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Photons and polaritons in a broken-time-reversal nonplanar resonator

Jia Ningyuan,* Nathan Schine, Alexandros Georgakopoulos, Albert Ryou,† Ariel Sommer,‡ and Jonathan Simon§

Department of Physics and James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Ilinois 60637, USA

(Received 11 September 2017; published 3 January 2018)

From generation of backscatter-free transmission lines, to optical isolators, to chiral Hamiltonian dynamics,
breaking time-reversal symmetry is a key tool for development of next-generation photonic devices and materials.
Of particular importance is the development of time-reversal-broken devices in the low-loss regime, where
they can be harnessed for quantum materials and information processors. In this work, we experimentally
demonstrate the isolation of a single, time-reversal-broken running-wave mode of a moderate-finesse optical
resonator. Nonplanarity of the optical path produces a round-trip geometrical (Pancharatnam) polarization
rotation, breaking the inversion symmetry of the photonic modes. The residual time-reversal symmetry between
forward-σ+–backward-σ− modes is broken through an atomic Faraday rotation induced by an optically pumped
ensemble of 87Rb atoms residing in the resonator. We observe a splitting of 6.3 linewidths between time-reversal
partners and a corresponding optical isolation of ∼20.1(4) dB, with 83(1)% relative forward cavity transmission.
Finally, we explore the impact of twisted resonators on T-breaking of intracavity Rydberg polaritons, a crucial
ingredient of photonic materials and, specifically, topological optical matter. As a highly coherent approach to
time-reversal breaking, this work will find immediate application in the creation of photonic materials and also
in switchable narrow-band optical isolators.
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I. INTRODUCTION

Within the condensed matter community there is growing
interest in creating synthetic material analogs made of light to
explore idealized models which are difficult to realize within
the solid state. In such “photonic materials,” photons in either
the optical or the microwave domain may be made to behave
as massive particles that are trapped and allowed to interact
with one another. Using arrays of microfabricated waveguides
[1] and resonators [2,3] or of exotic Fabry-Pérot cavities
[4–6], it has even become possible to engineer the single-
particle photonic dispersion to create gauge fields for these
massive photons. To mediate interactions between photons
they must be coupled to matter: to Josephson junctions in
the microwave domain [7,8] and to either Rydberg-dressed
atoms [9–14] or other nonlinear emitters [15] in the optical
domain. A crucial missing ingredient is the ability to explicitly
break time-reversal symmetry without spoiling the exquisite
longevity of the photonic particles. In the ring resonators
or waveguides described above, such time-reversal symmetry
breaking would energetically preclude backscattering, which
would otherwise correspond to reversal of synthetic gauge
fields and, more broadly, to physics beyond the material dy-
namics under consideration. In interacting systems enforcing
such a T-broken single-particle sector is more crucial, as the
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interactions themselves will otherwise violate the symmetry
which protects the topological character of the system [16,17].

In the optical domain, time-reversal breaking has long been
employed in isolators, where the Faraday effect provides a
nonreciprocal polarization rotation. However, this approach
is typically overlooked for breaking time-reversal symmetry
in photonic quantum materials due to significant single-pass
loss. Nonetheless, in a particular frequency band of interest,
the fundamental limit on Faraday rotation compared to optical
loss is favorable: for a typical alkali-metal atom like rubidium
(see Appendix B), the ratio of intrinsic atomic linewidth to
D-line fine structure is ∼10−5, providing ∼105 cycles of
time-reversal-broken dynamics (for example, cyclotron orbits)
within a photon lifetime (see Appendix C). Towards this end,
early work realized small magneto-optic rotations in free-space
atomic vapors [18].

Multiple passes through the atomic ensemble may be
employed to enhance the nonreciprocal polarization rotation
[19] and, indeed, suggest that, in an optical cavity, the res-
onator geometry can be employed to control photon mass and
trapping [6], with a Faraday rotation to break time reversal.
The challenge is that the optical Faraday effect cancels in
a two-mirror cavity where the forward and backward paths
comprise the same mode, while in a three-mirror (running-
wave) cavity the birefringence and polarization-dependent
transmission of the mirrors enforce spectrally split, linearly
polarized eigenmodes with vastly different finesses [20,21].
Cavity-enhanced nonreciprocity was recently demonstrated in
a whispering-gallery-mode optical resonator [22], where the
cavity birefringence was circumvented by coupling the atoms
to the longitudinal component of the resonator near-field. In the
present work, we extend these ideas, employing a four-mirror
running-wave resonator that we twist slightly out of plane, as in
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a nonplanar ring oscillator [23], to break inversion symmetry.
An atomic ensemble provides a resonator-enhanced atomic
Faraday effect that breaks time-reversal symmetry. Together,
these broken symmetries result in a frequency shift between
forward- and backward-propagating modes that we employ to
demonstrate optical isolation. This is particularly exciting in
light of the recent observation of photonic Landau levels in
twisted optical resonators [4,6]; the technique demonstrated
in this work would prevent interaction-induced backscattering
between forward- and backward-propagating lowest Landau
levels, paving the way to studies of Laughlin physics [24–26]
when a Rydberg admixture [11,13,14] induces interactions
between the resonator photons. To isolate a single running-
wave mode in an optical resonator, we begin by noting that even
a single transverse mode of a running-wave optical resonator
exhibits a fourfold degeneracy arising from the polarization-
helicity degree of freedom and the direction of propagation
along the resonator axis [see Fig. 1(b)]. It will thus be necessary
to break two symmetries to isolate precisely one of these
modes: inversion symmetry and time-reversal symmetry.

To break inversionw symmetry we twist the resonator
slightly (6◦; see Appendix A), resulting in a Pancharatnam
polarization rotation of the intracavity field on each round-trip
through the optical resonator [see Fig. 1(a)]. Similarly to
a Dove prism or a periscope, the polarization rotation in a
nonplanar resonator results from the geometric rotation of any
vector when parallel transported around a nonplanar closed
loop [6]. This rotation produces a splitting of 55.5 MHz
between pairs of helicity modes H+ and H−, which are
nearly circularly polarized, with a small ellipticity arising from
mirror-induced birefringence [see Fig. 1(b) and Appendix A
for details].

The key to breaking the remaining time-reversal symmetry
is that helicity is defined with respect to the direction of
light propagation, and not a fixed axis in space. Forward- and
backward-propagating modes of the same helicity have oppo-
site polarization and, thus, may be split through the Faraday
effect. In our experiment, this takes the form of coupling to
an optically pumped atomic ensemble whose polarizability
depends upon the incident light’s polarization, not its helicity;
the atoms are indifferent to the light’s direction of propagation.

The symmetry-breaking mechanisms employed by the
atomic ensemble in the twisted cavity can be understood by
imagining a rod moving into or out of a hole in a plate [see
Fig. 1(c)]. A smooth rod respects helical symmetry since it
can slide in and out without enforcing a specific rotation
direction. Both movement directions are also allowed as result
of the preserved time-reversal symmetry. Threading breaks
the helical symmetry for the movement by forcing the rod
to turn in a particular direction when moving longitudinally,
just as the twisting does to cavity modes. Finally, the Faraday
effect suppresses the backward-propagating mode with the
same helicity, which is analogous to having a ratchet attached
to a threaded rod to prevent backward motion.

In our experiments, we load a cloud of ∼1000 87Rb atoms
into the 12 μm × 11 μm TEM00 waist of a running-wave
optical resonator with a linewidth of κ = 2π × 1.5 MHz and
finesse of F = 2500 [see Fig. 1(d)]. A bias field of ∼14 G is
then applied to the atoms along the resonator axis. The atoms
are optically pumped into |Fg = 2,mF = 2〉 using ⊥-polarized

FIG. 1. T-breaking in twisted resonators coupled to atoms. In a
birefringence-free planar resonator [(a), left] each transverse mode
exhibits a fourfold degeneracy that may be parametrized as forward
(red right arrow) and backward (blue left arrow) propagation for each
of positive and negative helicity [(b), left]: {→ , ←} ⊗ {H+,H−}.
Twisting the resonator breaks this fourfold degeneracy into two
submanifolds of definite helicity [(a) and (b), center]. We couple the
optical modes to spin-polarized atoms [(a), right] to break the forward-
backward symmetry [(b), right]: polarized atoms are sensitive not to
the light’s helicity (defined relative to the direction of propagation)
but to its absolute polarization (defined relative to a fixed axis); the
difference in oscillator strengths for σ+ and σ−, for 87Rb atoms on
the |Fg = 2,mF = 2〉 → |Fe = 3′〉 transition of the D2 line, is a factor
of 15 [27]. The Zeeman splitting of the magnetic sublevels does not
directly contribute to T-breaking, except insofar as it is employed to
optically pump the atoms. (c) Schematic of the particular symmetries
broken in the various aspects of the experiment, using the analogy of
moving a rod into or out of a plate. Left: A smooth rod can move into or
out of the page. Center: A threaded rod must twist clockwise to move
into the page and counterclockwise to move out of the page. Right:
A ratcheted threaded rod may only rotate clockwise and, thus, may
only move into the page. (d) The experimental apparatus consists of a
twisted resonator coupled to an ensemble of laser-cooled 87Rb atoms
(green spheres) and probed from both directions using laser fields in-
jected through optical pickoffs (gray circles). The transmitted fields in
both directions are detected through single-photon counting modules
(SPCMs) fiber-coupled to the light transmitted through the pickoffs.

light tuned to the |Fg = 2〉 → |Fe = 2′〉 transition of the D2

line (see Appendix E for details on the protocol). We achieve a
maximal collective cooperativity Nη = 4G2/(κ�) ≈ 590 and
collective single-quantum Rabi frequency of Gσ+ = 73 MHz.
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(a) (b) (c)

FIG. 2. Spectroscopy of a time-reversal-broken twisted optical resonator. (a) Relevant energy level. The four empty-cavity modes group into
two helicity submanifolds separated by �pol = 55.5 MHz due to the cavity twisting. Dashed purple arrows show the energy of the incident probe
photons, which are injected in both the forward and the backward directions and have σ− (left) and σ+ (right) polarization components. (b) Cavity
transmission (relative to the maximum empty-cavity transmission) versus detuning δp of the probe from the σ+ atomic transition and � = �h+,σ+

of the H+ cavity modes from the σ+ atomic transition. With an atomic ensemble of laser-cooled 87Rb atoms that are optically pumped into the
|5 2S1/2,F = 2,mF = 2〉 state, the two forward (top-left inset; blue symbols) and two backward (bottom-right inset; red symbols) modes exhibit
four avoided crossings as each becomes resonant with the appropriate atomic transition. In the far-detuned limit, the cavitylike modes show a
frequency shift with little dissipation. The two modes within the same helicity manifold (upper two traces, H−; lower two traces, H+) split
from one another due to the difference in atomic polarizability for σ+ and σ− polarized light in the |Fg = 2,mF = 2〉 → |Fe = 3,mF = 1,3〉
transitions. (c) Zoomed-in spectra at � = 86 MHz from the Zeeman-shifted |Fg = 2,mF = 2〉 → |Fe = 3,mF = 3〉 transition for H− (top) and
H+ (bottom) helicities. The preservation of time-reversal symmetry for the empty cavity is manifest in the degeneracy of the two empty cavity
modes propagating in opposite directions (dashed blue and red lines). The forward-σ+ (left solid-line peak) and backward-σ− (right solid-line
peak) modes of the H+ manifold are shifted from their bare-cavity frequencies by 11.3 and 1.7 MHz, respectively, with an optical isolation
(reverse transmission suppression at the forward resonance frequency) of 20.1(4) dB shown as the dashed vertical line. In the H− manifold, the
shifts are 8.1 and 1.5 MHz for backward-σ+ (left solid-line peak) and forward-σ− (right solid-line peak), respectively. The absence of shoulders
in the backward transmission spectra at the forward resonances (and vice versa) indicates the absence of backscattering.

Here N is the atom number, η is the single quantum
cooperativity of the 87Rb 5S1/2 ↔ 5P3/2 transition [28], and
� is the 87Rb 5P3/2 spontaneous linewidth [27].

Figure 2(a) shows the accessible states of the system, con-
sisting of four cavity modes and two atomic excitations, where
the σ+(−)-polarized cavity modes drive atoms to the |e+(−)〉 =
|Fe = 3,mF = 3(1)〉 levels of the 5P3/2 excited state. We write
the detuning of the cavity modes with helicityh from the atomic
transition of polarization σ as �h,σ and define the reference
cavity detuning as � = �h+,σ+ .

In Fig. 2(b), we experimentally explore time-reversal sym-
metry breaking in the cavity-probe detuning (�/δp) plane.
Without the atomic ensemble, there are two pairs of degenerate
empty cavity modes (diagonal dashed lines) split by 55.5 MHz
due to resonator twist. Within each pair, the forward (top
left inset; blue lines) and backward (bottom right inset; red
lines) modes have the same helicity but opposite polarization
relative to a fixed axis. When the atoms are transported
into the cavity, they break time-reversal symmetry through
two independent effects: first, the two light polarizations are
resonant with their respective atomic transitions at frequencies
that differ by 26 MHz, resulting from the differential Zeeman
shift of the atomic levels of the excited state; second, the
two atomic transitions have substantially different coupling
strengths [27], leading to different vacuum Rabi splittings
for the two polarizations. The observed spectra are in good
agreement with theoretical expectations (see Appendix D)

In order to reduce the loss and enhance isolation (reverse
transmission suppression at the forward resonance frequency),
we operate the system at a large detuning fromFg = 2 → Fe =

3 transition [Fig. 2(c)]. When �h,σ is large compared with the
collective light-matter single-excitation Rabi frequency Gσ =√

Ngσ , the cavity resonances shift by G2
σ /�h,σ , splitting the

σ+ and σ− modes for a given helicity. Here gσ is the effective
single-atom vacuum Rabi coupling of the ensemble of N

atoms. Splitting the forward and backward modes of a given
helicity relies primarily upon the ratio α = gσ−/gσ+ of the
light-matter coupling strengths, arising from the differential
polarizability of the atomic ensemble. For the states chosen
above, the ratio is 1

15 near the Fg = 2 → Fe = 3 transition
of the D2 line and 1

3 at large detunings compared to the
excited-state hyperfine splitting (see Appendix B). Meanwhile,
free-space scattering is substantially suppressed due to the
large detuning |�h,σ |  �, where � is the linewidth of the
excited atomic state.

In Fig. 2(c), we show the transmission spectrum with
the cavity detuned 86 MHz from the Zeeman-shifted
|Fg = 2,mF = 2〉 → |Fe = 3,mF = 3〉 transition. Without
the atoms, respect for time-reversal symmetry is manifest
in the absence of any difference between forward and back-
ward traces (dashed blue and red lines, respectively). With
the addition of an optically pumped atomic ensemble, time-
reversal symmetry is broken, as shown in the solid traces,
where we observe a shift of 9.4 MHz for probing in one
direction relative to the other, in agreement with (1 − α2)G2

�
=

13.8 MHz from a simple first-principles theory. To demonstrate
that the system behaves as a narrow-band optical isolator, we
select a single isolated transmitting mode as the “forward”
direction of our isolator and measure both the reduction of
transmission compared with the maximum transmission of the
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(a) (b) (c)

FIG. 3. Time-reversal breaking in cavity Rydberg electromagnetically induced transparency (EIT). (a) Atomic level structure and relevant
atomic transitions for cavity Rydberg EIT. An ensemble of optically pumped 87Rb atoms is coupled to the cavity modes in the 5S1/2 ↔ 5P3/2

transition in the presence of a control field, which further couples the atoms to the 4S Rydberg manifold. The small hyperfine structure (<MHz)
of the Rydberg manifold places it in the Paschen-Back regime (with mJ a good quantum number), while the ground- and P-state manifolds, with
their larger hyperfine structures, ∼6.8 GHz and ∼500 MHz, respectively [27], reside in the Zeeman regime (with mF a good quantum number).
In the forward mode, both electron and nuclei spins are polarized so only stretched state couplings are allowed, and the system forms a standard
three-level EIT diagram. The backward mode is more complicated due to the nonvanishing coupling between 40S, mJ = 1/2 ↔ 5P3/2, F = 3,
mF = 0,1,2 P states, with only mF = 1 strongly coupled to the cavity field. (b) Normalized cavity transmission vs probe (δp) and cavity (�)
detunings. When the cavity is on resonance with the σ+ mode, probing in the forward direction (left panel) reveals a standard EIT spectrum
[13]; probing backward reveals only a weak Fano feature for this cavity tuning. The coupling of the backward cavity field to the mJ = −1/2
Rydberg manifold is apparent from the prominent Zeeman-shifted EIT feature in that spectrum and the corresponding Fano feature in the
forward spectrum. (c) A slice at � = 0, exhibiting vacuum Rabi splittings and an EIT feature in the forward spectrum (solid orange curve) and
only a single Fano resonance in the reverse spectrum (dashed blue curve).

empty resonator and the “reverse” transmission of the mode
in the same helicity manifold as the “worst-case” isolation.
We observe an isolation of 20 dB for the backward mode and
a forward-mode transmission reduction of only 17(1)%; the
chosen detuning deviates from the theoretical optimum derived
in Appendix C due to a breakdown of the approximation
G � �, mirror birefringence, and contributions from other
excited hyperfine states.

It is now interesting to examine the impact of backscattering
and T-breaking on Rydberg polaritons, crucial ingredients of
both photonic quantum information processors and quantum
materials. While Rydberg-polariton collisions should be pro-
tected from backscattering by the translational symmetry of the
atomic cloud, the finite size and imperfect uniformity of the
cloud violate this symmetry (see Appendix F for details), and so
it is worthwhile to explore the density of backward-propagating
polariton modes, along with their character.

The linear susceptibility vanishes on electromagnetically
induced transparency (EIT) resonance [29], so it is natural to
anticipate that the Faraday effect that we have so fruitfully
exploited for T-breaking will also vanish on EIT resonance.
We find this to be true, up to T-breaking shifts from other
hyperfine states; furthermore, there is no requirement that
the behavior near EIT resonance must respect time-reversal
symmetry, and so residual T-breaking in EIT takes the form
of different polariton properties: a change in the dark-state
rotation angle and polariton loss.

The relevant transitions for the experimental investigation
are depicted in Fig. 3(a). The forward (thick) and backward
(thin) modes couple to different atomic P-state magnetic
sublevels, and different Rydberg states (with different mI ’s);
they must couple to the same mj (= 1

2 ) in the Rydberg manifold,

as the large magnetic field tunes the other mj (=− 1
2 ) state away

by many MHz. The result is that the forward mode forms a
closed three-level system due to the fully polarized—electron
and nuclear—spins (|F = 3,mF = 3〉 in the P manifold can
only couple to |mJ = 1

2 ,mI = 3
2 〉 in the Rydberg manifold),

while the Rydberg state in the backward mode is coupled
through the control field to other |5P,mF 〉 states which behave
as loss channels and provide additional shifts and loss for the
dark polariton.

Figure 3(b) shows the experimentally observed forward
(left) and backward (right) EIT spectra versus both the probe
frequency δp and the resonator frequency �; the most promi-
nent feature is the shift of the vacuum Rabi (bright polariton)
peaks due to the atomic Faraday effect, akin to the two-level
case explored in Fig. 2(b). The dominant feature induced by
the control-field coupling to the third (Rydberg) manifold is
the appearance of dark polariton resonances for mJ = ± 1

2
Rydberg states, Zeeman shifted with respect to one another;
the mJ = 1

2 polariton is most visible in the forward spectrum,
with the mJ = − 1

2 polariton clearer in the backward spectrum.
Nonetheless, as anticipated, both polaritons are visible in both
spectra: as shown in Fig. 3(c), there is a weak Fano-like
feature in the backward cavity spectrum near the frequency
of the mJ = 1

2 dark polariton, resulting from the control-field
coupling between |40S1/2,mj = 1/2〉 and |5P3/2,mF = 1〉.

This Fano feature is the backward channel into which
forward polaritons may scatter, and it is apparent that the
backward polaritons are more weakly coupled, arising from
a light-matter coupling of G = 10 MHz (versus G = 18 MHz
in the forward direction, determined by the Clebsch-Gordon
coefficients [27] and reflected in the vacuum Rabi splittings
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in Fig. 3(b)) and a 480-nm coupling-field Rabi frequency of

 = 4.2 MHz (versus 
 = 9.6 MHz in the forward direction);
this difference is visible in the width of the EIT windows,
manifested as the cavity detuning range over which the EIT
and Fano features persist: 40 MHz in the forward direction
and 10 MHz in the backward direction.

We have demonstrated the isolation of a single time-
reversal-broken mode in a low-loss running-wave optical res-
onator. We break inversion symmetry by twisting the resonator
out of plane and time-reversal symmetry by coupling the
resonator modes to an optically active atomic ensemble. We
have employed our technique to create a narrow-band optical
isolator with a linewidth of ∼1.5 MHz, an isolation of 20 dB,
and a relative transmission of ∼83%. This performance may
be straightforwardly enhanced by (i) increasing the density
of atoms trapped within the resonator waist to enhance the
T-breaking; (ii) operating at a larger detuning to reduce the loss;
and (iii) employing a resonator with a larger twist to enhance
the inversion-symmetry breaking and reduce the impact of
mirror birefringence on the mode circularity. Indeed, with a
higher collective cooperativity (by employing a high-finesse
cavity coupling to a larger number of atoms), we expect
transmission an efficiency of ∼80% and isolation of ∼60 dB
(see Appendix D for details).

Extending the technique to cavity Rydberg polaritons, the
essential building block of strongly correlated cavity-based
photonic materials [25], we see that the Faraday rotation
vanishes on EIT resonance but that the the forward-σ +
EIT window is nonetheless wider and less lossy than its
time-reversed partner, which appears as a weak, shifted Fano
feature: in the case of a thin atomic sample with the potential to
weakly backscatter due to Rydberg-Rydberg interactions, this
difference in density of states will suppress backscattering; for
additional suppression a cloud of optically pumped 85Rb atoms
could be loaded into the resonator to provide a Faraday rotation
while avoiding an EIT resonance due to the isotope shift. In
conjunction with recently observed synthetic magnetic fields
for photons [4] and strong interactions between individual res-
onator photons [14], this work demonstrates that all essential
elements are now in place for studies of topologically ordered
states of light in the fractional quantum Hall regime.
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APPENDIX A: NONPLANAR CAVITY

A sufficiently (compared to mirror birefringence) nonplanar
ring cavity exhibits circularly polarized eigenmodes arising
from a round-trip geometric polarization rotation. This may be
seen by parallel-transporting a polarization vector through the
path described by the cavity mode and comparing this with
the initial vector. Numerically, this is accomplished via the

round-trip transfer matrix in a 4×4 ABCD-matrix formalism
[4]. This formalism assigns an appropriate matrix operator to
propagation between, and reflection off of, each mirror. The
product of matrices corresponding to travel around the cavity
is the transfer matrix, and its application to a vector in the
reference plane describes that vector’s stroboscopic temporal
evolution. The stroboscopic rotation of the vector is then gauge
independent and the result of a geometric phase.

This formalism treats polarization and image vectors differ-
ently, as neither propagation, mirror curvature, nor astigmatism
affects the polarization vectors; polarization vectors only re-
flect at each mirror. While in general calculating the round-trip
rotation angle is tedious, simple analytic expressions have been
computed for highly symmetric geometries [6].

Our experimental four-mirror cavity was designed to be
planar; a small misalignment during assembly introduced a
small nonplanarity of the cavity mode resulting in the reported
55.5-MHz circular polarization mode splitting. Numerical
modeling of our apparatus following the ABCD-matrix for-
malism indicates an approximately 6◦ nonplanar misalignment
between the upper and the lower axes of the cavity.

That a few-degree misalignment can result in significant cir-
cular polarization mode splitting points to near-negligible lin-
ear birefringence of our mirror coatings, which, in subsequent
fully planar cavities [14], serves to split linear polarization
modes by several MHz. By contrast, image astigmatism due
to nonnormal reflections off of curved mirrors still dominates
over image rotation, resulting in very nearly pure Hermite-
Gaussian transverse-mode profiles. Much more significant
nonplanarity must be employed to overcome mirror astigma-
tism and provide Laguerre-Gaussian-like cavity modes, which
are eigenstates of orbital angular momentum [4].

APPENDIX B: PERFORMANCE LIMIT OF T-BREAKING

For an atomic sample optically pumped into the
|52S1/2,Fg = 2,mF = 2〉 state, all D-line coupling to σ+-
polarized light comes from the |52P3/2,Fe = 3,mF = 3〉 state,
at a wavelength of 780 nm, with a (relative) Clebsch-
Gordon coupling of 1. In contrast, the σ− coupling comes
from |52P3/2,Fe = 3,2,1,mF = 1〉 states at ∼780 nm and
|52P1/2,Fe = 2,1,mF = 1〉 states at ∼795 nm; the sum of the
squares of all of these Clebsch-Gordon values is also unity,
indicating that, at very large detunings from the atomic line,
there is no Faraday rotation.

That the total atom-light coupling strengths at large detun-
ings are equal for σ+ and σ− light should come as no surprise;
for light which is sufficiently detuned that it cannot couple
to electron or nuclear spins through spin-orbit or hyperfine
interactions, the atom appears to be a scalar scatterer and,
as such, cannot distinguish optical polarizations. This is the
same reason that state-dependent optical lattices operate most
efficiently near D lines [30].

The total cavity shift for a σ+ mode is thus G2

�
, where

� is the mode detuning from the |52P3/2,Fe = 3,mF = 3〉
state. By contrast, the cavity shift for σ− modes is G2 ×∑

Fe,Je=1/2,3/2 CG(2,2,Fe,1; J = 1/2,Je)2 1
ω−ω(Fe,Je) . If we as-

sume that we are near-detuned to the D2 (J = 3/2) line
compared with the fine structure (∼15 nm in rubidium), the
D1 (J = 1/2) Clebsch-Gordon values do not contribute. If
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FIG. 4. Ratio of Faraday rotation to loss. The competition be-
tween Faraday rotation of an optical field (which breaks time-reversal
symmetry) and atomic scattering of the field (which induces loss
of photons), for 87Rb atoms in the |F = 2,mF = 2〉 ground state, is
shown as a function of the wavelength of the optical field. Away from
the D1 and D2 atomic lines (at 795 and 780 nm, respectively), the ratio
saturates, as the atomic scattering scales as �−2, and for detunings
larger than the atomic fine structure, the Faraday rotation also scales
as �−2, where � is the approximate detuning to the atomic lines. At
smaller detunings, the Faraday rotation increases as �−1, while the
scattering grows as �−2, enhancing the loss relative to time-reversal
breaking. Zoomed-in panels show zero crossings when each excited
hyperfine features is traversed.

we are, additionally, at a large detuning compared with the
excited-state hyperfine structure (∼600 MHz in the 87Rb D2

line), the detuning factor ω − ω(Fe,3/2) becomes largely
independent of Fe and may be written as �; what remains
is the sum of squares of Clebsch-Gordon coefficients, which
in this case equals 1/3. This suggests that for optimal Faraday
rotation per atom, while minimizing scattering-induced loss,
one should choose a detuning which is of the order of, but
not larger than, the atomic fine structure. Figure 4 shows the
(numerically computed) ratio of the Faraday dispersive shift
to the scattering rate near each D-line feature as well as over a
broad range of detunings.

APPENDIX C: FIGURES OF MERIT FOR ISOLATION

Consider the time-reversal doublet of modes |F,H+〉,
|B,H−〉, each with a bare linewidth κ , coupled to atoms whose
spontaneous linewidth is � and collective atom-light coupling
strengths are G and αG for forward and backward modes,
respectively (for an 87Rb atomic ensemble optically pumped
into Fg = 2, mF = 2, α2 = 1

3 for large detunings from the D2

excited-state hyperfine structure, and α2 = 1
15 for detunings

close to the Fe = 3 hyperfine feature [27]). Here we assume
that the coupling strength is not detuning dependent; that is,
that we are either at a small detuning compared with the
hyperfine structure or at a large one, but not in between, and
similarly for the atomic fine structure. We would like to know
how much the two modes may be spectrally separated by
atom-induced dispersion, while maintaining at least (1 − ε)
of the empty-cavity transmission in each mode.

A detuning � between the cavity modes and the atomic
line induces mode frequency shifts of G2

�
and α2G2

�
, neglecting

the differential Zeeman shifts of the σ+ and σ− atomic lines;
the differential resonance shift is thus δcav ≡ (1 − α2) × G2

�
=

(1 − α2)Nη �
4�

κ , where Nη ≡ 4G2

κ�
is the resonator-enhanced

collective cooperativity.
The atom-induced broadening of each cavity mode is at

most �sc ≡ G2

�2 � = Nη �2

4�2 κ (assuming α � 1). The reduction
in resonant cavity transmission, from the empty-cavity value,
is T = [ κ

κ+�sc
]2, and so maintaining T � 1 − ε requires �sc �

1
2εκ .

The transmission constraint imposes a lower limit on the

atom-cavity detuning of �min = �

√
Nη

2ε
and, thus, an upper

limit on the T-breaking cavity shift of δmax
cav = (1 − α2)

√
εNη

8 κ ,
corresponding to a suppression of backward-mode transmis-
sion, at the frequency of the forward-mode resonance, of

approximately ( κ/2
δmax

cav
)
2 = 1

(1−α2)2
2

εNη
.

On the other hand, if the only quantity of interest is the
ratio of forward transmission to backward transmission, the
optimum is different: under these circumstances, the differ-

ential shift, in linewidths, is β = (1−α2)Nη �
4�

κ

κ+Nη �2

4�2 κ
, providing a

transmission ratio of the forward resonance of R = Tf

Tb
=

β2 = [
(1−α2)Nη �

4�

1+Nη �2

4�2

]
2
. It is apparently favorable to employ as

many atoms as possible (Nη → ∞), in which case R → 4�
�

;
thus we see that insofar as the differential cavity shift falls
off only inversely with the detuning, it is favorable to go to
arbitrarily large detuning. As explored in Appendix B, this
scaling saturates at � = �FS, the fine-structure splitting. At
fixed optical depth Nη, the optimal detuning is � = √

Nη�
2 ,

and the optimal ratio β = 1−α2

4

√
Nη.

For engineering a synthetic material, the quantity of impor-
tance is the number of linewidths of time-reversal symmetry
breaking, as this provides the available dynamic range for
interactions and single-photon physics: any interaction or
single-photon process which is larger than the T-breaking can
potentially scatter into the T-broken Hamiltonian manifold.

APPENDIX D: THEORY SPECTRUM

We generate a model transmission spectrum by employing
non-Hermitian perturbation theory [31], as described in [25],
treating forward (blue) and backward (red) spectra separately,
and injecting elliptically polarized light composed of σ+ and
σ− polarizations, and detecting without polarization sensi-
tivity. In practice, this means computing σ+ and σ− traces
separately (with adjustable power to match the measured data)
and then adding them together. We assume that atoms are in
|Fg = 2,mF = 2〉, that the quantization axis is aligned with the
cavity axis, and that the cavity modes themselves are circularly
polarized. The resulting theory spectrum is shown in Fig. 5.

For cavity mode | → (←),H+(H−)〉, the coupling of the
photon and atomic excited state is described by 2×2 matrices

H =
(

� + �pol − i κ
2 G/2

G/2 δB − i �
2

)
, (D1)

where �pol is the splitting between different helicity manifolds
generated by the cavity twist, δB is the Zeemann shift of
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FIG. 5. Theory spectrum of time-reversal-breaking cavity trans-
mission. The cavity transmission of forward (blue lines) and backward
(red lines) modes is shown in the cavity-detuning–probe-detuning
�/δp plane. When an atom ensemble is transported into the cavity
waist, the cavity modes show four avoided crossings at distinct
locations due to the Zeeman shift and cavity-twist-induced splitting.
The difference in coupling strength between the two modes with the
same helicity results in a splitting at large detunings, which is the
source of the T-breaking mechanism.

the atomic state, and G = √
Ng is the collective coupling

constant. For the frequency definition in this paper, we choose
the detuning to be 0 at |Fg = 2,mF = 2〉 → |Fe = 3,mF = 3〉
transition, and thus �pol = 0 MHz for the H+ and 55.5 MHz
for the H− manifold.

Using the same method, we can calculate the loss and iso-
lation for a time-reversal-broken resonator. Here, we propose
a cavity with a finesse of 100 000 and atomic sample with
an r.m.s. size of 300 μm. In Fig. 6, we plot the loss (density
plot) in the coupling strength (atomic density)–detuning plane
and overlay the contour lines (solid orange) for −20 dB to
−60 dB (left to right) isolation. With a peak atomic density
of ∼9×1011/cm−3 and cavity detuning of ∼3.5 GHz, one can
achieve an isolation of 60 dB and 80% transmission (red circle
in Fig. 6). A high transmission (99%) and moderate isolation
(∼30 dB) can also be achieved with

√
Ng ≈ 200 MHz and

� ≈ 2.5 GHz.

APPENDIX E: OPTICAL PUMPING

Our setup presents a unique optical pumping challenge: we
would like to polarize our 87Rb sample in the |Fg = 2,mF = 2〉
magnetic sublevel, with the quantization axis defined along the
resonator axis, a task that normally requires sending resonant
or near-resonant circularly polarized light through the atomic
sample, with the propagation direction along the quantization
axis, as shown in Fig. 7(a). The propagation direction is crucial,
as we are otherwise unable to create light whose polarization
selectively drives �mF = 1 transitions. Unfortunately, we
would then have to optically pump through the cavity, which

FIG. 6. Insertion loss and isolation. A predicted insertion loss
(density plot) and isolation (solid orange line) in the coupling
strength (atomic density)–detuning plane is calculated using the
non-Hermitian perturbation theory. From left to right, the isolation
contour lines (solid orange) depict the isolation from −20 to −60 dB
in 10-dB steps. The best isolation is primarily determined by the
collective coupling constant (

√
Ng), and a higher transmission, while

maintaining the same isolation, could be achieved by increasing the
detuning and atomic density. The three-contour line (dashed purple)
shows the transmission for 99%, 90%, and 80%, from left to right.
As shown by the cross point in the red circle, with a coupling
constant of ∼1.3 GHz and detuning of ∼3.5 GHz, one can realize
a time-reversal-broken-symmetry cavity with 20% loss with 60-dB
isolation.

FIG. 7. Optical pumping. To break the degeneracy between he-
lically polarized resonator manifolds, it is essential to achieve an
atomic Faraday effect which presents a differential polarizability
in the σ+/σ− basis relative to a quantization axis Q parallel to
the resonator axis. This requires an optical pumping beam which
preferentially drives �mF = 1 transitions, a feat which is typically
achieved, as in (a), using a pumping beam which propagates along Q

and distinguishes between �mF = 1 and �mF = −1 transitions by
its circular polarization. This proves difficult in our experiment, as our
resonator mirrors preclude such a beam. We have developed a new
technique, shown in (b), wherein the optical pumping beam distin-
guishes between �mF = 1 and �mF = −1 transitions energetically,
via a Zeeman magnetic field B parallel to Q, and may then propagate
perpendicular to the quantization axis Q.
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we cannot do, as the sample is optically thick in this direction,
and the transverse modes of the resonator are nondegenerate.
To circumvent this issue, one option is to optically pump in a
rotating frame and wait for the instantaneous quantization axis
to align itself with the optical resonator axis, as in Ref. [32]. For
this work we have developed a new CW approach that relies
not upon a rotating spatial frame but, instead, upon spectrally
isolating �mF = 1 transitions from �mF = −1 transitions
using a Zeeman field:

We apply a magnetic bias field along the resonator axis (x̂)
of strength 14 G and illuminate the atoms with optical pumping
and repumping light propagating orthogonal to the resonator
axis, along the transport axis (ẑ), with orthogonal linear
polarization along the ŷ axis [see Fig. 7(b)]. The pumping light
is tuned+20 MHz above the zero-fieldFg = 2 → Fe = 2 tran-
sition, making it resonant with the average δmF = 1 Zeeman
resonance, and detuned 40 MHz from the δmF = −1 Zeeman
resonance. Atoms accumulate in the “dark” |Fg = 2,mF = 2〉
Zeeman sublevel, with only a small scattering rate induced
by the off-resonant δmF = −1 laser field. The repumping
field is tuned +17 MHz from the zero-field Fg = 1 → Fe = 2
transition frequency.

APPENDIX F: THEORY OF INTERACTION-INDUCED
BACKSCATTERING

1. Single-mode calculation with contact interactions

The cavity holds two pairs of degenerate modes that are
protected by the time-reversal symmetry, and the polariton-
polariton interaction can thus couple the forward mode to the
backward mode. To investigate how this interaction-induced
backscattering affects the targeting of many-body states with-
out time-reversal symmetry, we calculate the amplitude of
the backscattering and compare it with that of the forward
scattering. With a simple model of interactions, the coupling
strength of the forward-backward process is significantly lower
than that of the forward-forward one.

As long as the interaction energy is low compared to the
energy difference between dark and bright polaritons, it is
convenient and allowable to project the Hamiltonian onto the
dark-polariton manifold. In the case of a resonator with only a
single transverse mode, the polariton creation operator is

�
†
f,b = cos

θd

2
a† + sin

θd

2

∫
dzd �x

√
ρ(z)ψ(�x)r†(�x,z)eikf,bz,

(F1)

where θd = arctan
√

Ng



is the dark-state rotation angle; a and

r(�x,z) represent, respectively, the annihilation operators of
a cavity photon and a Rydberg excitation with transverse
coordinate �x and longitudinal position z; ρ(z) is the atomic
density distribution along the resonator axis; and ψ(x) is the
transverse mode function of the resonator. We assume that
the cavity waist is much smaller than the atomic cloud and,
accordingly, employ a uniform atomic density distribution in
the transverse plane.

The polaritons interact with each other through their
Rydberg components. In the simple case of contact

interactions,

V = V0

2

∫
dxdzr†(x,z)r†(x,z)r(x,z)r(x,z). (F2)

Since no photon operator explicitly appears in the interaction
operator, it is convenient to investigate only the Rydberg-
Rydberg component of the two-polariton states for the scatter-
ing calculation: |F 〉 = (�†

f )2|
〉 is two forward-propagating

polaritons, and |B〉 = (�†
b)2|
〉 is two backward-propagating

polaritons; |
〉 is the vacuum state with no intracavity photons
and all atoms in the ground state. The amplitude of forward →
backward and forward → forward scattering processes may
then be computed according to

SF,B = 〈B|V |F 〉

= 2V0 cos2 θdB

2
cos2 θdF

2

∫
dzei2(kF −kB )zρ2(z),

SF,F = 〈F |V |F 〉

= 2V0 cos4 θdF

2

∫
dzρ2(z). (F3)

We model the atomic density distribution with a Gaussian
profile,

ρ(z) = 1√
2πl2

exp

(
− z2

2l2

)
, (F4)

where l is the length of the sample. The ratio of the forward
and backward scattering amplitudes is then proportional to the
longitudinal phase-matching term in the integral. It is straight-
forward to compute that the ratio of scattering amplitudes is
(using �k ≡ kf − kb)

SF,B

SF,F

= cos2 θdB

2

cos2 θdF

2

exp(−�k2l2). (F5)

In our experiment, the length of the sample is ∼10 μm,
kf,b = kcoupling ± kc, so �k = 2kc = 4π

λc
, and λc = 780 nm,

so the backward-to-forward scattering ratio is ∼10−11000—
negligibly small. The real-world graininess of the atomic
cloud (explored below) will impose a more physical limit on
backscattering.

2. Multimode calculation with finite-range interactions

We now consider a multimode cavity where the system
behaves as massive particles in a harmonic trap [25] and
investigate the collision between spatially localized polaritons
separated transverse to the cavity axis. Under these (non-
spatially-overlapping) conditions it makes sense to consider a
finite-range interaction potential between Rydberg atoms of the
form V (�r,�r ′) = V (|�r − �r ′|). We now write out the forward- and
backward-propagating collective Rydberg creation operators
localized at �r2d transverse to the cavity axis, �

f,b†
r (�r2d ) =∫ √

ρ(z)dzeikf,bzψ
†
r (�r2d,z); here ψ

†
r (�r) promotes an atom at

location �r from the ground state to the Rydberg state, ρ(z)
is the (normalized) distribution of the atomic density along
the resonator axis, and the integral along the resonator (z)
axis reflects the fact that a polariton may be localized in the
multimode cavity transverse to the cavity axis but always
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remains delocalized longitudinally over the full extent of the
atomic cloud propagating either forward or backward in the
running-wave cavity with wave vector kf,b, respectively, in
keeping with the low-energy Floquet manifold in which the
physics occurs [6].

The Rydberg interaction Hamiltonian may then be written:
Hint = ∫

d�rd�r ′ψ†
r (�r)ψ†

r (�r ′)V (�r,�r ′)ψr (�r ′)ψr (�r).
We now consider the interaction matrix element be-

tween two forward-propagating collective Rydberg excitations
at (2d coordinates) �xA,B and either two forward- or two

backward-propagating collective excitations at (2d coordi-
nates) �xC,D . The collisional coupling takes the form



ff →(ff,bb)
AB→CD = 〈
|�f,b

r (�xC)�f,b
r (�xD)|Hint|

×�f †
r (�xA)�f †

r (�xB)|
〉, (F6)

where |
〉 is a “vacuum” configuration where all atoms are in
the ground state. Substituting in the definitions of the various
operators yields



ff →(ff,bb)
AB→CD =

∫
d�rd�r ′ dzA dzB dzC dzDeikf ((zA+zB )∓(zC+zD ))

√
ρ(zA)ρ(zB)ρ(zC)ρ(zD)V (|�r − �r ′|)

× [
δ(�r − �xA)δ(�r ′ − �xB) + δ(�r − �xB)δ(�r ′ − �xA)

][
δ(�r − �xC)δ(�r ′ − �xD) + δ(�r − �xD)δ(�r ′ − �xC)

]
, (F7)

where ∓ corresponds to forward and backward scattering, respectively. Further simplification yields



ff →(ff,bb)
AB→CD = [

δ(�xA − �xC)δ(�xB − �xD) + δ(�xA − �xD)δ(�xB − �xC)
]×

{
1 for ff → ff

exp(−�k2l2) for ff → bb

}
× Ṽ (|�xA − �xB |), (F8)

where Ṽ (�) is the effective 2D potential between collective Rydberg excitations separated by a 2D distance �, which for
V (r) = C6

r6 takes the form

Ṽ (�) = C6

64
√

π�5l5

[
e�2/4l2

π (�4 − 4�2l2 + 12l4) erfc

(
�

2l

)
− 2

√
π�l(�2 − 6l2)

]
, (F9)

which behaves approximately as ∼1.03 × C6
�6 for large separa-

tions (�  l) and ∼0.34 × C6
�5l

for small separations (� � l).

Independent of the form of Ṽ (�), it is apparent that 

ff →(bb)
AB→CD



ff →(ff )
AB→CD

=
exp(−�k2l2), akin to the case of contact interactions.

3. Backscattering due to atom-cloud graininess

To incorporate the discreteness of the atoms into the calcu-
lation from the preceding section, we replace integrals over
(coarse-grained) atomic-excitation creation operators with
sums over atom locations, resulting in an interaction operator
Hint = ∑

jk ψ
†
j ψ

†
kVjkψkψj and collective Rydberg creation

operator �
f,b†
r (�r2d ) = ∑

j∈�r2d
ψ

†
j e

ikf,bzj . Note that the last sum
is only over atoms located at �r2d , the transverse location of
the polariton; we assume that there are Natoms such atoms.
This approach circumvents the added complexity of explicitly
including the transverse wave function of the polariton in the
calculation.

The discreteness of the atoms produces a Rydberg-Rydberg
scattering amplitude with a random phase (depending upon the
particular realization of the atomic distribution). Accordingly,
computing 〈
ff →bb

AB→CD〉 using the discrete notation, and per-
forming an ensemble average, yields the result in the preceding
section. On the other hand, the r.m.s. value of the scattering

amplitude
√

〈|
ff →bb

AB→CD|2〉 reflects the discreteness of the
atomic distribution. The result is (ignoring the exponentially
suppressed term derived in the preceding section)√〈∣∣
ff →bb

AB→CD

∣∣2〉 ≈ 1

Natoms
Ṽ1(|�xA − �xB |)[δ(�xA − �xC)

×δ(�xB − �xD) + δ(�xA − �xD)δ(�xB − �xC)].

(F10)

Here V1(�) behaves like 1.2 C6
r6 for large separations

(�  l) and 0.56 C6
r5.5l0.5 for small separations. Accordingly,√〈∣∣
ff →bb

AB→CD|2〉



ff →ff

AB→CD

≈ 1

Natoms
. (F11)

It is thus clear that graininess of the atom distribution
results in collisional backscattering only once in every N2

atoms
collisions, where Natoms is the number of atoms participating
in each polariton. In short, as long as the polaritons are not
excessively localized, this effect will also be ignorable: even
in [14], the strongly interacting cavity polaritons comprise
approximately 150 atoms, so more than 104 collisions would
be required to produce a single backscattering event.

A similar (though simpler) calculation for two-level atoms
reveals that the forward-propagating collective P state couples
to the backward cavity mode with the single-atom light-matter
coupling strength g, compared to its collectively enhanced cou-
pling to the forward-cavity mode of strength G = g

√
Natoms.

Put another way, the backward linear scattering amplitude from
single atoms is smaller by a factor of

√
Natoms, compared

to a factor of Natoms for the nonlinear (Rydberg-mediated
collision) backscattering amplitude computed above. While
the linear backscattering is only suppressed by a factor of
Natoms, as opposed to N2

atoms for the collisional backscattering,
one backscattered polariton in every 150 remains a relatively
rare occurrence.

4. Phase-matched linear backscattering

It is apparent that linear backscattering is suppressed by
terms of the form

∑
l e

i(kf −kb)zl , while collisional backscatter-
ing is suppressed by terms of the form =∑

lm ei(kf −kb)(zl−zm). In
either case, if the atoms were distributed such that the summand
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always had the same sign, backscattering would be collectively
enhanced. This process is equivalent to Bragg scattering by
the atomic cloud and, as such, relies upon the atoms being
preferentially located on a lattice with a spacing which is a
multiple of λ

2 , as observed in [21]; this scenario should be
carefully avoided.

Note. In all of the above, we only consider collective states
with longitudinal momenta kf,b because the cavity Floquet
manifolds which are nearly energetically degenerate with the

EIT control fields occur only at these longitudinal momenta.
There are certainly cavity modes with other longitudinal
momenta, but they are at very different energies and so do not
couple resonantly to the P and Rydberg collective states of the
same spatial structure. As a consequence, the EIT control field
moves the polaritons out of resonance, and Rydberg-mediated
interactions do not resonantly induce scattering into these
states. This is the same mechanism that suppresses longitudinal
Doppler decoherence of cavity Rydberg polaritons [13].
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