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Metal-insulator-superconductor transition of spin-3/2 atoms on optical lattices
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We use a slave-rotor approach within a mean-field theory to study the competition of metallic, Mott-insulating,
and superconducting phases of spin-3/2 fermions subjected to a periodic optical lattice potential. In addition to
the metallic, the Mott-insulating, and the superconducting phases that are associated with the gauge symmetry
breaking of the spinon field, we identify an emerging superconducting phase that breaks both roton and spinon
field gauge symmetries. This superconducting phase emerges as a result of the competition between spin-0 singlet
and spin-2 quintet interaction channels naturally available for spin-3/2 systems. The two superconducting phases
can be distinguished from each other by quasiparticle weight. We further discuss the properties of these phases
for both two-dimensional square and three-dimensional cubic lattices at zero and finite temperatures.
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I. INTRODUCTION

Recent extraordinary progress achieved in trapping and
manipulating ultracold atomic gases provides a wonderful
opportunity for exploring quantum many-body physics. Ul-
tracold atomic systems are now considered as one of the most
promising and efficient playgrounds for studying condensed
matter and nuclear physics phenomena [1]. Recent develop-
ments in laser technology and experimental advancements
allow one to have unprecedented control over various experi-
mental parameters [2]. Effective spatial dimensionality, lattice
structure, and lattice geometry can be tuned by adjusting the
laser intensity, phase, and wavelength. The interaction between
the atoms can be controlled dramatically by adjusting the two-
body scattering length through magnetically tuned Feshbach
resonance. Through the first generation of experiments with
ultracold bosons and fermions in optical lattices, it has been
well established that these systems can exhibit a variety of
interesting phenomena [3–8]. The growing availability of
multicomponent degenerate fermionic atoms, such as 6Li
[9–11], 40K [12], 135Ba and 137Ba [13], and 173Yb [14] provides
a controllable platform to study higher spin, strongly correlated
physics that features novel phenomena.

Among multicomponent ultracold gases, high spin fermions
such as spin- 3/2 132Cs, 9Ba, 135Ba, and 201Hg attracted
much attention due to the rich collective phenomena they
can exhibit [15–26]. Spin-3/2 systems are expected to show
emerging behavior due to the competing parameters, such
as total spin-0 singlet and spin-2 quintet scattering lengths.
The total spin-1 and spin-3 channels are prohibited due to
the Pauli exclusion principle. In addition, the strong quantum
fluctuations due to the enlarged SO(5) or Sp(4) symmetry
is expected to play a bigger role in these systems [27,28].
In particular, when these spin-3/2 atoms are subjected to
a periodic lattice potential, they can show novel collective
behavior that is not obvious in spin-1/2 electronic systems. For

example, on-site four-particle clustering instabilities can leads
to quintet Cooper pairing favored by the spin-2 interaction
channel [29–34]. When the total spin-0 interaction channel is
strongly positive, the system can leads to a Mott-insulating
state with a fixed number of atoms on each lattice site. It
is the purpose of this paper to study the competition and
phase transitions among metal, Mott-insulating, and singlet
Cooper pairing states of neutral spin-3/2 fermions subjected
to a two-dimensional square lattice and a three-dimensional
cubic lattice. In order to do so, we use a slave-rotor approach
that allows us to handle the intermediate-coupling regime
where the charge fluctuations are strong [35]. In the slave-
rotor representation, the particle operator is decomposed into
a roton-bosonic field and a spinon-fermionic field. While
the roton caries the charge degrees of freedom, the spinon
caries the spin degrees of freedom. In this approach, the
metal and Mott-insulating phases are characterized by breaking
of global U(1) gauge symmetry associated with the charge
degrees of freedom. In general, the superconducting phase is
characterized by breaking of global U(1) symmetry associated
with the spinon degrees of freedom.

In addition to the obvious metal, Mott-insulator, and con-
ventional (in the sense that one gauge symmetry is broken) su-
perconducting phases arising from the competing interactions,
we find an emerging superconducting phase where both global
symmetries associated with charge and spin degrees of freedom
are broken. This superconducting phase is differentiated from
the conventional superconducting phase due to the nonzero
quasiparticle weight. Notice that we use the condensed matter
terminology, but our metal and superconducting phases are
neutral for atoms in optical lattices. Further, we investigate
each of these emerging phases at both zero temperature and
finite temperature by calculating various physical quantities.

The paper is organized as follows. In Sec. II, we introduce
a spin-3/2 model Hamiltonian for atoms on an optical lattice.
The model is a generalized Hubbard model based on micro-
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scopic s-wave atom-atom interactions. In Sec. III, we introduce
the slave-rotor approach and convert our model Hamiltonian
into a coupled rotor-spinon Hamiltonian. In Sec. IV, a decou-
pling scheme is introduced to decouple the rotor part and the
spinon part of the Hamiltonian. In Secs. V and VI, we use
a mean-field treatment to solve the rotor and spinon sectors
of the Hamiltonian. In Secs. VII and VIII, we discuss our
zero-temperature and finite-temperature formalism and their
results. In Sec. IX, we summarize and discuss our results.

II. MODEL HAMILTONIAN

We start with the generic form of the spin-3/2 neutral-
particle Hamiltonian of the lattice model [27]

H = −t
∑
〈ij〉

(c†iσ cjσ + H.c.) − μ
∑
iσ

c
†
iσ ciσ + U0

∑
i

P
†
00(i)

×P00(i) + U2

∑
i,m=±2,±1,0

P
†
2m(i)P2m(i), (1)

where P
†
Fm(i) = ∑

αβ〈F,m|α,β〉c†iαc
†
iβ are the singlet (F =

0,m = 0) and quintet (F = 2,m) pairing operators and c
†
i,σ is

the fermionic creation operator at site i, in one of the hyperfine
spin states σ = ±1/2, ± 3/2. Here

Us =
∫

d�r d�r ′w∗(�r − �Ri)w
∗(�r ′ − �Ri)

× gsw(�r ′ − �Ri)w(�r − �Ri) (2)

is the interaction parameter for the total spin S = 0 and
S = 2 channels with the contact interaction in free space
gs = 4πh̄2as/m and localized Wannier functions w(�r − �Ri)
at �Ri , where as is the s-wave scattering length for the total
spin-S channel. At half filling (i.e., on average one atom per
site), the particle-hole symmetry ensures the chemical potential
μ = (U0 + 5U2)/4 [27]. Here we assume that the atoms can
hop between nearest neighbors with hopping amplitude t ,
where 〈ij 〉 stands for the sum over only nearest neighbors.

For the purpose of studying the phase transition of metallic,
insulating, and superconducting phases, it is convenient to
rewrite the Hamiltonian in terms of the spin-3/2 on-site singlet
operator P

†
i ≡ P

†
00(i) = 1/

√
2(c†i,3/2c

†
i,−3/2 − c

†
i,1/2c

†
i,−1/2) and

the on-site density operator ni = ∑
σ c

†
iσ ciσ [36],

H = −t
∑
〈ij〉

(c†iσ cjσ + H.c.) − μ0

∑
iσ

c
†
iσ ciσ

+ U

2

∑
i

( ∑
σ

c
†
iσ ciσ − 4/2

)2

+ V
∑

i

P
†
i Pi . (3)

Here U = 2U2 and V = U0 − U2 with the shifted chemical po-
tential μ0 given by (U0 − U2)/4 at half filling. This model has
an exact SO(5) symmetry which reduces to an SU(4) symmetry
at U0 = U2 [16,27]. Notice that at this SU(4) symmetric limit,
the chemical potential at half filling reaches zero. Each major
terms in the model competes for metallic, Mott-insulating, and
singlet pairing states. At the SU(4) limit and for interactions
that are weak compared to the tunneling energy U 	 t , atoms
can gain kinetic energy by hopping through the lattice. In
the opposite limit where U 
 t , the repulsion is greater than

the gain in kinetic energy, thus the atoms will localize at
lattice sites, resulting in a Mott insulator. For V < 0, the
model naturally favors the singlet pairing state while the first
two terms compete for metallic and Mott-insulating states,
respectively. In addition to the singlet pairing, as discussed in
Ref. [25], multiparticle clustering of spin-3/2 atoms can lead
to quintet pairing states with a total spin 2. The quintet pairing
requires a negative quintet interaction parameter U2. Here we
consider a positive U2 that supports Mott-insulating states,
therefore we can safely neglect the possible quintet pairing
in the model.

For deep optical lattices, one can approximate the Wan-
nier functions by the Gaussian ground state in the local
oscillator potential and find that the tunneling amplitude t ∝
ErV

3/4
r e−2

√
Vr is exponentially sensitive to the laser intensity

V0 = ErVr that was used to create the optical lattice; here Er

is the recoil energy [37]. The interaction term Us ∝ asErV
3/4
r

is linearly sensitive to scattering lengths and relatively weakly
sensitive to the laser intensity. As a result, the model is highly
tunable in experimental setups in optical lattice environments.

III. SLAVE-ROTOR APPROACH

Slave-particle approaches are proven to be simple and
computationally inexpensive approaches to study strongly
correlated effects in many-particle systems and these ap-
proaches are capable of accounting for particle correlations
beyond standard mean-field theories. The first slave-particle
approach was proposed to study the Mott-insulator–metal
transitions [38]. There are several advantages of using slave-
particle approaches over other mean-field theories and varia-
tional methods. While most variational approaches are valid
only at zero temperature, the slave-particle approaches are
applicable at both zero and finite temperatures. Unlike other
mean-field theories, quantum fluctuations can be taken into
account by the Stratonovich-Hubbard transformation within
the slave-particle formalism [39]. Further, it has been shown
that slave-particle approaches are equivalent to a statistically
consistent Gutzwiller approximation [40–42]. Here we use
the slave-rotor approach as it is convenient for many com-
ponent systems [35]. The method is simply to introduce an
auxiliary boson to represent the local degrees of freedom in
the correlated system. The metallic solution will be described
as a correlated Fermi liquid. In the slave-rotor approach, the
original local Fock space of the problem is mapped onto a larger
local Fock space that contains as many fermions degrees of
freedom as the original one and the same number of spin-3/2
local quantum variables, one for each fermion. While a new
pseudofermion variable describes the itinerant quasiparticle
fraction of the atom, the auxiliary boson describes its localized
fraction.

The slave-rotor approach was first introduced by Florens
and Georges for the Hubbard model to study the metal–Mott-
insulator transition [35]. Later this approach was applied to
magnetic systems to study spin liquid phases [43–48]. In this
approach, the particle operator is decoupled into fermion and
bosonic rotors that carry the spin and the charge degrees
of freedom, respectively. First, the particle operator ciσ that
annihilates an atom with spin σ at site i is expressed as a
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product

ciσ = e−iθi fiσ , (4)

where the auxiliary fermion fiσ annihilates a spinon with spin
σ and the local phase degree of freedom θi conjugates to the
total (neutral) charge through the angular momentum operator
Li = −i∂/∂θi ,

[θi,Lj ] = iδij . (5)

In this representation, while the rotor operator e−iθi reduces
the site occupation by one unit, the eigenvalues of the Li

correspond to the possible number of atoms on the lattice
site. Notice that the term angular momentum is used due
to the conservation of the O(2) variable θi ∈ [0,2π ] but has
nothing to do with the physical angular momentum of the
atoms. Using the fact that rotons and spinons commute, one
can show that the number operator of the physical particles
coincides with that of the spinon,

niσ = c
†
iσ ciσ = f

†
iσ fiσ = n

f

iσ . (6)

As the eigenvalues of the angular momentum operator l ∈ Z
can have any integer values, one must impose a constraint to
truncate the enlarged Hilbert space to remove unphysical states,

Li =
∑

σ

n
f

iσ − 1. (7)

This constraint connects the charge and spin degrees of free-
dom and can be taken into account by introducing a Lagrange
multiplier in the formalism. Notice that the angular momentum
operator Li measures the particle number at each site relative
to the half filling. In terms of new variables, our Hamiltonian
in Eq. (3) becomes

H = −t
∑
〈ij〉

f
†
iσ fjσ ei(θi−θj ) − (μ0 + h)

∑
iσ

f
†
iσ fiσ

+ U

2

∑
i

L2
i + +V

∑
i

P
†
i Pi, (8)

where pairing operators in the last term now has the form
P

†
i = 1/

√
2(f †

i,3/2f
†
i,−3/2 − f

†
i,1/2f

†
i,−1/2)e2iθi . Notice that the

constraint is treated on average so that the Lagrange multiplier
h is site independent. Even though one interaction term
in the S = 2 channel simply becomes the kinetic energy for
the rotons, the pairing interaction term is still quartic and
the hopping term now becomes quartic in spinon and rotor
operators as well. In the following section, we make further
approximations to the quartic terms to get a manageable theory.

IV. DECOUPLING SPINON AND ROTORS

For spin-3/2 atoms on square or cubic lattices at half filling,
we plan to decouple the Hamiltonian in Eq. (8) by using a
mean-field description. First, we decouple the hopping term
so that the Hamiltonian H becomes the sum of independent
spinon and rotor parts: H → Hf + Hθ . This will lead to the
Hθ part being an interacting quantum XY model and the Hf

part being an interacting f -particle spinon part. We will then
make a second mean-field treatment for each part of the Hamil-
tonian to convert them into effectively noninteracting ones.
At half filling, particle-hole symmetry requires the Lagrange

multiplier h = 0 and μ0 = (U0 − U2)/4. We introduce three
mean fields as follows:

	 = |V |
2

〈f †
i,3/2f

†
i,−3/2 − f

†
i,1/2f

†
i,−1/2〉f , (9)

Qθ =
∑

σ

〈f †
iσ fjσ 〉f , (10)

Qf = 〈ei(θi−θj )〉θ , (11)

where i and j are nearest-neighbor sites. The subscript f or θ

means that the quantum and thermal expectation values must be
taken with respect to the spinon and roton sectors, respectively.
Here we make the assumptions that these expectation values
are real and independent of bond directions. One can relax these
assumptions and treat the orbital current around a plaquette.
After performing the decoupling scheme, the spinon and rotor
parts of the Hamiltonian become

Hf = −tQf

∑
〈ij〉,σ

(f †
iσ fjσ + H.c.) − μ0

∑
iσ

f
†
iσ fiσ

+	
∑

i

(f †
i,3/2f

†
i,−3/2 − f

†
i,1/2f

†
i,−1/2 + H.c.), (12)

Hθ = −tQθ

∑
〈ij〉

(X†
i Xj + H.c.) − λ

∑
i

X
†
i Xi

− 1

2U

∑
i

(i∂τX
†
i )(−i∂τXi), (13)

where Xi = eiθi and λ is the Lagrange multiplier to impose the
condition |Xi |2 = 1. At the operator level, the Hamiltonian is
now decoupled and while the spinon part is quadratic, the rotor
part is naturally interacting. While the mean-field parameter
Qf renormalizes the hopping term and is related to the effective
mass m∗ = mQf , the expectation value of the pairing operator
	 represents the pairing of spinons.

V. MEAN-FIELD TREATMENT OF THE SPINON PART

The spinon part can easily be diagonalized in the momentum
space. Performing a Fourier transform in momentum space
and then the usual Bogoliubov transformation, the spinon
Hamiltonian has the form

Hf =
∑
k,l

�l(k)η†
k,lηk,l + 1

2

∑
k,l

[
Al

kk − �l(k)
]
, (14)

where ηk,l is a four-component vector representing qua-
sispinons and �l(k) = ±

√
ε2
k + 	2 (twice) are the eigenval-

ues with l = 1,2,3,4. Here Al
kk′ is a 4 × 4 diagonal matrix

with the diagonal element εk = −Qf γk − μ0, where γk =
2t

∑
α cos kα with α = x,y,z, and the lattice momentum is

rescaled with the lattice constant. The quantum and thermal
expectation values of Eq. (9) with respect to the Hamiltonian
Hf lead to the gap equation

4

V
= − 1

Ns

∑
k

tanh(βEk/2)

Ek

, (15)

where Ek =
√

ε2
k + 	2 with the total number of lattice sites

Ns and dimensionless inverse temperature β. Summing over
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nearest neighbors and then calculating the expectation value
in Eq. (10) with respect to Hf gives

ηtQθ = 1

Ns

∑
k,σ

γknk, (16)

where η is the number of nearest neighbors and the average
occupation nk is given by

nk = 1

2
− εk

2Ek

tanh(βEk/2). (17)

The two self-consistent equations derived in Eqs. (15) and (16)
must be solved with Eq. (11), which can be written as Qf =
〈X†

i Xj 〉θ .

VI. MEAN-FIELD TREATMENT OF THE ROTON PART

The calculation of Qf requires special attention as X bosons
can undergo Bose-Einstein condensation. The metallic (or
band-insulating) phase corresponds to the ordering of rotors
and thus spontaneously breaks the O(2) symmetry. The rotor
disordered phase corresponds to the Mott-insulating phase
given that the system is nonsuperfluid. Note that the metal
to Mott insulator transition is driven by spontaneous global
U(1) symmetry associated with the charge degrees of freedom.
However, the Mott transition emerging from the slave-rotor
approach does not break any spin rotational symmetry, thus
the transition is into a nonmagnetic phase.

The final self-consistent equation can easily be calculated
using a functional integral approach to the roton part of the
Hamiltonian with the constraint equation |Xi |2 = 1. Introduc-
ing the rotor Green’s function Gθ (k,τ ) = 〈Xk(τ )X†

k(0)〉, the
constraint equation becomes

1

Ns

∑
k

1

β

∑
n

Gθ (k,iνn) = 1, (18)

where νn = 2nπ/β are the bosonic Matsubara frequencies. In
a coherent-state path-integral representation, the rotor Green’s
function can be written as

Gθ (k,τ ) =
∫ ∏

ki

dXkidX∗
ki

2πi
X(τ )X∗

k (0)e−Sθ∫ ∏
ki

dXkidX∗
ki

2πi
e−Sθ

, (19)

where the time index i labeling runs from 0 to ∞, corre-
sponding to τ = 0 and τ = β, respectively. The action in
the momentum space associated with the rotor part of the
Hamiltonian is given by

Sθ =
∫ β

0
dτ

∑
k

X∗
k

(
− 1

2U
∂2
τ − λ − Qθγk

)
Xk. (20)

Following the standard path-integral formalism, the rotor
Green’s function for the nonzero wave vector is given by

Gθ (k,iνn) = [
ν2

n/U + λ − Qθγk

]−1
. (21)

Note that, following Ref. [35], a renormalization of U → U/2
has been performed to preserve the exact atomic limit. Then

writing

1

β

∑
n

Gθ (k,iνn) = U

β

∑
n

1

iνn + √
U (λ − Qθγk)

× 1

−iνn + √
U (λ − Qθγk)

(22)

and performing a suitable contour integration, we find

1

β

∑
n

Gθ (k,iνn) = U

2
√

U (λ − Qθγk)

× coth

(
β

2

√
U (λ − Qθγk)

)
. (23)

Combining this with Eq. (18) and separating the k = 0 term
leads to the constraint equation

1 = Z + 1

2Ns

∑
k �=0

√
U

λ − Qθγk

× coth

(
β

2

√
U (λ − Qθγk)

)
, (24)

where 0 � Z � 1 is the rotor condensate amplitude which
represents the quasiparticle weight. As the rotor condensation
indicates the transition into the metallic phase, a nonzero
quasiparticle weight Z represents the metallic state. In the
noninteracting limit Z → 1. Finally, summing over nearest
neighbors of Eq. (11) and transforming into Fourier space leads
to

ηtQf = ηtZ + 1

Ns

∑
k �=0

γk

β

∑
n

Gθ (k,iνn). (25)

Completing the contour integration, our final self-consistent
equation becomes

ηtQf = ηtZ − 1

2Ns

∑
k �=0

γk

√
U

λ − Qθγk

× coth

(
β

2

√
U (λ − Qθγk)

)
. (26)

This Qf is the mass enhancement factor of the quasiparticle,
thus it is proportional to the effective mass of the quasiparticle
m∗ = Qf m, where m is the bare mass of the free atoms. As
the second term in Eq. (26) is negative, mass enhancement
is always greater than the quasiparticle weight, Qf > Z at
the saddle point level, and remains finite even away from the
metallic phase where Z vanishes.

VII. ZERO-TEMPERATURE FORMALISM AND
QUANTUM PHASE TRANSITIONS

For spin-3/2 atoms on a d-dimensional lattice at zero
temperature, four self-consistent equations can be largely
simplified. First, by introducing the d-dimensional density of
states D(ε) = 1

Ns

∫
ddk

(2π)d δ(ε + γk) and setting energy units to
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(a) (b)

FIG. 1. Zero-temperature phase diagram showing four different phases: M, metallic phase; MI, Mott-insulating phase; Z-SC, supercon-
ducting phase with nonzero quasiparticle weight; and SC, superconducting phase with zero quasiparticle weight. (a) Phase diagram for the
two-dimensional square lattice. (b) Phase diagram for the three-dimensional cubic lattice. The metal phase is characterized by a global U(1)
symmetry-broken state associated with the rotor degrees of freedom and both superconducting phases (SC and Z-SC) are characterized by the
global U(1) symmetry-broken states associated with the spinon degrees of freedom. The Z-SC phase shows additional U(1) symmetry breaking
associated with the rotor sector.

be t = 1, our self-consistent equations become

4

V
= −

∫
dε D(ε)

1√
(Qf ε − μ0)2 + 	2

, (27)

ηQθ = −
∫

dε D(ε)ε

(
1

2
− Qf ε − μ0

2
√

(Qf ε − μ0)2 + 	2

)
, (28)

1 = Z + 1

2

∫
dε D(ε)

√
U

λ + Qθε
, (29)

and

ηQf = ηZ − 1

2

∫
dε D(ε)ε

√
U

λ + Qθε
, (30)

where the nearest-neighbor coordination number is η and these
self-consistent equations are valid only at zero temperature
for a half-filled system whose chemical potential is given by
μ0 = (U0 − U2)/4.

Obviously, the superconducting phase is characterized by
the nonzero singlet pairing order parameter 	. The gap equa-
tion gives nonzero solutions for the pairing order parameter for
all V < 0, thus the superconducting transition line in U0-U2

parameter space is given by the equation U0 = U2. This is the
SU(4) symmetric line which can be alternatively represented
by μ0 = 0. In the metallic phase rotors are condensed so that
the nonzero value of the condensate amplitude or the quasipar-
ticle weight Z signifies the metallic state. In the metallic phase,
a macroscopic fraction of rotors occupies the lowest energy
El = −ηtQθ and the Lagrange multiplier or the rotor chemical
potential λ = −El ≡ ηtQθ remains constant. The quantum
phase transition from the metallic state to the Mott-insulating
state is characterized by the vanishing quasiparticle weight
Z. In the Mott-insulating phase the quasiparticle weight Z

is zero and the rotor chemical potential λ > ηtQθ needs to
be determined self-consistently. The metal-insulator transition
line can be determined by setting 	 = 0, Z = 0, and λ = ηtQθ

in self-consistent equations presented above.
For a two-dimensional square lattice, the density of states

can be approximated by a closed form using the elliptic integral
of the first kind K: D(ε) = 1

2π2 K(1 − ε2/16) for −4t � ε �

4t and zero otherwise. Therefore, for both metal and Mott-
insulating phases, where 	 = 0, Qθ has an analytical form.
Evaluating the integral in Eq. (28) for a two-dimensional square
lattice, we find

Qθ = 1

2π2
K

(
1 − μ2

0/16
)[

16 − μ2
0

]
. (31)

Note that the chemical potential μ0 = (U0 − U2)/4 at half
filling, thus Qθ depends on the interaction parameters. This
is in contrast to the regular Hubbard model with spin-1/2
particles where Qθ = 4/π2 is independent of the interac-
tion [49]. Here, at the SU(4) limit where μ0 = 0, we find Qθ =
8/π2, where the extra factor 2 comes from the extra spin for
the spin-3/2 system. For a three-dimensional cubic lattice, we
numerically evaluate the Qθ value. Rearranging Eq. (30), we
find a self-consistent equation for the critical U2 value for the
metal-insulator transition

UCMI
2 = 16QC

θ

{∫
dε D(ε)√
1 + ε/4

}−2

, (32)

where QC
θ = Qθ (U2 = UCMI

2 ) depends on the critical interac-
tion through the chemical potential.

Zero-temperature phase diagrams for both square and cubic
lattices in the U0-U2 plane are given in Fig. 1. There are four
different phases at half filling: a metallic phase (M) at smaller
values of U2 < U0, a Mott-insulating phase (MI) at larger
values of U2 < U0, and two distinct superconducting phases
(Z-SC and SC) for larger values of U2 > U0. In the Z-SC phase
quasiparticle weight Z is nonzero and it reaches zero at the
SC–Z-SC boundary breaking the O(2) rotor symmetry. The
boundary of the Z-SC and SC phases is determined by solving
our self-consistent equations with the conditions Z = 0 and
λ = ηtQθ . With our numerical calculations, we find that Qf

remains constant along the Z-SC–SC boundary, giving Qf ≈
0.255 for a two-dimensional square lattice and Qf ≈ 0.104 for
a three-dimensional cubic lattice. This is an emergent Z-SC
phase in which both U(1) symmetries associated with the
rotor degrees of freedom and spinon degrees of freedom are
broken.
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(a) (b)

FIG. 2. Zero-temperature physical properties as a function of U2 at (a) U0 = 6t and (b) U0 = 2t . (a) The quasiparticle weight Z (green line)
continuously and monotonically decreases from unity to zero, showing the metal to Mott insulator transition at U2 ≈ 3.8t . For 3.8t � U2 � 6t ,
both the quasiparticle weight and the pairing order parameter remain zero, showing the Mott-insulating phase. For U2 > 6t , the singlet pairing
order parameter 	 (blue line) becomes finite, indicating the Mott insulator to superconductor transition. (b) Only the metallic phase exists for
low values of U2 showing nonzero Z and zero 	. For 2t � U2 � 3.3t , the existence of the Z-SC phase is evident as both Z and 	 have nonzero
values. Notice for both cases that, while Qθ (gray line) is continuous at each phase boundary, Qf shows discontinuities. For clarity, the pairing
order parameter 	 has been increased by a factor of 5 in these figures.

For the two-dimensional square lattice, the quasiparticle
weight Z, the mass enhancement Qf , the average kinetic
energy of the spinons Qθ , and the pairing order parameter 	

are shown at fixed values of U0 = 6t and U0 = 2t in Fig. 2.
As can be seen from Fig. 2(a), the quasiparticle weight is
unity at a noninteracting level of rotors and then reaches
zero at the metal-insulator boundary. Meantime, the supercon-
ducting order parameter picks a finite value at the insulator-
superconductor boundary and increases as one increases the
interaction parameter U2 beyond U0. Both the quasiparticle
weight and superconducting order parameter remain at zero in
the intermediate Mott-insulating phase. Figure 2(b) shows the
variation of parameters across the quantum phase transition
from metallic to Z-SC to SC phases. For a fixed value of
U0 = 2t , the metallic phase exists for low values of U2 � 2,
indicating a nonzero quasiparticle weight Z and zero pairing
order parameter 	. For intermediate values of U2, both the
quasiparticle weight and pairing order parameter become
nonzero and thus represent the Z-SC phase. As can be seen
from Fig. 2(b) in the SC phase, while the quasiparticle weight
vanishes, the pairing order parameter remains nonzero beyond
U2 ≈ 3.3t . Notice that both the mass enhancement and average
kinetic energy of the rotons are nonzero across all quantum
phase transitions; however, Qf shows small discontinuities
at the quantum phase transitions. This zero-temperature dis-
continuity of the mass enhancement factor Qf is an artifact
of the mean-field theory and it can be recovered by adding
fluctuations over the mean fields, as discussed in Sec. IX.

VIII. FINITE-TEMPERATURE PHASE TRANSITIONS

For two-dimensional fermions on a lattice, the finite-
temperature phase transitions are absent, but one can expect to
have crossovers. For three-dimensional fermions on a lattice,
the finite-temperature phase transitions are not forbidden. We
numerically solve the finite-temperature self-consistent equa-
tions for the cubic lattice. As a demonstration, we show some

finite-temperature properties of the metallic phase and Z-SC
phase in Fig. 3. Figure 3(a) shows the temperature dependence
of the quasiparticle weightZ, the mass enhancement factorQf ,
and the average kinetic energy Qθ in the metallic phase where
the interaction parameters are fixed at U2 = 2t and U0 = 4t .
Unlike the zero-temperature metal–Mott-insulator transition,
the finite-temperature metal-insulator phase transition is found
to be of first order, thus Z shows a discontinuity at the
transition. However, we find thatQf andQθ remain continuous
at the transition. Figure 3(b) shows the temperature dependence
of the singlet pairing order parameters 	, Qf , and Qθ for the
interaction parameters U2 = 1.5t and U0 = 0.5t . The ground
state for these interaction parameters is the Z-SC phase where
both the singlet pairing order parameter 	 and the quasiparticle
weight Z are nonzero. The continuously vanishing singlet
order parameter at a high temperature indicates the second-
order thermal transition from the Z-SC phase.

IX. DISCUSSION AND CONCLUSION

As discussed above, all zero-temperature quantum phase
transitions are second order; however, we find a discontinuity
in the mass enhancement factor Qf when the transition is into
a Mott-insulating phase. On the other hand, while the finite-
temperature thermal phase transition into the Mott-insulating
phase is first order, we do not find any discontinuity in the mass
enhancement factor. In our approach, the zero-temperature
Mott transition is continuous, thus one expects continuous
destruction of the metallic Fermi surface. This would lead to a
metal having instabilities toward a magnetic Mott insulator due
to the Fermi surface nesting, though we have not considered
any symmetry-breaking insulating states in our approach.

The two superconducting phases discussed above are dis-
tinguished for two main reasons. In the Z-SC phase, both the
rotor and the pair of spinons are in the condensate. As a result,
the broken U(1) gauge symmetry in the rotor sector gives a
nonzero quasiparticle weight similar to that of the metallic
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(a) (b)

FIG. 3. Finite-temperature properties of (a) the metallic phase and (b) the Z-SC phase of fermions in a three-dimensional cubic lattice.
(a) Quasiparticle weight Z as a function of temperature kBT /t in the metallic phase. The interaction parameters were chosen as U2 = 2t and
U0 = 4t . The quasiparticle weight (green line) monotonically decreases from the ground-state metallic phase to the Mott-insulating phase at
kBT /t ≈ 0.58t . Notice that the finite-temperature metal-insulator transition is first order, showing a discontinuity of Z at the transition. At the
transition, both Qθ and Qf are finite and continuous. (b) Superconducting order parameter 	 as a function of temperature kBT /t in the Z-SC
phase close to the Z-SC–SC boundary. The interaction parameters were chosen as U2 = 1.5t and U0 = 0.5t . While 	 continuously decreases
(blue line) from a finite value to zero, showing a second-order thermal phase transition, both Qf and Qθ values remain almost constant as a
function of temperature.

phase. In the SC phase, the rotors give a nonzero charge gap
δc = 2

√
U (λ − ηtQθ ), similar to that of the Mott-insulating

phase.
In the present work, we have decoupled the rotor and

spinon parts of the Hamiltonian using a mean-field theory.
We do not expect the inclusion of fluctuation to alter the
qualitative features. However, the physical observable can
be slightly different once the direct coupling between the
rotors and spinons is restored. Fluctuations can easily be
included by going beyond the saddle-point approximation.
From the transition from the metal phase or the Z-SC phase,
the quasiparticle weight vanishes, however the effective spinon
hopping tQf is finite. As a result, the effective mass does
not diverge at these transitions. We believe this is an artifact
of our mean-field theory. In the presence of fluctuation of a
gauge field, the zero-sound Goldstone mode will combine with
a gauge boson through the Anderson-Higgs mechanism. We
believe that this would recover our metal phase as a proper
Fermi liquid phase with a diverging Fermi liquid mass [50].
In addition to the mean-field approximation, we treat our
constraint globally and assume that all parameters are bond
independent. We do not expect these approximations to change
any qualitative features, especially for the square and cubic
lattices discussed.

On the experimental side, spin-3/2 alkaline-earth atoms,
such as 135Ba and 137Ba, can be promising candidates for
observing the Z-SC emerging phase. Even though the full
spectrum of scattering lengths is not available yet, it is
predicted that both scattering lengths a0 and a2 should have
similar values [25,51]. Therefore, we believe experiments
can find a suitable parameter window in the phase diagram
to observe the Z-SC phase even if scattering lengths can-
not be independently tuned. On the other hand, the pair-
ing phenomena and the emerging phase discussed here are
much more general concepts associated with many-body
systems. Thus, the Z-SC phase must exist in other many-

body systems where competing interactions are taking place.
One such example is spin-3/2 rare-earth-based half-Heusler
semimetals [52–57]. Another promising electronic compound
is rubidium-doped fullerids [58]. Though on-site interaction
is repulsive, the effective negative Hund coupling due to
phonon screening effects can lead to a pairing of elec-
trons [59,60]. Indeed, a recent experiment finds a phase
referred to as a Jahn-Teller metal in rubidium-doped ful-
lerids [58]. Perhaps the superconducting critical temperature
enhancement close to the tricritical point of a paramagnetic
metal, a paramagnetic insulator, and a superconducting phases
indicates the Z-SC phase in this rubidiumdoped fullerid
compound [61].

The superfluid density, charge gap, and quasiparticle weight
all can be measured with currently available experimental
techniques in cold gas experiments. For example, the mo-
mentum distribution of the atoms can be probed by the
absorption imaging after a period of ballistic expansion or in
trap in situ imaging [6]. The charge gap can be detected by
measuring the fraction of atoms residing in a lattice site [5].
The superconducting order can be probed by the momentum-
resolved Bragg spectroscopy [62]. In addition, the periodic
forcing can also be used as a detection and manipulation tool
for many-body states of ultracold atomic quantum gases in
optical lattices [63]. Though we neglected it in this study, the
underlying harmonic trapping potential present in all cold gas
experiments causes the density to monotonically vary across
the lattice. As a result, the edge of the trap will not be at
half filling. As the metallic phase is favorable over the Mott-
insulating phase away from half filling, we expect the metallic
phase to dominate over the Mott-insulating phase in the phase
diagram.

In conclusion, we have studied the competition of emerg-
ing phases of spin-3/2 fermions subjected to a periodic
lattice potential using a slave-rotor approach. In addition to
the well-known Fermi liquid metallic phase, Mott-insulating
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phase, and singlet pairing superconducting phase, we dis-
covered the possibility of having an emerging superconduct-
ing phase due the competing interactions. The supercon-
ducting phase is characterized by the global U(1) broken
symmetries with respect to both roton and spinon fields.
Experimentally, this phase can be differentiated from the
regular superconducting phase by its nonzero quasiparticle
weight. Further, we have calculated properties of these phases
for fermions in both a two-dimensional square lattice and
three-dimensional cubic lattice geometries at zero and finite
temperatures.
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