =
�2 − �1 is the angular frequency difference between the
photons. F[|φi(ω)|2] = 1/

√
2π

∫
dω|φi(ω)|2e−iωτ indicates

the Fourier transformation of the spectral function. Note
that the spectral functions φi here are even symmetric, i.e.,
φi(ω) = φi(−ω),i = 1,2, and the Fourier and inverse Fourier
transformations are equivalent. Also we are able to manipulate
the systems to guarantee spectral functions of the independent
long photons to be nearly identical, i.e., φ1(ω) ≈ φ2(ω). This
is achieved by manipulating the coupling beam power and the
atomic optical depth in each SFWM to match the measured
cross-correlation function, proportional to F[|φi(ω)|2], of the
two independent sources of paired photons. The similarity
between them in our system can be maintained as 97% ± 2%.
It will degrade the interference visibility by the scaling factor
which is equal to the nonunity similarity, and thus reduce the
purity of the generated entangled state. Equation (9) shows
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that, when �ω = 0, the Hong-Ou-Mandel dip at τ = 0 indi-
cating the typical two-photon interference is obtained. For the
interference between two frequency-mismatched independent
single-photon wave packets, the quantum beat is indicated
in the term cos(�ωτ ). When �ω grows larger, a stronger
oscillation will be added to the dip envelope.

As shown in Fig. 1(b), two pairs of time-frequency
entangled photons are generated in two independent 85Rb
cold atomic clouds, which are prepared in two sets of
two-dimensional magneto-optical traps [32,33] (MOT1 and
MOT2), respectively. Each of the clouds is illuminated by two
counterpropagating laser fields denoted as pump (780 nm) and
coupling field (795 nm) at an angle of 3◦ with respect to the
longitudinal axis. Different from the pulsed pumping scheme,
our pump and coupling fields are running continuously during
the photon generation window of 0.5 ms, which is following a
MOT preparation time of 4.5 ms. These two fields stimulate a
SFWM process, and according to the phase matching condition
a pair of photons, the Stokes (S, 780 nm) and anti-Stokes
(AS, 795 nm) photons, are generated. They travel along the
longitudinal axis in opposite directions and are collected in
single-mode fibers (SMFs). The atomic energy-level scheme
is represented by a double-	 four-level system as shown in
Fig. 1(c). The atoms are originally prepared at the ground state
|1〉 = 5S1/2,F = 2, then pumped by a weak pump beam into a
virtual state which is blue detuned from |4〉 = 5P3/2,F = 3 by
�p = 2π × 146 MHz. The Rabi frequency of the pump field
is 
p = 2π × 1.4 MHz. Instead of being on resonance with
the transition |2〉 = 5S1/2,F = 3 → |3〉 = 5P1/2,F = 3, here
each coupling field is detuned by an amount of frequency. The
Rabi frequency of the coupling field is 
c = 2π × 17 MHz.
Correspondingly, the frequency of AS photons from MOT1
is shifted positively and that of MOT2 is shifted negatively,
from the transition |3〉 → |1〉. Here, due to the strong EIT
effect, the AS photons go through a narrow EIT window with
an adjustable time delay relative to the S photons. Therefore,
by controlling the slow light effect, long coherence time of
even microsecond scale can be generated in such scheme,
without any extra filtering or cavities [29,34]. Since such
long coherence time is easily resolved by most commercial
photon detectors, the heralded AS photons are projected into
a nearly pure single-photon state [15,35], which guarantees
the interference of photons from independent sources. In this
double 	 atomic system, the residue magnetic field causes
the nondegeneracy for the Zeeman levels, which causes a
nonzero two-photon detuning and thus reduces the paired
photon generation rate. Also, the coherence time of the photon
pairs will be affected by a serious Zeeman splitting. Therefore
we will optimize the position of the atomic cloud and thus
minimize the effect of residue magnetic field.

In the setup described above, the production rate of the
paired photons generated from each MOT is 30 000/s, which
is significantly greater than the dark count rate 250/s of the
single-photon counting modules (SPCMs). The trigger photons
S1 and S2 go directly into SPCMs, while the photons AS1 and
AS2 are imported into the interference optical paths. As shown
in Fig. 1(b), the two beams of AS photons, the polarizations of
which are, respectively, rotated as horizontal and vertical, are
first combined at a polarization beam splitter (PBS). Then both
of their polarizations are rotated clockwise (or anticlockwise)
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FIG. 2. Measurements for the EIT spectrum at different coupling
frequency detunings with OD = 120. The circles, triangles, squares,
and diamonds mark the experimental data at different detunings, with
lines denoting corresponding theoretical curves. The brown short
dashed line is out of our capability of measurement.

by 45◦ through a half-wave plate before a second PBS where
the two beams are mixed. Therefore the second PBS acts as
a 50 : 50 beam splitter, the splitting ratio of which can be
fine tuned by the half-wave plate. After interference, the AS
photons are also collected by another two SPCMs.

With the phase-matching condition of the SFWM process,
the frequency of single photons can be altered by detuning
the coupling beams [36]. Compared to the solid-state system,
e.g., SPDC with temperature-varying approach [26] and the
quantum dots and Nitrogen vacancy (NV) centers [18,19], the
manipulation in the atomic cloud is much less demanding and
more accurate. But the tunable frequency range is constrained
by the EIT spectrum, otherwise both real and imaginary parts
of the linear susceptibility will be changed severely, and the
EIT spectrum will be distorted. To show this, we measured
the transmission spectrum of a weak (40 nW) probe beam,
which travels through the cold atomic cloud and is scanned
from −40 to +40 MHz with respect to the transition |1〉 → |3〉.
The coupling beam is on resonance or blue detuned from 10
to 50 MHz. As shown in Fig. 2, at 20-MHz detuning of the
coupling beam, where it is the edge of the flat bottom of the
probe transmission spectrum, the width of the transparency
window (blue peak) is still not significantly different from that
in the resonant case (black peak). In contrast, the transparency
windows are distorted seriously when the coupling detuning is
larger than 20 MHz. Although the peak of the transparency
window stays high for even far detuning of 50 MHz, the
slow light effect will be diminished and the temporal biphoton
waveform will be shortened and deformed significantly. In this
case, the temporal-mode indistinguishability and purity of the
two independent single photons are not guaranteed any more.
Noting that those measurements in Fig. 2 are operated at an
optical depth (OD) of only 120, the problems discussed above
can be improved by increasing OD. For example, an ultrahigh
OD of 264 is able to be achieved with “dark-line” technique
[37], which can extend �1(2) to be about ±30 MHz. Here it is
defined that OD = Nσ0L, where N denotes the atomic density,
σ0 denotes the resonant absorption cross section [38], and L

is the effective interaction length. Therefore, the acceptable
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FIG. 3. Observation of the quantum beat between two indepen-
dent AS photons the frequencies of which are detuned by +10 and
−10 MHz, respectively. (a) Accumulated fourfold coincidence with 5
ns as the time step. The experimental data are denoted by black filled
squares with error bars. The red solid lines denote the theoretical result
from Eq. (9), which is enveloped by the HOM dip curve denoted by
the blue dashed line. (b) Normalized beating signal with data in (a)
from τ = −100 to 100 ns. The solid curve shows the best fitting.

free detuning range of the coupling frequency in our scheme
is limited by the EIT spectrum for the AS photons, and is thus
mainly determined by OD of the atom cloud.

The interference result in Fig. 3(a) shows a typical quantum
beat signal of frequency-mismatched photons with the arrival
time difference τ as the horizontal axis. Here the frequency
detunings of the coupling beams are �1 = +2π × 10 MHz
and �2 = −2π × 10 MHz, respectively, and the temporal
length of both photons is about 150 ns. The coincidence counts
take a minimum value at τ = 0 when two single photons
coincide. The theoretical curve is obtained from Eq. (9), in
which the spectral function φ(ω) is considered as a sinc
function according to the phase-matching condition of the
SFWM process in cold atoms [10]. �ω in Eq. (9) is fitted
as 19 MHz from the experimental oscillation curve. This
discrepancy comes from the ac-Stark shift of the atomic energy
state induced by the strong-coupling field. To show the relation
between the beating curve and the corresponding HOM dip,
the theoretical curve according to Eq. (9) with �ω = 0 is also
indicated in the plot. Both the ideal HOM interference and the
quantum beat give coincidence counts as zero at τ = 0. We
normalize the beating signal to the ideal HOM-dip envelope
between −100 and 100 ns and fit it with a cosine function.
As shown in Fig. 3(b), the visibility from numerical fitting is
V = 81 ± 2% without subtracting the multiphoton events and
accidental counts. This visibility exceeds the classical limit
50%, and is ascribed to the pure nonclassical single-photon

sources we produce from MOTs. In experiment, this purity is
guaranteed by the low second-order autocorrelation functions
of g

(2)
1 = 0.193 ± 0.004 and g

(2)
2 = 0.196 ± 0.004 for MOT1

and MOT2, which are mainly caused by multiphoton events
and contribute to the nonzero accidental counts which lead
to a reduction of interference visibility [15]. Therefore, with
long enough coherence time and resolvable beating period, the
interference between independent single photons is observed
directly in the time domain.

III. LIMITS OF FREQUENCY SEPARATION OF DISCRETE
FREQUENCY-BIN ENTANGLED STATES

Since either of the anti-Stokes photons from MOT1 and
MOT2 has equal probability to exit from the transmission and
reflection port of the BS, the two photons generated from
the output ports of BS are entangled in a basis constituted
from two well-separated frequency-bin states. By postselecting
coincidence events between the output ports of BS, we can have
a discrete-frequency entangled state

|�ent〉 = 1√
2

[|1(ω2)1(ω1)〉 − e±i�ωτ |1(ω1)1(ω2)〉], (10)

where |1(ω1)〉 = 1/21/4
∫

dωφ∗
1 (ω)â†

i (ω)eiωT |0〉,|1(ω2)〉 =∫
dωφ∗

2 (ω)â†
i (ω)eiω(T +τ )|0〉, ω is a frequency deviation for

integration, and i = 1,2 indicates whether the photon is
in output mode a1 or a2. �ω = ω2 − ω1 is the frequency
difference between the two photons. For detailed derivation,
please refer to the Appendix. This is the antisymmetric Bell
state with a phase difference e±i�ωτ . Here the temporal
interference we observed in the quantum beat experiment,
described by Eq. (9), is equivalent to the two-photon
coincidence fringes obtained from polarization entangled
paired photons [39,40]. The visibility of 81 ± 2% for the
temporal beating signal in Fig. 3 indicates a violation of the Bell
inequality, and predicts the Clauser-Horne-Shimony-Holt-type
Bell parameter as |S| = 2

√
2V = 2.29.

Here the minus sign in Eq. (10) between the two states natu-
rally results from the transformation of the BS, and contributes
to a destructive interference between the two output paths
at τ = 0. This is different from the color-entangled state in
Ref. [26], where when the entangled two photons interfere
at the second BS the coincidence reaches a maximal value
at τ = 0 and signifies an unambiguous antisymmetric feature.
Actually, if only the |�−〉 Bell state is desired, our interference
setup is a discrete-frequency entanglement generator with two
independent sources, on the condition that the time delay τ is
much smaller than the temporal length of the individual pho-
tons. On the other hand, our long temporal length of photons
and continuous excitation fields save us the trouble of manually
varying the relative arrival times of the interfering photons in
observing the interference pattern. In Fig. 3(a), the coincidence
starts to oscillate when τ increases, and reaches every maximal
value at about |τ | = π (2m + 1)/�ω, m = 0,1, . . . , where the
entangled state reaches its best generation probability around
that delay. From this point of view, by using a temporal filter
only to select photons with τ = 0, or actively compensating
the phase delay with time-resolved measurements, the two
frequency-mismatched photons can keep their coherence all
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FIG. 4. Three-dimensional plotting of normalized coincidence as
a function of both time delay and frequency difference (FD), �ω,
between two photons with Eq. (9). The unit of the FD axis is the
photon bandwidth (σ ). When �ω = 0, the typical HOM dip appears.

the time and avoid exiting from different output ports, as has
been proposed and implemented by other groups [41,42]. It
is interesting to notice that the frequency-bin entanglement
without postselection may be also achieved in our systems
with the same methods, by keeping only those input photons
with τ = π/�ω before the BS. In this preselection way, the
two photons will almost deterministically go different ways.

In the experiment, the angular FD �ω between the two
beating single photons is set to be 2π × 20 MHz. But what
is the range of it? Generally, the largest FD is limited by the
detection bandwidth of the single-photon detector. The beating
signal will be averaged out by slow detectors. But specifically
in our system, the upper bound is mainly confined by the
maximum coupling frequency detuning, as discussed in Sec. II.
On the other hand, how small can the FD be? To show this,
we plot in Fig. 4 the normalized coincidence as a function
of both time delay and the angular FD according to Eq. (9),
using the photon spectral function φ(ω) = 1/

√
σπsinc(ω/σ ),

where σ is the photon bandwidth. It is clearly seen that,
when �ω decreases from a large value, pairs of “mountain
ridges” (oscillations) decline and the “valley” opens larger.
If �ω is smaller than about half of σ , obvious oscillations are
swallowed by the uncertainty within the photon bandwidth and
can be hardly seen any more. This indicates that the FD cannot
be resolved by the single photons with current bandwidth,
unless photons of even narrower bandwidth are employed.
Therefore, the quantum beat can be used to test the bandwidth
of two input photons onto a BS by narrowing down the FD until
oscillations start to vanish, which is when the FD is comparable
with the photon bandwidth. This smallest distinguishable FD
can be called the “beating resolution.”

According to the fitting, the bandwidth of the interfering
photons used in Fig. 3 is σ ≈ 2π × 6 MHz, much smaller
than �ω = 2π × 20 MHz. Hence these two well-separated
frequency modes are orthogonal, which is useful to construct
a frequency-bin qubit. Different from the SPDC scheme, the
frequency separation of photons from our systems is of the
order of megahertz, which is easily detected through current
technology of time-resolving detection. This is also still a

challenge for quantum dots and NV centers, the spectral
separations of which are usually of gigahertz or terahertz
level between different sources. If we decrease the photon
bandwidth down to 2π × 0.38 MHz by increasing the OD
and employing appropriate coupling light intensity [29], the
frequency separation can be as small as hundreds of kilohertz
with the two photons still well separated in the spectrum.
Therefore, taking great advantage of frequency controllable
long photons in our systems, the lower bound of the FD can
be extended, which is beneficial for dense coding of frequency
bins in quantum information science [43].

IV. CONCLUSION

In summary, we have experimentally demonstrated tem-
poral interference showing the quantum beat with frequency-
mismatched photons heralded from the SFWM process in two
independent cold atomic sources. We obtained a visibility
of 81 ± 2%, which well exceeds the classical limit. The
frequency difference is of megahertz scale which is easily time
resolved by most commercial single-photon detectors, and the
frequency detuning range of the single photons generated in
our scheme is limited by the OD. Temporal interference of
longer photons can distinguish small frequency difference,
e.g., of the order of megahertz scale. Conversely, by narrowing
down the frequency difference, the bandwidth of the photons
can be roughly tested. The setup reported in this paper is a
scheme to entangle two independent single photons in a basis
of two discrete frequencies, which is useful in quantum in-
formation science. Furthermore, time-resolved detection with
long photons has been proved to be powerful in producing pure
heralded single photons [15], entanglement swapping [44],
biphoton entanglement [42], and Bell inequality testing [40]. It
is promising that photons with long coherence time are useful
to characterize the frequency-bin entangled states directly in
the time domain.
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APPENDIX

As shown in Fig. 5, generally we consider two single
photons in temporal modes b̂1(T ),b̂2(T + τ ) incident on a
beam splitter, where T is the arriving time of photon 1 and τ is
the relative time delay of photon 2. Then the input two-photon
state is |�in〉 = b̂

†
1(T )b̂†2(T + τ )|0〉. Now we expand these

operators into the frequency domain using

b̂
†
i (t) =

∫
dωiφ

∗
i (ωi)b̂

†
i (ωi)e

iωi t , (A1)
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FIG. 5. Two single photons incident on a beam splitter.

where i = 1,2, φi(ωi) is the corresponding spectral func-
tion of each input single photon and can be normalized as∫

dωi |φ(ωi)|2 = 1. Then |�in〉 can be represented as

|�in〉 =
∫

dω1φ
∗
1 (ω1)b̂†1(ω1)eiω1T

·
∫

dω2φ
∗
2 (ω2)b̂†2(ω2)eiω2(T +τ )|0〉. (A2)

The BS gives a transformation of

b̂
†
1(ω1) = 1√

2
[iâ†

1(ω1) + â
†
2(ω1)], (A3)

b̂
†
2(ω2) = 1√

2
[â†

1(ω2) + iâ
†
2(ω2)]. (A4)

So the output state of the BS is

|�out〉 = 1

2

∫
dω1φ

∗
1 (ω1)[iâ†

1(ω1) + â
†
2(ω1)]eiω1T

∫
dω2φ

∗
2 (ω2)[â†

1(ω2) + iâ
†
2(ω2)]eiω2(T +τ )|0〉 (A5)

= 1

2

∫
dω1φ

∗
1 (ω1)eiω1T

∫
dω2φ

∗
2 (ω2)eiω2(T +τ )

× [iâ†
1(ω1)â†

1(ω2) − â
†
1(ω1)â†

2(ω2) + â
†
2(ω1)â†

1(ω2) + iâ
†
2(ω1)â†

2(ω2)]|0〉. (A6)

Because the function of a photon detector is counting photons’ number within its bandwidth, we define a coincidence detection
operator as D̂ = ∫

dωa

∫
dωbâ

†
1(ωa)â†

2(ωb)|0〉〈0|â2(ωb)â1(ωa), where it is assumed that each detector has a flat frequency
response. Here ωa and ωb are the detected frequencies in the modes â1 and â2, respectively. Then we have the coincidence
probability

P12(τ ) = 〈�out|D̂|�out〉 (A7)

= 1

2
〈0|

∫
dω′

1φ1(ω′
1)e−iω′

1T

∫
dω′

2φ2(ω′
2)e−iω′

2(T +τ )[−iâ1(ω′
1)â1(ω′

2) − â1(ω′
1)â2(ω′

2)

+ â2(ω′
1)â1(ω′

2) − iâ2(ω′
1)â2(ω′

2)]
∫

dωa

∫
dωbâ

†
1(ωa)â†

2(ωb)|0〉〈0|â2(ωb)â1(ωa)
1

2

∫
dω1φ

∗
1 (ω1)eiω1T

×
∫

dω2φ
∗
2 (ω2)eiω2(T +τ )[iâ†

1(ω1)â†
1(ω2) − â

†
1(ω1)â†

2(ω2) + â
†
2(ω1)â†

1(ω2) + iâ
†
2(ω1)â†

2(ω2)]|0〉 (A8)

= 1

4

∫
dωa

∫
dωb〈0|[−

∫
dω′

1φ1(ω′
1)â1(ω′

1)â†
1(ωa)e−iω′

1T

∫
dω′

2φ2(ω′
2)â2(ω′

2)â†
2(ωb)e−iω′

2(T +τ )

+
∫

dω′
1φ1(ω′

1)â2(ω′
1)â†

2(ωb)e−iω′
1T

∫
dω′

2φ2(ω′
2)â1(ω′

2)â†
1(ωa)e−iω′

2(T +τ )]|0〉

× 〈0|[−
∫

dω1φ
∗
1 (ω1)â1(ωa)â†

1(ω1)eiω1T

∫
dω2φ

∗
2 (ω2)â2(ωb)â†

2(ω2)eiω2(T +τ )

+
∫

dω1φ
∗
1 (ω1)â2(ωb)â†

2(ω1)eiω1T

∫
dω2φ

∗
2 (ω2)â1(ωa)â†

1(ω2)eiω2(T +τ )|0〉 (A9)

= 1

4

∫
dωa

∫
dωb[−φ1(ωa)e−iωaT φ2(ωb)e−iωb(T +τ ) + φ1(ωb)e−iωbT · φ2(ωa)e−iωa (T +τ )]

× [−φ∗
1 (ωa)eiωaT · φ∗

2 (ωb)eiωb(T +τ ) + φ∗
1 (ωb)eiωbT · φ∗

2 (ωa)eiωa (T +τ )] (A10)

= 1

4

∫
dωa

∫
dωb|φ1(ωa)φ2(ωb)|2[e−iωbT e−iωa (T +τ ) − e−iωaT e−iωb(T +τ )][eiωbT eiωa (T +τ ) − eiωaT eiωb(T +τ )] (A11)
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= 1

4

∫
dωa

∫
dωb|φ1(ωa)φ2(ωb)|2[e−iωaτ − e−iωbτ ][eiωaτ − eiωbτ ] (A12)

= 1

4

∫
dωa

∫
dωb|φ1(ωa)φ2(ωb)|2[2 − ei(ωa−ωb)τ − e−i(ωa−ωb)τ ]. (A13)

In the derivation above, the imaginary terms turn out to be zero, and ω1(ω′
1) and ω2(ω′

2) have been replaced by the detected
frequencies ωa (mode â1 with detector a) or ωb (mode â2 with detector b) accordingly, using the following commutation relations
(for i = 1,2):

[â1(ωi),â
†
1(ωa)] = δ(ωi − ωa),[â2(ωi), â

†
2(ωb)] = δ(ωi − ωb). (A14)

Because we only select the case where both detectors click, the values of ωa and ωb can be only chosen between ω1 and ω2.
Therefore the final coincidence probability is given by

P12(τ ) = 1

4

∫
dω1

∫
dω2|φ1(ω1)φ2(ω2)|2(2 − ei(ω2−ω1)τ − e−i(ω2−ω1)τ ) (A15)

= 1

2

∫
dω1|φ1(ω1)|2

∫
dω2|φ2(ω2)|2 − 1

4
2π

1

2π

∫
dω1|φ1(ω1)|2e−iω1τ

∫
dω2|φ2(ω2)|2eiω2τ

− 1

4
2π

1

2π

∫
dω1|φ1(ω1)|2eiω1τ

∫
dω2|φ2(ω2)|2e−iω2τ . (A16)

In experiments and applications involving photon interference, indistinguishable photons are usually required, which means here
ω1 = ω2 = ω0. Now we introduce some frequency shift to each of the two independent photons as ω1 = ω0 + ω + �1,ω2 =
ω0 + ω + �2, and rewrite the spectral functions as φ1(ω),φ2(ω), where ω denotes the deviation from the central frequency
ω0 + �1(2); then we have

P12(τ ) = 1

2

∫
dω|φ1(ω)|2

∫
dω|φ2(ω)|2 − 1

4
2π

1

2π

∫
dω|φ1(ω)|2e−iωτ

∫
dω|φ2(ω)|2eiωτ ei(�2−�1)τ

− 1

4
2π

1

2π

∫
dω|φ1(ω)|2eiωτ

∫
dω|φ2(ω)|2e−iωτ e−i(�2−�1)τ , (A17)

where e−iω0τ and eiω0τ cancel each other out. Usually it is reasonable to assume that the spectral functions here are even
symmetric, i.e., φi(ω) = φi(−ω),i = 1,2 . For such functions, the Fourier and inverse Fourier transforms are the same obviously.
So the coincidence probability can be simplified as

P12(τ ) = 1

2

∣∣∣∣
∫

dω|φ(ω)|2
∣∣∣∣
2

− 1

4
2π

1

2π

∫
dω|φ1(ω)|2e−iωτ

∫
dω|φ2(ω)|2e−iωτ [ei(�2−�1)τ + e−i(�2−�1)τ ]

= 1

2

∣∣∣∣
∫

dω|φ(ω)|2
∣∣∣∣
2

− 1

2
2πF [|φ1(ω)|2]F [|φ2(ω)|2]cos(�ωτ ). (A18)

Here �ω = �2 − �1 indicates the frequency difference between two photons. Now we have the function that describes the
interference effect of two frequency mismatched independent single-photon wave packets. When �ω = 0, we will obtain the
Hong-Ou-Mandel dip. When �ω is larger, a stronger oscillation will be added to the dip envelope.

Because our interfering photons are well separated in central frequencies, by postselecting the coincidence events between the
output ports of the BS, we can have a discrete-frequency entangled state

|�ent〉 =
∫

dωa

∫
dωbâ

†
1(ωa)â†

2(ωb)|0〉〈0|â2(ωb)â1(ωa)|�out〉

= 1

2

∫
dωa

∫
dωbâ

†
1(ωa)â†

2(ωb)|0〉〈0|â2(ωb)â1(ωa)
∫

dω1φ
∗
1 (ω1)eiω1T

∫
dω2φ

∗
2 (ω2)eiω2(T +τ )

× [iâ†
1(ω1)â†

1(ω2) − â
†
1(ω1)â†

2(ω2) + â
†
2(ω1)â†

1(ω2) + iâ
†
2(ω1)â†

2(ω2)]|0〉

= 1

2

∫
dωa

∫
dωbâ

†
1(ωa)â†

2(ωb)[φ∗
1 (ωb)φ∗

2 (ωa)eiωbT eiωa (T +τ ) − φ∗
1 (ωa)φ∗

2 (ωb)eiωaT eiωb(T +τ )]|0〉

= 1

2

[ ∫
dωaφ

∗
2 (ωa)â†

1(ωa)eiωa (T +τ )
∫

dωbφ
∗
1 (ωb)â†

2(ωb)eiωbT

−
∫

dωaφ
∗
1 (ωa)â†

1(ωa)eiωaT

∫
dωbφ

∗
2 (ωb)â†

2(ωb)eiωb(T +τ )

]
|0〉
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= 1

2

[ ∫
dωφ∗

2 (ω)â†
1(ω)ei(ωa+ω)(T +τ )

∫
dωφ∗

1 (ω)â†
2(ω)ei(ωb+ω)T

−
∫

dωφ∗
1 (ω)â†

1(ω)ei(ωa+ω)T
∫

dωφ∗
2 (ω)â†

2(ω)ei(ωb+ω)(T +τ )

]
|0〉

= 1

2
eiωa (T +τ )eiωbT

[ ∫
dωφ∗

2 (ω)â†
1(ω)eiω(T +τ )

∫
dωφ∗

1 (ω)â†
2(ω)eiωT

− ei(ωb−ωa )τ
∫

dωφ∗
1 (ω)â†

1(ω)eiωT

∫
dωφ∗

2 (ω)â†
2(ω)eiω(T +τ )

]
|0〉. (A19)

Here we used ωa(b) = ωa(b) + ω, where ωa(b) is the central frequency and ω is the deviation for integration. Notice that φ∗
i is the

spectral function of the photon with frequency ωi,i = 1,2; therefore, for example,
∫

dωφ∗
2 (ω)â†

1(ω)eiωT |0〉 means the detected
photon at mode â1 is the one with frequency ω2. So the entangled state can be rewritten as

|�ent〉 = eiξ 1√
2

[|1(ω2)1(ω1)〉 − e±i�ωτ |1(ω1)1(ω2)〉], (A20)

where ξ = ωa(T + τ ) + ωbT , and |1(ω1)〉 = 1/21/4
∫

dωφ∗
1 (ω)â†

i (ω)eiωT |0〉,|1(ω2)〉 = ∫
dωφ∗

2 (ω)â†
i (ω)eiω(T +τ )|0〉,i = 1,2

only indicates whether the photon is in output mode a1 or a2. �ω = |ωb − ωa| = ω2 − ω1 is the central frequency difference
between the two photons. We define a new state as |� ′

ent〉 = eiξ |�ent〉. Because the factor eiξ disappears in Eq. (A7) and has no
influence on the detected result, for convenience, we still write |� ′

ent〉 as |�ent〉.
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