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A nonperturbative treatment, the Dirac-Frenkel time-dependent variation is employed to examine dynamics of
the Landau-Zener model with both diagonal and off-diagonal qubit-bath coupling using the multiple Davydov
trial states. It is shown that steady-state transition probabilities agree with analytical predictions at long times.
Landau-Zener dynamics at intermediate times is little affected by diagonal coupling, and is found to be determined
by off-diagonal coupling and tunneling between two diabatic states. We investigate effects of bath spectral
densities, coupling strengths, and interaction angles on Laudau-Zener dynamics. Thanks to the multiple Davydov
trial states, detailed boson dynamics can also be analyzed in Landau-Zener transitions. The results presented here
may help provide guiding principles to manipulate the Laudau-Zener transitions in circuit QED architectures by

tuning off-diagonal coupling and tunneling strength.
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I. INTRODUCTION

The Landau-Zener (LZ) transition comes into play when the
energy difference between two diabatic states is swept through
an avoided level crossing. Its final transition probability was
calculated by Landau and Zener in 1932 [1,2]. As one of
the most fundamental phenomena in quantum dynamics, the
LZ transition plays an important role in a variety of fields,
including atomic and molecular physics [3—5], quantum optics
[6], solid-state physics [7], chemical physics [8], and quantum
information science [9]. The list of physical systems dominated
by the LZ transition grows and interest in the LZ transition
has been renewed recently due to its various new applications
[10,11], such as a nitrogen-vacancy center spin in isotopically
purified diamond [12], a microwave-driven superconducting
qubit coupled to a two-level system, [13] and a spin-orbit-
coupled Bose-Einstein condensate [14].

In particular, advances in circuit quantum electrodynamics
(QED) devices make them promising candidates for explo-
ration of the LZ transitions due to their potential scalability
and tunable parameters over a broad range [15-17]. Circuit
QED is the realization of cavity QED in superconducting
quantum circuits. A superconducting flux qubit coupled to
a quantum interference device [18] has been fabricated by
Chiorescu et al., and a charge qubit coupled to a transmission
line resonator by Wallraff ez al. [19]. These developments have
paved the way to study the LZ transitions because the energy
difference between the two diabatic states has been allowed to
be tuned by external fields [20]. Recent measurements of the
LZ transitions have been reported on an individual flux qubit
within a multiqubit superconducting chip, in which qubits are
set up in the compound Josephson-junction radio-frequency
superconducting quantum interference device (SQUID) [21].

In any physical realization, a quantum two-state system will
be affected by its environment, which may alter the effective
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interaction between the two energy levels of the system. For a
realistic study of a qubit manipulation via the LZ transitions,
the influence of its environment is an important issue because
a qubit is never completely isolated. The effects of dissipation
have been studied in 1989 by Ao ef al., using time-dependent
perturbation theory, yielding only the LZ transition probabil-
ities at long times in the fast and slow sweeping limit [22].
Hinggi and co-workers have studied the LZ transitions and
dynamics in a qubit coupled to a bath at zero temperature [23].
Temperature effects on the LZ transitions have been explored in
a dissipative environment using the quasiadiabatic propagator
path-integral method and the nonequilibrium Bloch equations,
by which dependence of the transition probability on sweeping
velocities is obtained at long times [24-27]. Nalbach et al.
have further studied the influence of a thermal environment
on a harmonically driven quantum two-state system through
avoided crossings and proposed a novel rocking ratchet based
on electronic double quantum dots [28]. So far most attention
has been paid to the transition probabilities in the steady states,
where the energy difference of the two diabatic states is much
larger than the bandwidth of the bosonic bath [29]. However,
understanding of LZ dynamics at intermediate times is needed.
This is a time range in which the transitions have not fully taken
place and the energy difference of the two diabatic states is still
within the bath’s bandwidth [30]. Specifically, the dependence
of LZ dynamics on the bath frequency and the types of bath
spectral densities is still not well-understood.

Recently, high-quality fabrication techniques and physi-
cally large shunt capacitors have been developed to reduce
densities and electric participation of defects at various metal
and substrate interfaces, leading to rapid progress in the
performance and manipulation of the flux qubit and its en-
vironment [31]. An ohmic-type spectral density can be used
to describe the qubit-bath coupling in various devices such
as a superconducting circuit consisting of a transmon qubit
suspended on top of a microwave guide [32], a superconducting
qubit interacting with an array of coupled transmission line
resonators [33], and a fabricated circuit QED architecture that
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contains a capacitively shunted flux qubit coupled capacitively
to aplanar transmission line resonator [34]. Egger et al. showed
that a sub-ohmic-type spectral density can characterize the
qubit-bath coupling in a multimode circuit QED setup with
hybrid metamaterial transmission lines [35]. Super-ohmic-type
spectral densities have been applied to characterize the flux
noise on multiple flux qubits, especially when scaling up to
large numbers of qubits, as was stated by Storcz et al. [36,37].
Nalbach et al. have uncovered that super-ohmic fluctuations
are the main relaxation channel for a detuned double quantum
dot which is driven by external voltage pulses [38]. When a
superconducting persistent-current qubit is exposed to an un-
derdamped SQUID environment, Lorentzian spectral densities
have usually been found [39,40].

The dynamics of the LZ transitions at the intermediate
times is influenced by the dissipative environment. Roles of the
environment include fluctuations of energies of diabatic states,
denoted by diagonal coupling, and environment-induced tran-
sitions between diabatic states, expressed by off-diagonal
coupling. In the presence of only diagonal coupling, the
dynamics of the LZ transitions have been studied by Orth et al.,
using a stochastic Schrodinger equation [30,41]. Off-diagonal
coupling has been demonstrated to exist in a number of ex-
periments, such as in a superconducting charge qubit coupled
to an on-chip microwave resonator in the strong-coupling
regime [19], in a three-dimensional circuit QED architecture
[31], a circuit QED device with seven qubits [42], and in a
circuit QED implementation with a time-dependent transverse
magnetic field [43]. However, the effects of off-diagonal
coupling on LZ dynamics have not been well investigated.
Recently, the multiple Davydov D, ansatz has been developed
to accurately treat the dynamics of the generalized Holstein
model with simultaneous diagonal and off-diagonal coupling
[44,45]. Influences of off-diagonal coupling have also been
probed in the intramolecular singlet fission model using our
variational approach [46].

In this work, we investigate the impacts of diagonal and
off-diagonal qubit-bath coupling on the standard LZ model
using the multi-D, ansatz with the Dirac-Frenkel variational
principle. The converged results by the employed method agree
with those from other methods. In addition, calculated proba-
bilities in the steady states concur with analytical predictions at
zero temperature, further justifying the validity of our method.

The remainder of the paper is structured as follows. In
Sec. I, we present the Hamiltonian and our trial wave function,
the multi-D, ansatz. In Sec. III A, a qubit coupled to a circuit
oscillator is studied. In Sec. III B, the influence of bath spectral
densities on the LZ transitions is investigated. Finally, the
effects of coupling strengths and interaction angles on LZ
dynamics are examined in Sec. III C. Conclusions are drawn
in Sec. IV.

II. METHODOLOGY
A. Model

The total Hamiltonian of a driven two-level system inter-
acting with a bosonic bath is given by

H = Hg + Hg + Hgp, (1)

where the system Hamiltonian is the standard LZ Hamiltonian
for an isolated two-level system, i.e., Hg = H, 7, with
i vt A )

Lz—zaz‘i‘EUx, (2)
where o, and o, are the Pauli matrices. The states, [1) and
1), are eigenstates of the qubit Hamiltonian 4 0. The energy
difference between the diabatic states vt varies linearly with
time (with level-crossing speed v > 0). Tunneling strength A
represents intrinsic interactions between the two diabatic states
and induces the transitions.

To consider the Landan-Zener transition in the presence
of an environment, we model a bosonic bath of N quantum
harmonic oscillators by the Hamiltonian A and the qubit-bath
coupling by the Hamiltonian Hgp [20],

N
Hp =Y hogblb,,
q=1
o Y
Hgp = Z Eq(cos 040; + sin6,0.)(by +by),  (3)
q=1

where /i = 1 is assumed throughout, and w, indicates the fre-
quency of the gth mode of the bath with creation (annihilation)
operator EI, (Bq). y; and 6; are the qubit-oscillator coupling and
the interaction angle, respectively. The effect of the bosonic
bath is to change the energies of the qubit via the diagonal
coupling (o,) and to induce transitions between the levels of
the qubit via the off-diagonal coupling (o).

The environment and its coupling to the system are charac-
terized by a spectral density function,

J(w) = Z yqzé(a) — w,) = 2aw! Fwte “4)
q

where « is the dimensionless coupling strength, w. denotes the
cutoff frequency, and s determines the dependence of J(w) on
the bath frequency w. The bosonic ohmic bath is specified by
s = l,ands < 1 (s > 1)denotes the sub-ohmic (super-ohmic)
bath [37]. The effect of spectral density of the Lorentzian line
shape on LZ dynamics will be studied in a future work.

B. The multi-D, state

The multiple Davydov trial states with multiplicity M are
essentially M copies of the corresponding single Davydov
ansatz [47,48]. They were developed to investigate the polaron
model [44,45,49] and the spin-boson model [46] following the
Dirac-Frenkel variational principle. In the two-level system,
one of the multiple Davydov trial states, i.e., the multi-D,
ansatz with multiplicity M, can be constructed as

M N
DY) => "L A0t exp | D fig()b) — Hee. []0)
i=1

g=1

M N
+ D 1B exp | D fig()b) —Hee. [10) 1,

i=I q=1
(5)

where H.c. denotes the Hermitian conjugate, and |0) is the
vacuum state of the bosonic bath. A; and B; are time-dependent
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FIG. 1. (a) Schematic diagram of a typical coplanar waveguide
resonator with a qubit placed between the center conductor and the
ground plane of the waveguide. (b) Sketch of the superconducting
qubit coupled to the coplanar transmission line resonator. MI denotes
the mutual inductance between the qubit and resonator. The control
line supplies the time-dependent magnetic flux () threading the
qubit loop.

variational parameters for the amplitudes in states |1) and
[{), respectively, and fi,(#) are the bosonic displacements,
where i and ¢ label the ith coherent superposition state and
gth effective bath mode, respectively. If M = 1, the multi-D,
ansatz is restored to the usual Davydov D, trial state.

Equations of motion of the variational parameters u; =
A;,B; and f;, are then derived by adopting the Dirac-Frenkel
variational principle,

d (oL JL
—— ) - =0. (6)
dt 814;" ou*

1

For the multi-D, ansatz, the Lagrangian L, is formulated as

in 9
l A
L, (D§”<t)|7¥ — H|DY (1))

_ 1 o) pe) - ¥ o)
2 | V72 ar 2 2 ar 12

— (DY ()| H DY (1)) @)

Details of the Lagrangian, equations of motion, and initial
conditions are given in Appendix A.

III. RESULTS AND DISCUSSION

A. A qubit coupled to a single mode

The LZ transitions can occur in a qubit that is coupled to
a circuit oscillator in a QED device [18,19]. Figure 1 displays
the schematic diagram of a superconducting qubit coupled
to a coplanar transmission line resonator. The control line
in Fig. 1(b) supplies the time-dependent magnetic flux o(z)
threading a persistent current qubit loop, which contains three
junctions. After manipulations of the qubit, the state is detected
by a SQUID, which consists of a single Josephson junction in
a superconducting loop [50]. By tuning the external magnetic
flux ®(¢) threading the qubit loop, the energy-level separation
can vary linearly with a level-crossing speed v. The resonator

can represent a harmonic oscillator and is coupled to the qubit.
Then this qubit-oscillator setup can simply be modeled by a
Hamiltonian,

Y B b hobh+ Lowb )., ®)
2 2 2

which can be obtained from the Hamiltonian (1) if the number
of modes is set to one (N = 1). When the first term in Eq. (8) is
replaced by a time-independent energy bias, the Hamiltonian
is reduced to be the Rabi model, a paradigmatic construct of a
two-level system coupled to a single bosonic mode derived
from an atom in an applied electric field. A conventional
rotating-wave approximation has often been adopted to treat
the Rabi model [51].

Transitions between two diabatic states can result from
direct tunneling or indirect off-diagonal coupling to the os-
cillator. The physical quantity of interest includes the proba-
bility that the qubit flipped from the initial state |1) to ||},
ie., Pj.(00) =1— Py 4(00). Concerning the tunneling
between the two diabatic states, the final transition probability
through the avoided level-crossing point is given by the
familiar Landu-Zener formula P,z = 1 — exp (ﬁ) [1,2,52—
54]. With respect to the indirect off-diagonal coupling to
the single-bath mode, the transition probability is proposed
as Py (c0)=1— exp(;g’;‘z) at zero temperature [15,20].
In this work, we have studied the combined effect of the
direct tunneling between the two diabatic states and indirect
off-diagonal coupling to the single-bath mode. Niemczyk et al.
[17] using a recently developed circuit QED device showed the
breakdown of the widely used rotating-wave approximation
and the master-equation method due to the existence of strong
qubit-bath coupling [55].

Using the time-perturbation theory [23], we obtain

—7 (A% +y?)
2h|v| ’
It has been shown that this formula can provide exact final

transition probabilities for the whole parameter regime at zero
temperature [15,20]. As shown in Fig. 2, P;_, | (c0) calculated

H =

Py (00)=1—exp [ 9)

@ 1 M (b) 1 M

0.8 (/ 0.8
__ 08 __ 08
B B .
s > 4 [*Dy =0
0.4 ; 04t A oD =% v = 0.5Vho
<D= A =1.2Vho =8 aDY=3 = 1.2V
—Eq.(9),A=0 —Eq.(9),y =
02 ¢.(9) 02 7.(9),7
—Eq.(9), A = 0.5V —Eq.(9),7 = 0.5VIw
—Eq.(9), A = 1.2Vl —Eq.(9),7 = 1.2VIw
0
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FIG. 2. (a) Final transition probability P;_, (co) as a function
of the off-diagonal coupling strength y/+/hiv with fixed tunneling
strengths A = 0, 0.5v/fiv, and 1.2+/Rv. (b) P;_, | (c0) as a function
of the tunneling strength A /+/7iv for different off-diagonal coupling
strengths y = 0, 0.5+/7iv, and 1.2+/7iv. The oscillator frequency w is
set to 104/v/F.
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from the multi-D, ansatz with a sufficiently large multiplicity
M agree with the analytical predictions of Eq. (9) for various
off-diagonal coupling strengths y and tunneling strengths A.
This demonstrates the accuracy of our multi- D, ansatz and we
can numerically provide accurate final transition probabilities.

Here we further justify the validity of the variational
method by a comparison with the master-equation method
that yields exact results in the weak-coupling regime. It is
known that the multi-D, ansatz, a superposition of coherent
states, can easily treat exciton dynamics in the strong-coupling
regime [44,45,49]. To reach an accurate description in the
weak-coupling cases, we have used a variety of multiplicities
M of the multi-D, ansatz in the corresponding dynamical
calculations. Figures 3(a)-3(c) display the time evolution of
the transition probability with oscillator frequencies of @ =
0.1/v/h, /v/h, and 104/v/h, respectively. The multiplicity
of the multi-D, ansatz needed for convergence, as expected,
decreases as the oscillator frequency increases if the coupling
strength y stays constant. The converged results in each
scenario concur with those extracted from Ref. [15] (black line
with stars) using the master-equation method, demonstrating
that the multi-D, ansatz can well describe the LZ dynamics
at intermediate times when the qubit is coupled to a harmonic
oscillator of a wide range of frequencies.

In order to gain insight into LZ dynamics at intermediate
times, we also perform convergence tests for oscillator frequen-
cies of w = 0.54/v/h and 20+/v /R, and the results are shown
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FIG. 3. Time evolution of the transition probability calculated
by the master-equation method and the multi-D, ansatz. Oscillator
frequencies used are (a) @ = 0.1/v/H, (b) @ = /v/k, and (c) w =
10,/v/%. Other parameters are A = 0 and y = 1.2+/7iv.
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FIG. 4. LZ dynamics with a tunneling strength A = 0.5+/7iv and
an off-diagonal coupling strength y = 1.24/hiv for two oscillator
frequencies (a) w = 0.54/v/h and (b) w = 20/v/h.

in Figs. 4(a) and 4(b), respectively. In the absence (Fig. 3)
and the presence (Fig. 4) of tunneling, it can be found that
LZ dynamics at intermediate times strongly depends on the
oscillator frequency w, while the steady-state population in
[1), P, (c0), is independent of w. In particular, the transition is
temporally shifted from ¢t = 0 to ¢+ = hiw/v due to the indirect
off-diagonal coupling [15]. Therefore, the time shift for the
case of w = 0.5/v/h is minor compared to the time scale that
is concerned, leading to the LZ transition of only one stage in
Fig. 4(a). In contrast, P|(f) undergoes two stages in the LZ
transitions in Fig. 4(b). The first transition stage is induced by
direct tunneling between the two levels A = 0.5+/7iv, named
after the standard LZ transition, while the second transition
stage results from the indirect off-diagonal coupling to the
single-oscillator mode with the frequency of w = 20/v/h.
Next, we have investigated the dependence of LZ dynamics
on the direct tunneling between the two diabatic states and
indirect off-diagonal coupling to the single-oscillator mode.
For this simulation, the oscillator frequency of w = 104/v/h
has been used. As shown in Fig. 5(a), by evenly changing the
tunneling strength, the first plateau between the two stages of
transitions can be tuned nonlinearly from zero to almost one,

1 1
@+ = 1.2v0h ®) A =0.5vvh
vA =0 ¢ vy =0
0-81sA = 0.2y/v/h 08l Z0.2/u7R
OS’A:OA\/’U/TL 06>7:044\/v/h
L oA = 0.61/v/h o [y =0.61/v/h
o 04*A=0.8\/v/h i o 0.4/ = 08V0/R
oA =1.0y/v/ "oy =1.0/v/h

021" = 1.2y/v/h

0.2

*A = 2.0v/v/H ALY

t/\/hfv

FIG. 5. LZ dynamics (a) for seven tunneling strengths A =0,
0.2v/71v,0.4v/71v,0.6+/iv, 0.8v/hiv, 1.0v/7iv, and 2.0+/Fiv with fixed
y = 1.24/hv, and (b) for different off-diagonal coupling strengths
y =0, 0.24/fiv, 0.44/Fiv, 0.64/Fiv, 0.84/Fiv, 1.0/, and 1.2/fiv
with certain A = 0.5v/7iv. The oscillator frequency w is set to

10/v/F.
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and the height of the second plateau varies from 0.89 to 1.
As presented in Fig. 5(b), the first plateau is kept around 0.32
and the second plateau increases toward 1 as the off-diagonal
coupling strength increases. Results in this section offer the
possibility to manipulate the quantum states of the qubit that
is coupled to only one circuit oscillator in the circuit QED.

B. Effect of the bath spectral density

Recent developments in circuit QED setups have shown that
qubits can couple to a bath of quantum harmonic oscillators
[32-34]. The qubit-bath coupling can be characterized by
spectral densities of the ohmic type in a superconducting
circuit consisting of a transmon qubit suspended on top of a
microwave guide [34]. Many theoretical efforts have also been
devoted to study LZ transitions at long times in a dissipative
environment using ohmic fluctuations [56]. Spectrum densities
of the sub-ohmic and the super-ohmic type can be realized
in a multimode circuit QED setup with hybrid metamaterial
transmission lines [35] and in certain circuit QED setups with
multiple flux qubits [36], respectively. Thus, the effects of
spectral densities and coupling strengths on LZ dynamics of
these systems need to be addressed.

In this section, we have studied LZ dynamics using the
spectral density of Eq. (4). We have assumed that all bath oscil-
lators couple to the qubit with identical coupling angles 6, = 6.
We have calculated the Huang-Rhys factor S =) q yq2 =
% f0°° dolJ(w) = %awj*lf’(s + 1) and the total reorganiza-
tion energy Ey = % fooo da)% = %(xwff(s), where I'(x) is
the Euler gamma function. Thus the final transition probability
at zero temperature [23] can be given as

_ 1 . 2 )
=1—exp{ 7[|A = $Eosin(20)|” + Ssin 0]} 10)

2hv

When the first term in Eq. (2) is replaced by the time-
independent term of %az, the Hamiltonian (1) becomes a
spin-boson Hamiltonian. When the system-bath coupling in-
creases, a delocalization-localization transition can be found
within the framework of the spin-boson model [57]. For LZ
problems, however, the system always reaches a steady state
with a certain final transition probability because the energy
difference between the two diabatic states will be so large that
transitions between the two states are unlikely at long times.

As shown in Fig. 6, we compare the LZ dynamics of the
sub-ohmic, ohmic, and super-ohmic bath with the same cou-
pling strength & = 0.002. We have calculated the converged
results of LZ dynamics for a qubit coupled to baths using the
variational method. Spectral densities of the sub-ohmic bath
are computed using logarithmic discretization. For an ohmic
and super-ohmic bath, we have used linear discretization [57].
The cutoff frequency is given by w, = 104/v/h. The roughness
of the curves can be significantly reduced by using a large
number of frequency modes (N = 80 or greater). Details of
the convergence tests are presented in Appendix B.

In Figs. 6(a) and 6(b), we have presented the LZ dynamics
for the sub-ohmic bath (s = 0.5) and the ohmic bath (s = 1),
respectively. Figures 6(c) and 6(d) depict the time evolution

0 20 40 60 0 20 40 60

t/v/n/v t/\/h/v

FIG. 6. Time evolution of the transition probability for (a) a
sub-ohmic bath of s = 0.5, (b) an ohmic bath of s =1, and a
super-ohmic bath of (c) s = 1.5 and (d) s = 2 is obtained from the
DJ=3 ansatz with an identical coupling strength o« = 0.002. For each
of the four s values, four cases are shown: A = 0.4+/v,0 = /2
(red line, circles), A = 0.44/Fv,0 =0 (magenta line, diamonds),
A = 0,0 = /2 (black line, squares), and A = 0,0 = 0 (blue line,
pentagrams).

of transition probabilities using the super-ohmic bath with s =
1.5 and 2, respectively. When 6 = 0, there exists only one
stage in the LZ transition near # = 0 for nonzero tunneling
strengths. That is, in the presence of only diagonal coupling,
the LZ dynamics of A = 0.4+/Fiv (magenta lines, diamonds)
are almost identical in the four subplots, irrespective of the
spectral densities. Further calculations with finite tunneling
strengths have shown that there exists a one-stage LZ transition
in general in the presence of diagonal coupling only.

When 6 = 7/2, the time evolution of the transition prob-
ability for A = 0 has a single stage of slow growth until it
reaches its steady state. The converged probabilities and the
convergence times are dependent on the spectral densities. This
occurs because the LZ dynamics is strongly dependent on the
oscillator frequency w for a qubit off-diagonally coupled to
a single harmonic oscillator, as has been shown in Sec. III A.
Figure 6 also depicts that the convergence time for a large s
is significantly longer than that for a smaller s, since spectral
densities of a large s involve a prominent contribution from
high-frequency oscillators, and the convergence time in the
single harmonic oscillator scenario is proportional to the
oscillator frequency . When A = 0.4+/7v, there are two
stages in the LZ transitions in the presence of off-diagonal
coupling. In the first stage, the transition probability jumps up
at t = 0. In the second stage, it gradually reaches the steady
state at the same convergence time as that of A = 0. Further
calculations have shown that there exist the two-stage LZ
transitions in general for all nonzero tunneling strengths in the
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FIG. 7. Time evolution of the boson number used for a super-
ohmic bath of (a) s = 1.5 and (b) s =2, in the presence of off-
diagonal coupling only (6 = 7 /2). Other parameters are A = 0 and
o = 0.002.

presence of off-diagonal coupling. In addition, as expected,
the converged transition probabilities obtained from our dy-
namics calculations agree with the corresponding steady-state
transition probabilities from Eq. (10).

To investigate the role of bosons in the LZ transitions, we

have calculated the time evolution of the boson number (132 Bq ),
which is shown in Fig. 7. The initial boson number is set to
be zero in our calculations. The bosons will be created after
the transition takes place. If the qubit is only off-diagonally
coupled to a single harmonic oscillator, the LZ transition will
be temporally shifted from + = 0 to t = hw/v, independent
of the coupling strength [15]. If the qubit is off-diagonally
coupled to multiple harmonic oscillators, the transition will
then occur mainly after + = O as there is a temporal shift of
each frequency mode, as shown in Fig. 7. Because the energy
difference between the diabatic states varies linearly with time,
the frequencies of the bosons created via qubit-bath coupling
also have the same time dependence, resulting in the left edge
of the triangle starting from # = 0 in the @ — ¢ plots. It can be
found that very few bosons will be created for ¢ < 0, regardless
of s and coupling strengths. When a larger value of s is used,
more high-frequency bosons are created and this results in a
larger steady-state probability for identical coupling strength.
Also the time taken to create high-frequency mode bosons
increases, which can be seen in the comparison of Figs. 7(b)
and 7(a). This is expected from the convergence time taken to
reach the steady states in Figs. 6(d) and 6(c).

If the energies corresponding to frequencies of the bath
modes w are high in comparison with the thermal energy kg 7T,
the oscillators are thermally inactive, and thus the LZ dynamics
driven by the bath modes is temperature independent in a wide
temperature range [18,19]. Therefore, the temperature can be
set to be T = 0 to reduce the numerical cost, although the
inclusion of the temperature effect in the multiple Davydov
ansatz is straightforward by applying Monte Carlo importance
sampling [58].

C. Effects of coupling strength and interaction angle

Even though effects of various spectral densities have been
discussed in Sec. IIIB, we will focus on the ohmic type in

(b) A = 0.4vhw

0.01

0.008
. 0.006
3

0.004

0.002

-10 0 10 20 30 40 50 60 -10 0 10 20 30 40 50 60
t/\/h/v t/\/h/v

0 1 0 1

FIG. 8. Time evolution of transition probability for (a) A = 0 and
(b) A = 0.4+/7v using an ohmic bath with various coupling strengths
o, in the presence of off-diagonal coupling only (8 = 7/2).

this section because of the recent progress in nanotechnology
[59-62] which allows for feasible control of how ohmic en-
vironments are coupled to the superconducting qubit [63,64].
Figures 8(a) and 8(b) present the time evolution of the transition
probability as a function of coupling strength « for two values
of tunneling strength, A = 0 and 0.4+/7v, respectively. In this
section, we have considered the case for off-diagonal coupling
(6 = m/2) only. Calculated steady-state probabilities agree
with Eq. (10), which predicts increases of the probabilities

(b) A = 0.4V, a = 0.002

(a) A=0,a=0.002

S0 0 10 20 30 40 50 60
t/y/hfv

S0 0 10 20 30 40 50 60
t//hfv

0 (¢)A=0.a=0006 01 0 (d) A = 0.4vVAv, = 0.0060-1

—qO 0 10 20 30 40 50 60 —qO 0 10 20 30 40 50 60

t/\/hjv t/\/hjv

0 0.1 0 0.1

FIG. 9. Time evolution of the boson number using an ohmic bath,
in the presence of off-diagonal coupling only (0 = 7r/2). The left
column corresponds to A = 0, while the right column is for A =
0.4+/Tiv. The upper and lower panels correspond to coupling strength
of o = 0.002 and « = 0.006, respectively.
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(b) A = 0.4V

(a) A=0

~

*2]

4

0/(1/16x)

N

0 0
-10 0 10 20 30 40 50 60 -10 0 10 20 30 40 50 60

t/ \,'fﬁ fv t/\/ hjv

0 1 0 1

FIG. 10. Time evolution of transition probability for (a) A =0
and (b) A = 0.4+/hv using an ohmic bath with various interaction
angles 6. The coupling strength o = 0.008 is set.

with the coupling strength. While the coupling strengths for
the left and right panels in Fig. 8 are the same, the steady-state
probabilities of Fig. 8(b) are larger than those of Fig. 8(a)
because the nonzero tunneling strength A = 0.4+/7iv givesrise
to one more transition stage at# = 0 compared tothatof A = 0.

The interplay between the circuit qubit and the bosons is
characterized by boson dynamics as a function of w, as is shown
inFig. 9. The boson number is initialized to zero. The upper and
lower panels correspond to coupling strengths of o = 0.002
and o = 0.006, respectively. It was found that boson number
becomes larger with stronger off-diagonal coupling. We then
make a comparison between the left and right panels, in which
the left column corresponds to the zero tunneling strength
scenarios (A = 0) and the right column is for A = 0.4/Av.
If the off-diagonal coupling strength is the same, more bosons
are created for weaker tunneling scenarios, though we have
larger steady-state transition probabilities for larger tunneling
strength cases.

Figures 10(a) and 10(b) present the time evolution of the
transition probability as a function of the interaction angle
6 for A =0 and A = 0.4v/hv, respectively. The interaction
angle 6 of interest ranges from 0 to m/2. We have only
considered coupling strength of o = 0.008 in this section.

(b)A=0,0=7/2

w/v/v/h

—qO 0

10 20 30 40 50 60 10 20 30 40 50 60
t/v/ v t/v/hfv

0 0.1 0 0.1

—qO 0

FIG. 11. Time evolution of the boson number using an ohmic bath
for interaction angles of (a) & = /4 and (b) & = 7 /2. The tunneling
strength A = 0 and coupling strength « = 0.008 are set.

In the absence and the presence of tunneling, the transition
probabilities undergo the LZ transitions of one stage and
two stages, respectively. The transition probabilities P (t) for
t > 0 increase with the interaction angle 6 since a larger
interaction angle (0 < 6 < m/2) corresponds to stronger off-
diagonal coupling. The steady-state probabilities also increase
with interaction angles, as expected from Eq. (10). Figure 11
displays the time evolution of the boson number for two
interaction angles: (a) & = /4 and (b) 0 = /2. We found
that larger interaction angles (0 < 6 < m/2) lead to more
bosons being created during the transition stage, via stronger
off-diagonal coupling.

IV. CONCLUSION

In this work, we have studied the intriguing role played
by the dissipative environment in LZ dynamics. Following
the Dirac-Frenkel time-dependent variational principle, the
dynamics of the LZ model with diagonal and off-diagonal
qubit-bath coupling is probed by employing the multi-D,
ansatz, also known as a linear combination of the usual
Davydov D, trial states. Convergence has been ensured in the
LZ dynamics calculation by monitoring the multiplicity of the
multi-D, ansatz, and results agree with those of other methods.
The final transition probabilities in the steady states obtained
from our numerical calculations concur with the analytical
predictions. It is revealed in our systematic investigations that
larger interaction angles (0 < 6 < 7/2) and spectral densities
with larger exponents and coupling strengths lead to longer
transition times and greater steady-state probabilities. Finally,
our boson dynamics analysis based on the multi-D, ansatz
has successfully identified the contribution of specific boson
modes to the LZ transitions. A detailed understanding of the
mechanism using the Lorentz-type spectral density in flux
qubit and multilevel transitions is of great interest and awaits
further investigations.
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APPENDIX A: THE TIME-DEPENDENT VARIATIONAL
APPROACH FOR THE DISSIPATIVE
LANDAU-ZENER MODEL

In order to apply the Dirac-Frenkel time-dependent
variational principle, we first need to calculate the
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Lagrangian L,

L, = EZ(AJ'A" — AjAi + BB, — B;B))Sji + EZ(Ain +BjBi)Z|:
ij iJj q

_fiq it,"'fiq'
2

iq + f;'kqf:iq — ﬁqf:j*qi|sj

.j*qff‘/ + fquf‘/
2

i — (DY (0| A| DY 1)), (A1)

where the Debye-Waller factor is S;; = exp Zq {(—=(fiq 1? + | fiq 12)/2 + 7, fiq}, and the last term in Eq. (A1) can be obtained

as

. 1 A
(DY ()| A|DY (1)) = % Z(AjA,» — BiB)S;i + 7 D (AB; + BIA)S; + Y (ATA; + BIB) Yy f}, fiqSii
LJ

ij

ij q

1 * * * 1 * * *
+ 5 D (ATAI = BIB) Y g cosOy(fig + f7)S)i + 5 D (AT + BIAD Y vy cosby(fig + £7)S)i-
i,j q ij q

(A2)
The Dirac-Frenkel variational principle results in equations of motion for A; and B;,
] . i . . .
=i Y AiSi = 5 Y A Y =g Fiy + fig i)+ 2 figlSu
i i q
vt A . 1 X
=== > AiSi - 0 D BiSi— Y Ay g fiy figSii — > DAY g c0s04(fig + [l Ski
i i i q i q
1 , .
=5 2 Bi D vasinOy(fig + fi) S (A3)
i q
and
) . i . . .
=i ) BiSi =5 > Bi ) [=(fia iy + Fiafi) + 215, fig)Si
i i q
vt A . 1 N
= +? Z B;Sii — ) ZAiSki - Z B; qufkqfiqski + 3 Z B; Z Yq €08 04 (fiq + fiy)Ski
i i i q i q
1 _ .
=5 2 A D Vg sinby(fig + Fi)Su- (A4)
i q
The equations of motion for f;, are
—i ) NALA; + B{B) fig — (A{A; + B{B) fig)Sii — 5 D (AL A + BB fig St 3 QS5 fip = fin fiy = Fin fiy)
i i P
vt * * A * * * * *
= =5 D _(AVAi = B{B) figSi — 5 Y (AUBi + B{A) figSi — ) _(A{Ai + By B,»)(wq +y wpfkpf,-p)ﬁqsk,»
1 * * 1 * * *
= Z(AkA,» — B{Bi)y c0s 6, — 5 Z(AkA,» — BiBi)fiqg Y _ vpcosOp(fip + fi)Ski
i i 14
-5 Z(AkB,- + B{Adyg sin 0, S — 5 > (A;Bi + BfADfig D vpsin0y(fip + f13)Ski- (A5)

1

It should be noted that the main results of this work are
calculated from the above equations of motion. The equations
of motion are solved numerically by means of the fourth-order
Runge-Kutta method. In this work, the qubit is assumed to
initially occupy the state |1), i.e., A1(0) = 1, B;(0) =0, and
A;(0) = B;(0) = 0(i # 1). The initial bosonic displacement is
setto zero [ fi,(t — —oo) = 0], though the LZ transitions have
been demonstrated to depend also on various types of initial
coherent superposition states [55,65].

p

(

APPENDIX B: CONVERGENCE TEST OF LANDAU-ZENER
DYNAMICS FOR THE QUBIT COUPLED TO A BATH OF
QUANTUM HARMONIC OSCILLATORS

We have performed convergence tests using the multi-D,
ansatz for the qubit that is coupled to a bath of harmonic
oscillators. As shown in Figs. 12(a)-12(c), we have studied
the effects of the multiplicity M, maximum cutoff frequency
Wmax, and number of modes N on numerical calculations,
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(2)wmaz = 5we,N=80

0.8F g
0.6 M=t ]
5 —*—M=2
& 04 —o—M=3
——M=4

0.2

0.8r —— Winaz = 4w, |
0.6+ —h— Wiy = W g

0.8f —Ne20 1
o6l - - -N=40 ]
o - N=60
0.4l -~ N=80 :
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0.2 ]
0 . ‘ ‘ ‘ ‘
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t/\/hfv

FIG. 12. Time evolution of the transition probability calculated by
the multi- D, ansatz. Tested parameters are (a) number of multiplicity
M, (b) maximum spectrum band frequencies wy,y, and (c) number of
oscillator modes N. Other parameters are A = 0, « = 0.002, s =1,

and w. = 104/v/h.

respectively. As shown in Fig. 12(a), multiplicity M of 1,
2, 3, and 4 are adopted in the calculations. It is found that
converged results can be obtained using M = 3 for the studied
multiple-mode scenario, which also contains low-frequency
bath oscillators. In contrast, for the single low-frequency-mode
case, a much larger multiplicity of M =7 is required for
the convergence, as shown in Fig. 3(a). In the following, we
briefly explain why a large multiplicity is not necessary in
the presence of multiple low-frequency modes. As for Fig. 3,
the convergence test is performed for a single-oscillator case.
Before t = /I /v, we have already obtained converged results
using M = 3inthe case of w = 0.14/v/h. Around t = /I /v,
the LZ transition of w = /v/% appears much faster than that
of w = 0.1\/v/h before the onset of the steady state. This
indicates that a small multiplicity of M = 3 is sufficient to get
accurate results if both frequencies of w = 0.14/v/h and w =
/v/h are included. As for Fig. 12(a), the convergence test is
performed with respect to multiple harmonic oscillators, which
contain both frequencies of w = 0.14/v/h and @ = /v/h.
Therefore, the multiplicity of M = 3 is satisfactory to provide
accurate LZ dynamics. Meanwhile, the steady-state probability
of M =3 also agrees with the analytical prediction [23].
As presented in Fig. 12(b), the maximum cutoff frequencies
Wmax of 4w., Sw., and 6w, are used with w. = 10/v/h. It
can be found that wy,x = Sw, is sufficient to get converged
results. Figure 12(c) presents the LZ dynamics using the
number of oscillator modes N of 20, 40, 60, 80, and 100. The
roughness of the curves is found to be smaller as the number
of modes becomes larger. After the careful convergence tests,
the well-tested parameters have been applied in the numerical
calculations in this work.
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