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Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate
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We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled
three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational
approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons
in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric
for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a
fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The
present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for
generating the moving solitons.
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I. INTRODUCTION

A bright soliton, which arises due to a cancellation of the
effects produced by nonlinear and dispersive terms in the
Hamiltonian, is a self-reinforcing solitary wave which main-
tains its shape while moving at a constant speed. Studies on
the solitons have been done in a broad array of systems which
include, among others, water waves, nonlinear optics [1],
and ultracold quantum gases including spinor Bose-Einstein
condensates (BECs) [2–6].

The spin-orbit (SO) coupling, the coupling between the
spin and the center-of-mass motion of the atoms, is absent in
the neutral atoms [7]. Nevertheless, a suitable modification of
the atom-light interaction can generate a non-Abelian gauge
potential [8], thus subjecting the neutral atoms to the SO
coupling. Guided by this idea, Lin et al. [9] experimentally
generated an SO coupling with equal strengths of Rashba [10]
and Dresselhaus [11] terms in a BEC of 87Rb in the two-
component pseudo-spin-1/2 configuration, where one of the
three spin components of the hyperfine spin-1 state of 87Rb was
removed from the experiment. This was achieved by dressing
two of 87Rb spin states from within its ground electronic
manifold (5S1/2,F = 1) with a pair of lasers [9]. More recently,
SO coupling has been realized experimentally by Campbell
et al. [12] with the three hyperfine spin components of 87Rb
atoms. A lot of experimental studies have been done on SO-
coupled BECs in recent years [13].

It has been shown theoretically that the SO-coupled quasi-
one-dimensional (quasi-1D) [14,15], quasi-two-dimensional
(quasi-2D) [16,17], and three-dimensional (3D) [18] pseudo-
spin-1/2 BECs can support solitonic structures. Bright solitons
in SO-coupled three-component quasi-1D spin-1 [19,20] and

*sandeep@iitrpr.com
†adhikari44@yahoo.com; http://www.ift.unesp.br/users/adhikari

five-component spin-2 [21] BECs have also been theoretically
investigated in addition to those in the three-component quasi-
2D spin-1 BEC [22].

In this paper, we demonstrate stable and metastable station-
ary and moving 3D vortex-bright solitons in a three-component
SO-coupled hyperfine spin-1 BEC using a variational ap-
proximation and numerical solution of the mean-field Gross-
Pitaevskii (GP) equations [23]. The effect of SO coupling
on both an attractive and a weakly repulsive spinor BEC is
to introduce attraction so as to form a soliton [17]. We find
metastable vortex-bright solitons for a0 + 2a2 < 0, where a0
and a2 are the s-wave scattering lengths in the total spin 0
and 2 channels. The solitons can be stable for a0 + 2a2 � 0.
In the former case, the spinor BEC without SO coupling is
attractive, and the collapse cannot be stopped unconditionally
thus producing only metastable solitons in the SO-coupled
BEC for the number of atoms smaller than a critical number
as in the case of a single-component quasi-one-dimensional
attractive BEC [3,24]. In the latter case, the spinor BEC
can be purely repulsive and, because of this repulsion, it is
possible to stop the collapse to form a stable soliton. In general,
the implementation of SO coupling in the three-component
spin-1 BEC is more complicated than the same in the two-
component pseudo-spin-1/2 BEC from both theoretical [25]
and experimental [12] points of view. Thus the present study
goes beyond a previous investigation of 3D metastable bright
solitons in pseudo-spin-1/2 BEC [18]. Moreover, the parameter
domain (a0 + 2a2 � 0) that leads to stable 3D vortex-bright
solitons in a SO-coupled spin-1 BEC is additionally considered
here in this context.

We observe that for small strengths of SO coupling, which
we use in this investigation, the ground-state vortex-bright
soliton in the polar domain (a2 > a0) has an antivortex and
a vortex in the mf = +1 and mf = −1 components, respec-
tively, and a Gaussian-type structure in the mf = 0 component.
The phase singularities in the mf = ±1 components always
coincide, leading to axisymmetric density profiles for the
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component wave functions. We use phase-winding numbers
[22] (angular momenta per particle in an axisymmetric system)
of the three-component wave functions to denote a vortex
or an antivortex [26]. In terms of phase-winding numbers
associated with the spin components mf = +1,0,−1 [26], this
ground-state vortex-bright soliton in the polar domain can be
termed as symmetric and denoted (−1,0,+1), corresponding
to an antivortex in component mf = +1 and a vortex in
component mf = −1. In the ferromagnetic domain (a0 > a2),
in addition to the axisymmetric vortex-bright solitons, asym-
metric vortex-bright solitons with noncoinciding phase sin-
gularities in mf = ±1 can also emerge as the ground state
below a critical value of spin-exchange interaction parameter.
In addition to this, we have also identified stationary excited
axisymmetric vortex-bright solitons of type (0,+1,+2) in both
polar and ferromagnetic domains. Besides stationary vortex-
bright solitons, we have also investigated the dynamically
stable moving vortex-bright solitons of the SO-coupled spin-1
BEC using the Galelian-transformed coupled GP equations
[14,17,19,20].

The paper is organized as follows. In Sec. II A, we describe
the mean-field coupled Gross-Pitaevskii (GP) equations with
Rashba SO coupling used to study the vortex-bright solitons
in a spin-1 BEC. This is followed by a variational analysis of
the stationary axisymmetric (−1,0,+1) vortex-bright solitons
in Sec. II B. In Sec. III, we provide the details of the numerical
method used to solve the coupled GP equations with SO
coupling. We discuss the numerical results for axisymmetric
vortex-bright solitons in Sec. IV A, asymmetric solitons in
Sec. IV B, and moving solitons in Sec. IV C. Finally, in Sec. V,
we give a summary of our findings.

II. SPIN-ORBIT-COUPLED BEC
VORTEX-BRIGHT SOLITON

A. Mean-field equations

For the study of a 3D vortex-bright soliton, we consider a
trapless spin-1 spinor BEC. The single-particle Hamiltonian
of the BEC with Rashba [10] SO coupling is [27]

H0 = p2
x + p2

y + p2
z

2m
+ γpx�x + γpy�y + γpz�z, (1)

where px = −ih̄∂/∂x, py = −ih̄∂/∂y, and pz = −ih̄∂/∂z

are the momentum operators along the x, y, and z axes,
respectively,m is the mass of each atom, and�x ,�y , and�z are
the irreducible representations of the x, y, and z components
of the spin matrix, respectively,

�x = 1√
2

⎛⎜⎝0 1 0

1 0 1

0 1 0

⎞⎟⎠, �y = 1√
2i

⎛⎜⎝ 0 1 0

−1 0 1

0 −1 0

⎞⎟⎠,

�z =
⎛⎝1 0 0

0 0 0
0 0 −1

⎞⎠, (2)

and γ is the strength of SO coupling. In the mean-field
approximation, the SO-coupled 3D spin-1 BEC of N atoms is
described by the following set of three coupled GP equations,

written here in dimensionless form, for different spin compo-
nents mf = ±1,0 [23,28]:

i
∂ψ±1(r)

∂t
= Hψ±1(r) ± c1Fzψ±1(r) + c1√

2
F∓ψ0(r)

− iγ√
2

(
∂ψ0

∂x
∓ i

∂ψ0

∂y
±

√
2
∂ψ±1

∂z

)
, (3)

i
∂ψ0(r)

∂t
= Hψ0(r) + c1√

2
[F−ψ−1(r) + F+ψ+1(r)]

− iγ√
2

(
∂ψ1

∂x
+ i

∂ψ1

∂y
+ ∂ψ−1

∂x
− i

∂ψ−1

∂y

)
, (4)

where r ≡ {x,y,z}, F ≡ {Fx,Fy,Fz} is a vector whose three
components are the expectation values of the three spin
operators over the multicomponent wave function, and is called
the spin-expectation value [28]. Also,

F± ≡ Fx ± iFy =
√

2[ψ∗
±1(r)ψ0(r) + ψ∗

0 (r)ψ∓1(r)], (5)

Fz = n+1(r) − n−1(r), H = −∇2

2
+ c0n(r), (6)

c0 = 4Nπ (a0 + 2a2)

3l0
, c1 = 4Nπ (a2 − a0)

3l0
, (7)

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (8)

where nj (r) = |ψj (r)|2 with j = ±1,0 are the component
densities, n(r) = ∑

j nj (r) is the total density, and the asterisk
denotes the complex conjugate. The normalization condition
satisfied by the component wave functions ψj is∫ ∑

j

nj (r)dr = 1. (9)

All quantities in Eqs. (3)–(8) are dimensionless. This is
achieved by writing length, density, time, and energy in units of
l0, l−3

0 , ml2
0/h̄, and h̄2/(ml2

0 ), respectively, where l0 is a scaling
length and can be taken as l0 = 1 μm. The energy of an atom
in dimensionless units is

E =
∫

dr

⎡⎣1

2

⎧⎨⎩
1∑

j=−1

|∇ψj |2 + (c0n
2 + c1|F|2)

⎫⎬⎭
− iγ√

2
ψ∗

0

(
∂ψ+1

∂x
+ ∂ψ−1

∂x

)
+ γ√

2
ψ∗

0

(
∂ψ+1

∂y
− ∂ψ−1

∂x

)
− iγ√

2
(ψ∗

+1 + ψ∗
−1)

∂ψ0

∂x
− γ√

2
(ψ∗

+1 − ψ∗
−1)

∂ψ0

∂y

− iγ

(
ψ∗

+1
∂ψ1

∂z
− ψ∗

−1
∂ψ−1

∂z

)⎤⎦. (10)

It is instructive to analyze the SO-coupled system in the
absence of interactions, i.e., c0 = c1 = 0. Then, using Eqs. (1)
and (2), the single-particle SO-coupled Hamiltonian of the
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system is

H0 =

⎛⎜⎜⎝
−∇2

2 − iγ ∂
∂z

− iγ√
2
∂− 0

− iγ√
2
∂+ −∇2

2 − iγ√
2
∂−

0 − iγ√
2
∂+ −∇2

2 + iγ ∂
∂z

⎞⎟⎟⎠, (11)

where ∂± = ( ∂
∂x

± i ∂
∂y

). The minimum eigenenergy of the

single-particle Hamiltonian H0 is −γ 2/2 and corresponds to

|k| ≡
√

k2
x + k2

y + k2
z = γ , and the (unnormalized) eigenfunc-

tion corresponding to this energy is

� ∼ 1

2

⎛⎜⎝e−iϕ(|k| − kz)2/k2
ρ

−√
2(|k| − kz)/kρ

eiϕ

⎞⎟⎠ei(kxx+kyy+kzz), (12)

where ϕ = tan−1(ky/kx) is the angle made by the projection of

k on the xy plane with the x axis and kρ =
√

k2
x + k2

y . A general

circularly symmetric solution can be obtained by considering
the superposition of degenerate eigenfunctions with fixed |kz|
and all possible values of ϕ, i.e.,

�gen ∼
∑

kz=|kz|,−|kz|

∫ 2π

0

1

2

⎛⎜⎝e−iϕ(|k| − kz)2/k2
ρ

−√
2(|k| − kz)/kρ

eiϕ

⎞⎟⎠
× ei(kρx cos ϕ+kρy sin ϕ+kzz)dϕ (13)

∼
∑

kz=|kz|,−|kz|

⎛⎜⎝πei(kzz+θ)J1(kρρ)(|k| − kz)2/k2
ρ

πeikzzJ0(kρρ)(|k| − kz)/kρ

−πei(kzz−θ)J1(kρρ)

⎞⎟⎠, (14)

where θ = tan−1(y/x), ρ =
√

x2 + y2, and J0(kρρ) and
J1(kρρ) are the Bessel functions of the first kind of the
order of 0 and 1, respectively. In the asymptotic region, ρ →
∞, J0(kρρ) ∼ √

2/(πkρρ) cos(kρρ − π/4) and J1(kρρ) ∼√
2/(πkρρ) sin(kρρ − π/4) demonstrate the oscillatory nature

of the wave function. The actual values of kρ and kz will depend
upon the full minimization of energy functional (10) satisfying
k2
ρ + k2

z = γ 2.

B. Vortex-bright soliton

We demonstrate the existence of two types of metastable and
stable low-energy stationary axisymmetric vortex-bright soli-
tons, classified using phase-winding numbers as (−1,0,+1)
and (0,+1,+2), and an asymmetric vortex-bright soliton. Out
of the former two, the (−1,0,+1) vortex-bright soliton has the
lower energy. We find that in the polar domain (c1 > 0), the
(−1,0,+1) vortex-bright soliton has coinciding phase singu-
larities in the mf = ±1 components, which results in axially
symmetric density profiles of the component wave functions
and is the ground state. In the ferromagnetic domain (c1 < 0),
below a critical c1, in addition to (−1,0,+1) and (0,+1,+2)
vortex-bright solitons, we observe the emergence of ground-
state vortex-bright solitons in which an antivortex in the mf =
+1 component does not coincide with a vortex in the mf = −1

component. This results in an asymmetric density profile for
the component wave functions. The higher-energy (0,+1,+2)
vortex-bright solitons obtained numerically are always axially
symmetric due to coinciding phase singularities. Equations
(3) and (4) are invariant under the transformations: y → −y,
z → −z, and ψmf

(x,y,z) → ψ−mf
(x,−y,−z). Under these

transformations, a symmetric (−1,0,+1) vortex-bright soliton
transforms to itself, whereas a symmetric (0,+1,+2) vortex-
bright soliton transforms to a (−2,−1,0) vortex-bright soliton.
This implies that associated with the (0,+1,+2) vortex-bright
soliton, there is always a degenerate (−2,−1,0) vortex-bright
soliton.

Numerically, we find that the longitudinal magnetiza-
tion M = ∫

[n+1(r) − n−1(r)]dr is zero for the symmetric
(−1,0,+1) and asymmetric vortex-bright solitons, whereas
it is, in general, nonzero for the (0,+1,+2) solitons. The
(−1,0,+1) vortex-bright soliton with zero magnetization M
can be analyzed using the following variational ansatz [18]:

ψ±1 = (A1σz ∓ i
√

2Bz)
ρe

− ρ2

2σ2
r

− z2

2σ2
z

∓i tan−1 y

x

π3/4σ 2
r σ

3/2
z

, (15)

ψ0 = i
A2

π3/4χr
√

χz

e
− ρ2

2χ2
r

− z2

2χ2
z , (16)

where A1,A2,B are the variational amplitudes and σr,σz,χr ,
and χz are the variational widths of the Gaussian ansatz.
Normalization condition (9) imposes the following constraint:

2A2
1 + 2B2 + A2

2 = 1, (17)

on the variational parameters A1,A2, and B. The variational
energy of the soliton, obtained by substituting Eqs. (15) and
(16) in Eq. (10), is

E = 2
(
A2

1 + B2
)

σ 2
r

+ A2
1 + 3B2

2σ 2
z

+ A2
2

4

(
2

χ2
r

+ 1

χ2
z

)

+ c0

π3/2

[
A4

2

4
√

2χzχ2
r

+
(
4A4

1 + 4A2
1B

2 + 3B4
)

8
√

2σ 2
r σz

+ 2A2
2χ

2
r

{
B2χ2

z + A2
1

(
σ 2

z + χ2
z

)}(
σ 2

z + χ2
z

)3/2(
σ 2

r + χ2
r

)2

]

− 16A1A2γ σ 2
r χr

√
σzχz(

σ 2
r + χ2

r

)2
√(

σ 2
z + χ2

z

) − 2
√

2
A1Bγ

σz

. (18)

This energy is independent of c1 as F(r) = 0 for a symmetric
(−1,0,+1) vortex-bright soliton, which is consistent with the
choice of variational ansatz in Eqs. (15) and (16). Energy (18)
can be minimized with respect to all variational parameters
subject to the constraint (17) to obtain the minimum-energy
ground state.

To understand the role of SO coupling in the creation
of self-trapped vortex-bright solitons, let us assume that the
widths of the component wave function are of the same
order of magnitude, say, σr = σz = χr = χz ≈ σ . In this case,
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FIG. 1. The variational energy (19) of a self-trapped 3D vortex-
bright soliton as a function of width σ for the parameters c0 = 1,

−10,−12,c1 > 0,γ = 1,2. A metastable vortex-bright soliton corre-
sponds to a local minimum in energy as appears for c0 < 0. A stable
vortex-bright soliton can appear for c0 � 0. All quantities in this and
the following figures are dimensionless.

energy (18) becomes

E =
[(

10A2
1 + 3A2

2 + 14B2
)

4σ 2

]
−
[

2
√

2A1(A2 + B)γ

σ

]

+
{

c0
4A4

1 + 2A4
2 + 2A2

2B
2 + 3B4 + 4A2

1

(
A2

2 + B2
)

8
√

2π3/2σ 3

}

≡
[
C1

σ 2

]
−
(

γC2

σ

)
+
{

c0C3

σ 3

}
, (19)

where C1,C2,C3 are the functions of A1 and B (as A2 itself
is a function of A1 and B) and are all greater than zero. If we
let A1 and B assume all possible real values greater than zero,
then the total energy has a local minimum at

σ =
C1 +

√
C2

1 + 3γ c0C2C3

γC3
, (20)

provided γ > 0 and C2
1 + 3γ c0C2C3 > 0, and the latter in-

equality implies that the dispersive effects are strong enough
to prevent the collapse of the system.

To explicitly see how a metastable (stable) self-trapped sym-
metric (−1,0,+1) vortex-bright soliton corresponds to local
(global) minimum of energy, we minimize energy (18) and
calculate all seven variational parameters: σr,σz,χr ,χz,A1,A2,
and B. Using the values of A1,B, and A2 so obtained, we
calculate the variation of energy (19) as a function of the width
σ . The resulting E versus σ curves are shown in Fig. 1 for
different c0 and a fixed SO coupling γ , illustrating a local
minimum and also the collapse as σ → 0 for c0 < 0: energy
E → −∞ as σ → 0. For c0 � 0, there could be a global
minimum with no possibility of collapse and one has a stable
soliton. We see in Fig. 1 that the minimum of the energy is more
pronounced for a larger spin-orbit coupling γ , thus leading to
stronger binding. The case c0 � 0,c1 = γ = 0 corresponds to
a repulsive spinor condensate. For 0 > c0 > ccrit , only a local
minimum of energy is possible and the vortex-bright soliton
is metastable, whereas, for c0 < ccrit , no localized soliton is
possible and the system collapses. In contrast,a quasi-two-
dimensional (quasi-2D) self-trapped vortex-bright soliton is

FIG. 2. (a) Contour plot of the variational energy as a function
of radial and axial widths of the mf = ±1 components; (b) the same
as a function of radial and axial widths of the mf = 0 component.
The local minimum of energy corresponding to the vortex-bright
solitons as well as the collapse near the origin are highlighted. The
interaction parameters are c0 = −10,c1 > 0,γ = 1. See the text for
further details.

always stable and corresponds to a global minimum of energy
[22].

One can also look at the variation of energy (18) by
fixing A1,B, and hence A2 and two variational parameters
characterizing the widths of the components as a function of
the remaining two variational widths. For this purpose, we
find the variational parameters A1,B,A2,σr ,χr ,χz, and σz cor-
responding to the minimum of energy (18), which is a function
of these parameters. Fixing the parameters A1,B,A2,χr , and
χz at the values corresponding to the minimum of energy (18),
we consider energy as a function of the widths σr and σz and
present its contour plot in Fig. 2(a), illustrating the variation
of E as a function of the widths of the mf = ±1 components.
Similarly, in Fig. 2(b), we show the variation of E as a function
of the widths of the mf = 0 component fixing the variational
parameters A1,B,A2,σr , and σz at the minimum of energy. For
large widths (σr,σz,χr ,χz → ∞) in Fig. 2, the energy vanishes
(E → 0). The geometric mean of the widths corresponding to
the local minima in Figs. 2(a) and 2(b) is 1.3 and is close to the
approximate width σ corresponding to the minimum in Fig. 1,
as should be the case.

III. NUMERICAL PROCEDURE

The coupled equations (3) and (4) can be solved by the
time-splitting Fourier pseudospectral method [29,30] and time-
splitting Crank-Nicolson method [31,32]. Here, we extend the
Fourier pseudospectral method to the coupled GP equations
with SO-coupling terms and use the same to solve Eqs. (3)
and (4). The coupled set of GP equations (3) and (4) can be
represented in a simplified form as

i∂�

∂t
= (H1 + H2 + H3)�, (21)

where � = (ψ+1,ψ0,ψ−1)T , with T denoting the transpose,
and where H1, H2, and H3 are 3×3 matrix operators defined
as

H1 =

⎛⎜⎝H− + c1(n0 + n−) 0 0

0 H + c1n+ 0

0 0 H+ + c1(n0 − n−)

⎞⎟⎠,

(22)
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H2 =

⎛⎜⎝ 0 c1ψ0ψ
∗
−1 0

c1ψ
∗
0 ψ−1 0 ψ∗

0 ψ+1

0 c1ψ0ψ
∗
+1 0

⎞⎟⎠, (23)

H3 = −i
γ√

2

⎛⎜⎝ 0 ∂− 0

∂+ 0 ∂−
0 ∂+ 0

⎞⎟⎠, (24)

where

H∓ = H ∓ iγ
∂

∂z

, n± = n+1 ± n−1. (25)

Now, in the time-splitting method, the following equations
are solved successively:

i∂�

∂t
= H1�, (26)

i∂�

∂t
= H2�, (27)

i∂�

∂t
= H3�. (28)

Equation (26) can be numerically solved using the Fourier
pseudospectral method [30], which we employ in this paper, or
the semi-implicit Crank-Nicolson method [32], and involves
additional time splitting of H1 into its spatial derivative
and nonderivative parts. The numerical solutions of Eq. (27)
have been discussed in Refs. [30,33]. We use the Fourier
pseudospectral method to accurately solve Eq. (28). In Fourier
space, Eq. (28) is

i∂�̃

∂t
= H̃3�̃, (29)

where the tilde indicates that the quantity has been Fourier
transformed. Hamiltonian H3 in Fourier space is

H̃3 = −i
γ√

2

⎛⎜⎝ 0 ikx + ky 0

ikx − ky 0 ikx + ky

0 ikx − ky 0

⎞⎟⎠. (30)

The solution of Eq. (29) is

�̃(t + dt) = e−iH̃3dt �̃(t) = e−iÔ �̃(t) (31)

=
(

I + cos  − 1

2
Ô2 − i

sin 


Ô

)
�̃(t), (32)

where  =
√

|A|2 + |B|2, with A = −i
γ√

2
(ikx + ky)dt and

B = −i
γ√

2
(ikx − ky)dt , and Ô is defined as

Ô =

⎛⎜⎝ 0 A 0

A∗ 0 B∗

0 B 0

⎞⎟⎠. (33)

The wave function in Eq. (32) is in Fourier space and can be
inverse Fourier transformed to obtain the solution in configu-
ration space. In this study, in space and time discretizations,

we use space and time steps of 0.1 and 0.005, respectively,
in imaginary-time simulation, whereas in real-time simulation
these are, respectively, 0.1 and 0.0005. Numerically, the com-
ponent wave functions of a stationary (−1,0,+1) vortex-bright
soliton are calculated by an imaginary-time propagation of
Eqs. (3) and (4) using the initial guess of component wave
functions (15) and (16).

IV. NUMERICAL RESULTS

A. Axisymmetric vortex-bright soliton

First we consider the (−1,0,+1) vortex-bright soliton in the
polar domain. The numerical results for surfaces of constant
density (isodensity contour) in coordinate space for an ax-
isymmetric (−1,0,+1) vortex-bright soliton with c0 = −10,

c1 � 0, and γ = 1 are shown in Figs. 3(a) and 3(b). In the
polar domain, c1 > 0, the results for (−1,0,+1) vortex-bright
solitons are independent of the parameter c1. To compare the
numerical and variational results, we show in Fig. 3(c) the

FIG. 3. (a) Numerical isodensity contour of |ψmf
|2 for mf = ±1

components for c0 = −10,c1 � 0, and γ = 1 in an axisymmetric
(−1,0,+1) vortex-bright soliton; (b) the same for the mf = 0 com-
ponent. The density on the contour is 0.0007. (c) Numerical (line)
and variational (chain of symbols) results for radial densities in
the z = 0 plane nj (x,0,0) vs x. (d) Numerical result of rms sizes
of the component wave functions vs time as obtained in real-time
simulation of the solution shown in (a)–(c); the black (upper) and red
(lower) curves correspond to rms sizes of the mf = 0 and mf = ±1
components, respectively. (e)–(g) The phase distribution of the mf =
+1, mf = 0, and mf = −1 components, respectively, in the z = 0
plane. The norms

∫
njdr of three components obtained numerically

are 0.29, 0.42, and 0.29, for j = 1,0, and −1, respectively.
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numerical and variational densities in the radially outward
direction nj (x,0,0) vs x in the z = 0 plane. In the z = 0 plane,
the densities of the three components have the oscillating
asymptotic behavior given by n±1(x,y,0) ∼ J1(kρρ)2 and
n0(x,y,0) ∼ J0(kρρ)2, as discussed in Sec. II A. The Gaussian
ansatz does not capture the oscillating tail properly, resulting in
the difference in numerical and variational results in Fig. 3(c).
To demonstrate the dynamical stability of the vortex-bright
soliton, we performed a real-time simulation of the imaginary-
time profile as the initial state over a long interval of time. The
dynamical stability in real-time propagation confirms a stable
ground state or a metastable state. The steady oscillation of
the root-mean-square (rms) size (rrms ≡ √

x2
rms + y2

rms + z2
rms)

of the components, as shown in Fig. 3(d), corresponding to
the (−1,0,+1) vortex-bright soliton shown in Figs. 3(a)–3(c),
demonstrates the dynamical stability of the soliton. The nature
of phase singularity, if any, in the components can be inferred
from the phase plots of three components in the z = 0 plane,
as shown in Figs. 3(e)–3(g), where the location of the vortex
is indicated by a small circle in the phase plots.

The numerical isodensity contour of the axisymmetric
(0,+1,+2) vortex-bright soliton for c0 = −10, γ = 1, and
c1 = 0.1 is shown in Figs. 4(a)–4(c). The results for the
axisymmetric (0,+1,+2) vortex-bright soliton in the polar
domain depend on the value of c1. The numerical result is
obtained by an imaginary-time simulation of Eqs. (3) and (4)
with the initial guess of component wave functions ψ inital

1 ≈
ψGauss,ψ

inital
0 ≈ (x + iy)ψGauss,ψ

inital
−1 ≈ (x + iy)2ψGauss,

where ψGauss is a Gaussian wave function. The (0,+1,+2)
vortex-bright soliton shown in Figs. 4(a)–4(c) has higher
energy than the (−1,0,+1) soliton shown in Figs. 3(a)–3(c).
Again, the (0,+1,+2) vortex-bright soliton is dynamically
stable as is demonstrated by the steady oscillation of rms
sizes of the component wave functions in Fig. 4(d). We do
not observe any decay of the angular momentum in each
component in both (−1,0,+1) and (0,+1,+2) vortex-bright
solitons. The charge of the vortices in the three components
is evident from the phase profile of three components shown
in Figs. 4(g) and 4(f) with a small circle used to indicate the
exact location of phase singularity.

Solitons are also possible in a repulsive spinor BEC. Using
the variational approximation in Sec. II B, we found that the
SO-coupled BEC may have a stable vortex-bright soliton for
c0 � 0; viz. Fig. 1. The numerical isodensity contour of such
a (−1,0,+1) vortex-bright soliton with c0 = 0.05,c1 � 0, and
γ = 2 is shown in Figs. 5(a) and 5(b). Although a larger γ

leads to easier bright-soliton formation (viz. Fig. 1), we could
not use a much larger γ because of the numerical difficulty
in treating a large undulating tail in density [34], associated
with a large γ . In the asymptotic region in the xy plane, the
densities of the mf = ±1 and mf = 0 components vary as
∼ sin(kρρ − π/4) and ∼ cos(kρρ − π/4), respectively (viz.
Sec. II A), leading to the oscillating tail with the period
inversely dependent on kρ = √

γ 2 − k2
z . The long-time os-

cillation in the rms radius rrms of the three components,
corresponding to the (−1,0,+1) vortex-bright soliton shown
in Figs. 5(a)–5(c), as obtained upon real-time evolution of the
imaginary-time profile exhibited in Fig. 5(d), establishes the
dynamical stability of the soliton.

(d)

FIG. 4. Numerical isodensity contour of |ψmf
|2 for (a) mf = +1,

(b) mf = 0, and (c) mf = −1 components of a polar (0,+1,+2)
vortex-bright soliton for c0 = −10,c1 = 0.1, and γ = 1. The density
on the contour is 0.0007. The isosurfaces are translucent to show the
presence of vortex lines. (d) Numerical result of rms size (rrms) of the
component wave functions vs time as obtained in real-time simulation
of the solution shown in (a)–(c); the red (upper), black (middle),
and blue (lower) curves correspond to the mf = +1, mf = 0, and
mf = −1 components, respectively. (e)–(g) The phase distribution
of the mf = +1, mf = 0, and mf = −1 components, respectively,
in the z = 0 plane. The norms of the three components are 0.63, 0.29,
0.09 for mf = +1, mf = 0, and mf = −1, respectively.

A finite-space step �x and a finite-space domain L of
discretization along the corresponding direction set a limit on
the accuracy of the numerical scheme. The typical wavelength
of spatial modulations of density should be much larger than
the space step for an adequate resolution and for obtaining
reliable results—a condition which is very well satisfied
for the spin-orbit-coupled (SOC) values considered in the
present work. Larger SOC values will require an even smaller
space step to adequately treat the high-wave-number spatial
modulations of density. For example, comparing the density
plots of Figs. 3(c) and 5(c), we find that a larger SOC (γ = 2) in
the latter has led to pronounced spatial modulations of density
compared to the former with a smaller SOC (γ = 1). The use
of the same spatial step (�x = 0.1) in both cases has set a
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FIG. 5. Numerical isodensity contour of |ψmf
|2 for the (a) mf =

±1, (b) mf = 0 components of an axisymmetric (−1,0,+1) soliton
with c0 = 0.05, c1 = 0, and γ = 2. The density on the contour is
0.001. (c) Numerical results for radial densities in the z = 0 plane
nj (x,0,0) vs x. (d) Numerical result of rms sizes of the component
wave functions vs time as obtained in real-time simulation of the
solution shown in (a)–(c); the black (upper) and red (lower) curves
correspond to the mf = 0 and mf = ±1 components, respectively.
The norms of the three components are 0.30, 0.39, 0.30, for the mf =
+1,0 and mf = −1 components, respectively.

limit on the accuracy in Fig. 5(c), which is responsible for the
rapid temporal oscillation of the rms size in Fig. 5(d). Also,
the space domain L should be much larger than the size of the
condensate along that direction for obtaining accurate results.
However, any finite L leads to the slow temporal oscillation
of the rms size in Fig. 3(d), which is also present in Fig. 5(d)
as a modulating envelope over the rapid oscillation. As the
space domain L is increased, these oscillations with smaller
frequency will tend to vanish. The use of a small space step
will reduce the fast temporal oscillations of the rms size in
Fig. 5(d), whereas a larger space domain will suppress the
slow oscillation of the rms size.

B. Asymmetric solitons

In the ferromagnetic domain (c1 < 0) below a critical c1,
the system, in addition to axisymmetric vortex-bright solitons

FIG. 6. Numerical isodensity contour of |ψmf
|2 for (a) mf = +1,

(b) mf = 0, and (c) mf = −1 components of an asymmetric soliton
with c0 = −10, c1 = −1, and γ = 1. The density on the contour is
0.00008. (d) The isosurfaces in (a) and (c) together, where the blue
(black) and yellow (gray) isosurfaces correspond to the mf = +1 and
mf = −1 components, respectively. The norms of three components
are 0.32, 0.36, 0.32 for mf = +1,0 and mf = −1, respectively.

considered above, can also support an asymmetric vortex-
bright soliton, which is found to be of lower energy than the
axisymmetric ones and hence becomes the ground state. The
3D numerical isodensity contours of the component wave func-
tions for the asymmetric vortex-bright soliton with c0 = −10,
c1 = −1, and γ = 1 are shown in Figs. 6(a)–6(c). The corre-
sponding 2D contour densities and phase profiles in the z = 0
plane are shown in Figs. 7(a)–7(f). The density on the contour
(=0.00008) in Fig. 6 is much smaller than those in Figs. 3–5
and hence the sizes of the solitons in Fig. 6 look larger and these
plots reveal an interesting vortex structure in the outer region
of low density, which would not have been visible if a larger
density on the contour were chosen. For c0 = −10 and γ = 1,
the asymmetric solitons exist for −0.1 � c1 � −2.7. Below
c1 = −2.7, no self-trapped solutions exist for c0 = −10 and
γ = 1, and the system collapses due to an excess of attractive
interactions. In an asymmetric vortex-bright soliton, we find
an antivortex line in component mf = +1 (phase-winding
number −1) and a vortex line in component mf = −1 (phase-
winding number +1) which are perpendicular to each other
and displaced from the z axis and also from each other. The
asymmetrically located antivortex and vortex lines in the mf =
±1 components lead to the kidney-shaped density distributions
for these two components which fit into each other, as shown
in Fig. 6(d). There are mutually perpendicular and laterally
displaced antivortex and vortex lines of winding numbers
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FIG. 7. The 2D contour plots of densities of the components in the
z = 0 plane, corresponding to the isodensity contours shown in Fig. 6,
for the (a) mf = +1, (b) mf = 0, and (c) mf = −1 components
of an asymmetric soliton with c0 = −10, c1 = −1, and γ = 1. The
corresponding phases are shown for the (d) mf = +1, (e) mf = 0,
and (f) mf = −1 components.

∓1 in the mf = 0 component too, located in regions y > 0
and y < 0, respectively; viz. Fig. 6(b). These line vortices
do not coincide with the line vortices present in the mf =
±1 components. In Figs. 7(d)–7(f), the phase singularities
corresponding to holes (depressions) in 3D isodensity contours
of the mf = 0 (mf = ±1) component are shown enclosed
by small white circles. By writing the GP equations (3)
and (4) in spherical polar coordinates (r,θ,φ), it can be seen
that these are invariant under the transformations: φ → φ +
δφ and ψmf

(r,θ,φ) → ψmf
(r,θ,φ + δφ)e−imf δφ ; here, r,θ,φ

are radial, polar, and azimuthal coordinates, respectively. It
implies that by rotating the density isosurfaces shown in
Fig. 6 about the z axis, we can get innumerable possible
degenerate asymmetric vortex-bright solitons. In experiments,
this rotation symmetry about the z axis will be spontaneously
broken with the emergence of one of these asymmetric
solitons.

C. Dynamically stable moving solitons

The GP equations (3) and (4) are not Galilean invariant, as
can be shown by using Galilean transformation x ′ = x − vt,

y ′ = y,z′ = z,t ′ = t , where v is the relative velocity along the
x axis of the primed coordinate system with respect to the
unprimed coordinate system, along with the transformation

ψj (x,y,z,t) = ψ ′
j (x ′,y ′,z′,t ′)eivx ′+iv2t ′/2, (34)

in Eqs. (3) and (4). This leads to the following Galilean-
transformed mean-field GP equations [20]:

i
∂ψ ′

±1(r′)
∂t ′

= Hψ ′
±1(r′) ± c1F

′
zψ

′
±1(r′) + c1√

2
F ′

∓ψ ′
0(r′)

− iγ√
2

(
∂ψ ′

0

∂x ′ ∓ i
∂ψ ′

0

∂y ′ ±
√

2
∂ψ ′

±1

∂z′

)
+ γ√

2
vψ ′

0,

(35)

FIG. 8. Numerical isodensity contour of |ψmf
|2 for the compo-

nents (a) mf = +1, (b) mf = 0, and (c) mf = −1 of a moving
vortex-bright soliton with c0 = −10, c1 = 0.1, γ = 1, and v = 0.01
towards the positivex direction. The density on the contour is 0.00008.
(d) The isosurfaces in (a) and (c) together, where the blue (black) and
yellow (gray) isosurfaces correspond to the mf = +1 and mf = −1
components, respectively. The norms of the three components are
0.31, 0.38, 0.31 for mf = +1,0 and mf = −1, respectively.

i
∂ψ ′

0(r′)
∂t ′

= Hψ ′
0(r′) + c1√

2
[F ′

−ψ ′
−1(r′) + F ′

+ψ ′
+1(r′)]

− iγ√
2

(
∂ψ ′

1

∂x
+ i

∂ψ ′
1

∂y ′ + ∂ψ ′
−1

∂x ′ − i
∂ψ−1

∂y ′

)
+ γ√

2
v(ψ ′

+1 + ψ ′
−1). (36)

Due to the v-dependent terms in Eqs. (35) and (36), the system
is not Galilean invariant. Here, for the sake of simplicity, we
have considered motion along the x axis. In the absence of SO
coupling (γ = 0), the Galilean invariance is restored, implying
that the moving solitons, given by Eq. (34), can be trivially
obtained by multiplying stationary solutions of Eqs. (3) and
(4) by eivx . This is no longer possible for γ �= 0, in which case
the moving solitons are the stationary solutions of Eqs. (35) and
(36), presuming that these exist, multiplied by eivx [14,17,19].
As in the case of Eqs. (3) and (4), Eqs. (35) and (36) can
be solved using imaginary-time propagation with a suitable
initial guess for component wave functions. The 3D isodensity
contours of three components for a metastable vortex-bright
soliton moving with velocity v = 0.01 along the x axis for
c0 = −10, c1 = 0.1, and γ = 1 are shown in Fig. 8, and the
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FIG. 9. The 2D contour plots of the densities of components in
the z = 0 plane, corresponding to isodensity contours shown in Fig. 8,
for the (a) mf = +1, (b) mf = 0, and (c) mf = −1 components
of a moving vortex-bright soliton with c0 = −10, c1 = 0.1, γ = 1,
and v = 0.01 towards the positive x direction. The corresponding
phases are shown for the (d) mf = +1, (e) mf = 0, and (f) mf = −1
components.

corresponding 2D contour densities and phase profiles in the
z = 0 plane are shown in Fig. 9. The small white circles in the
phase profiles in Figs. 9(d)–9(f) indicate the phase singularity
responsible for holes or density depressions in 3D isodensity
contours in Fig. 8. This moving vortex-bright soliton has
asymmetric density distribution, whereas the stationary vortex-
bright soliton for the same set of parameters is a symmetric
(−1,0,+1) vortex-bright soliton shown in Fig. 3. The present
moving vortex-bright soliton has a density distribution very
similar to the asymmetric soliton of Fig. 6. The mf = +1
components of both have an antivortex of winding number −1
and the mf = −1 component has a vortex of winding number
+1. The mf = 0 in each has a vortex and an antivortex line
separated from each other.

Notwithstanding these qualitative similarities, there is a
crucial difference. The moving vortex-bright soliton does

not have the innumerable degenerate counterparts like the
asymmetric vortex-bright soliton. This is due to the fact that the
system is no longer invariant under the transformations: φ →
φ + δφ and ψmf

(r,θ,φ) → ψmf
(r,θ,φ + δφ)e−imf δφ , due to

the presence of v-dependent terms in Eqs. (35) and (36).
However, the system is invariant under the transformations:
φ → φ + π and ψmf

(r,θ,φ) → ψmf
(r,θ,φ + π )e−imf π ,v →

−v. This transformation basically transforms a right-moving
vortex-bright soliton to its degenerate left-moving counterpart.
For c0 = −10, c1 = 0.1, and γ = 1, the self-trapped solutions
of Eqs. (35) and (36) exist for v � 0.04.

V. SUMMARY

We have studied the formation and dynamics of 3D vortex-
bright solitons in a three-component SO-coupled spin-1 spinor
condensate using variational approximation and numerical
solution of the mean-field GP equations. The solitons are
metastable for a0 + 2a2 < 0 (predominantly attractive) and
could be stable for a0 + 2a2 > 0 (predominantly repulsive).
The ground-state vortex-bright solitons are axisymmetric of
type (−1,0,+1) in the polar domain, whereas they are fully
asymmetric in the ferromagnetic domain below a critical
strength of spin-exchange interaction. In the latter case, the
axisymmetric (−1,0,+1) vortex-bright solitons are the excited
states. The asymmetric vortex-bright solitons cannot appear
in the polar domain. In addition, one can have (0,+1,+2) ≡
(−2,−1,0) vortex-bright solitons as excited states in both do-
mains. We demonstrate the dynamical stability of the solitons
numerically. The present mean-field model is not Galelian
invariant, and we study moving vortex-bright solitons using
a Galilean-transformed model. The solitons can move without
deformation.

ACKNOWLEDGMENTS

S.K.A. acknowledges the support by the Fundação de
Amparo à Pesquisa do Estado de São Paulo FAPESP (Brazil)
under Projects No. 2012/00451-0 and No. 2016/01343-7 and
also by the Conselho Nacional de Desenvolvimento Científico
e Tecnológico (Brazil) under Project No. 303280/2014-0.

[1] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61, 763
(1989); F. K. Abdullaev, A. Gammal, A. M. Kamchatnov, and
L. Tomio, Int. J. Mod. Phys. B 19, 3415 (2005).

[2] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M.
Stamper-Kurn, and W. Ketterle, Nature (London) 392, 151
(1998).

[3] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
Nature (London) 417, 150 (2002); L. Khaykovich, F. Schreck,
G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and
C. Salomon, Science 296, 1290 (2002).

[4] S. L. Cornish, S. T. Thompson, and C. E. Wieman, Phys. Rev.
Lett. 96, 170401 (2006).

[5] V. M. Pérez-García and J. B. Beitia, Phys. Rev. A 72, 033620
(2005); S. K. Adhikari, Phys. Lett. A 346, 179 (2005); Phys.
Rev. A 72, 053608 (2005); L. Salasnich and B. A. Malomed,
ibid. 74, 053610 (2006).

[6] J. Ieda, T. Miyakawa, and M. Wadati, Phys. Rev. Lett. 93,
194102 (2004); L. Li, Z. Li, B. A. Malomed, D. Mihalache,
and W. M. Liu, Phys. Rev. A 72, 033611 (2005); W. Zhang, Ö.
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P. Öhberg, and M. Fleischhauer, ibid. 95, 010404 (2005); G.

013629-9

https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1142/S0217979205032279
https://doi.org/10.1142/S0217979205032279
https://doi.org/10.1142/S0217979205032279
https://doi.org/10.1142/S0217979205032279
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/32354
https://doi.org/10.1038/nature747
https://doi.org/10.1038/nature747
https://doi.org/10.1038/nature747
https://doi.org/10.1038/nature747
https://doi.org/10.1126/science.1071021
https://doi.org/10.1126/science.1071021
https://doi.org/10.1126/science.1071021
https://doi.org/10.1126/science.1071021
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevLett.96.170401
https://doi.org/10.1103/PhysRevA.72.033620
https://doi.org/10.1103/PhysRevA.72.033620
https://doi.org/10.1103/PhysRevA.72.033620
https://doi.org/10.1103/PhysRevA.72.033620
https://doi.org/10.1016/j.physleta.2005.07.044
https://doi.org/10.1016/j.physleta.2005.07.044
https://doi.org/10.1016/j.physleta.2005.07.044
https://doi.org/10.1016/j.physleta.2005.07.044
https://doi.org/10.1103/PhysRevA.72.053608
https://doi.org/10.1103/PhysRevA.72.053608
https://doi.org/10.1103/PhysRevA.72.053608
https://doi.org/10.1103/PhysRevA.72.053608
https://doi.org/10.1103/PhysRevA.74.053610
https://doi.org/10.1103/PhysRevA.74.053610
https://doi.org/10.1103/PhysRevA.74.053610
https://doi.org/10.1103/PhysRevA.74.053610
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevLett.93.194102
https://doi.org/10.1103/PhysRevA.72.033611
https://doi.org/10.1103/PhysRevA.72.033611
https://doi.org/10.1103/PhysRevA.72.033611
https://doi.org/10.1103/PhysRevA.72.033611
https://doi.org/10.1103/PhysRevA.75.043601
https://doi.org/10.1103/PhysRevA.75.043601
https://doi.org/10.1103/PhysRevA.75.043601
https://doi.org/10.1103/PhysRevA.75.043601
https://doi.org/10.1103/PhysRevA.75.023617
https://doi.org/10.1103/PhysRevA.75.023617
https://doi.org/10.1103/PhysRevA.75.023617
https://doi.org/10.1103/PhysRevA.75.023617
https://doi.org/10.1103/PhysRevA.77.043617
https://doi.org/10.1103/PhysRevA.77.043617
https://doi.org/10.1103/PhysRevA.77.043617
https://doi.org/10.1103/PhysRevA.77.043617
https://doi.org/10.1103/PhysRevA.81.033618
https://doi.org/10.1103/PhysRevA.81.033618
https://doi.org/10.1103/PhysRevA.81.033618
https://doi.org/10.1103/PhysRevA.81.033618
https://doi.org/10.1103/PhysRevLett.105.125302
https://doi.org/10.1103/PhysRevLett.105.125302
https://doi.org/10.1103/PhysRevLett.105.125302
https://doi.org/10.1103/PhysRevLett.105.125302
https://doi.org/10.1038/nature11841
https://doi.org/10.1038/nature11841
https://doi.org/10.1038/nature11841
https://doi.org/10.1038/nature11841
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevLett.95.010403
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevLett.95.010404


SANDEEP GAUTAM AND S. K. ADHIKARI PHYSICAL REVIEW A 97, 013629 (2018)
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