
PHYSICAL REVIEW A 97, 013617 (2018)

Domain-area distribution anomaly in segregating multicomponent superfluids
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The domain-area distribution in the phase transition dynamics of Z2 symmetry breaking is studied theoretically
and numerically for segregating binary Bose-Einstein condensates in quasi-two-dimensional systems. Due to the
dynamic-scaling law of the phase ordering kinetics, the domain-area distribution is described by a universal
function of the domain area, rescaled by the mean distance between domain walls. The scaling theory for general
coarsening dynamics in two dimensions hypothesizes that the distribution during the coarsening dynamics has
a hierarchy with the two scaling regimes, the microscopic and macroscopic regimes with distinct power-law
exponents. The power law in the macroscopic regime, where the domain size is larger than the mean distance,
is universally represented with the Fisher’s exponent of the percolation theory in two dimensions. On the other
hand, the power-law exponent in the microscopic regime is sensitive to the microscopic dynamics of the system.
This conjecture is confirmed by large-scale numerical simulations of the coupled Gross-Pitaevskii equation for
binary condensates. In the numerical experiments of the superfluid system, the exponent in the microscopic
regime anomalously reaches to its theoretical upper limit of the general scaling theory. The anomaly comes from
the quantum-fluid effect in the presence of circular vortex sheets, described by the hydrodynamic approximation
neglecting the fluid compressibility. It is also found that the distribution of superfluid circulation along vortex
sheets obeys a dynamic-scaling law with different power-law exponents in the two regimes. An analogy to
quantum turbulence on the hierarchy of vorticity distribution and the applicability to chiral superfluid 3He in a
slab are also discussed.
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I. INTRODUCTION

In the phase transition dynamics of spontaneous symmetry
breaking (SSB), a number of topological defects are nucleated,
forming a complicated network or texture in order-parameter
fields. This type of phenomenon can occur universally in
systems ranging from condensed matter to cosmology and
high-energy physics [1–4]. The dynamic-scaling law in phase
ordering kinetics hypothesizes that the growth of order-
parameter fields preserves the statistical similarity of the spatial
patterns during such a SSB development [5]. This law has been
accepted empirically by observing that the structure factors or
correlation functions of the fields collapse onto a universal
function after rescaling length by the mean distance l between
topological defects, which obeys a power law l ∝ t1/z with the
dynamic exponent z.

Considering the long research history of the phase ordering
kinetics, it is recent that the application of percolation theory
[6] to SSB development attracted attention [7–9], and such
an application has become an important problem in statistical
physics [10]. Since percolation theory reveals different statis-
tical aspects of the phase ordering kinetics, such studies could
lead to a greater understanding of the highly nonequilibrium
physics of SSB development. For example, consider two-
dimensional coarsening dynamics of Z2 symmetry breaking,
which are the most fundamental problem of phase ordering
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kinetics [5]. In this system, the order parameter is a real scalar
field and the topological defect is a linear object called a domain
wall. One significant prediction by the application of percola-
tion theory is that the time development of the number distri-
bution ρ(S,t) of domains of area S obeys a universal power
law ρ ∝ S−τF with the Fisher exponent τF = 187/91 ≈ 2
of two-dimensional percolation [6].

There has been a growing interest in the phase ordering
kinetics of atomic Bose-Einstein condensates (BECs), and the
dynamic-scaling law in superfluid systems has been investi-
gated theoretically in different situations [11–19]. Recently,
percolation theory has been applied to the segregation of binary
BECs in quasi-two-dimensions, and the dynamic finite-size-
scaling analysis revealed that the domain structures preserve
the percolation criticality during Z2 symmetry breaking with
the percolation threshold pc = 0.5 [20]. Recently, the domain-
area distribution in segregating superfluids was shown to
obey Fisher’s power law for large-scale structures [21,22].
Interestingly, the distribution of domains smaller than the
characteristic domain size l in the superfluid systems shows
anomalous behavior different from that observed in conven-
tional coarsening systems of nonconserved and conserved
fields [7,23]. These results suggest that the dynamic-scaling
law holds even when the quantum-fluid effect in superfluid
systems becomes important since the small-scale structure
strongly depends on the “microscopic” dynamics of the do-
main wall in the system under consideration. This anomalous
behavior of smaller domains indicates the existence of a
different dynamic-scaling regime that reflects the quantum-
fluid dynamics, namely, “microscopic” dynamics in quantum
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Macroscopic regimeMicroscopic regime

FIG. 1. The expected asymptotic form of the rescaled domain-
area distribution ρ̃.

fluids. Can such a scaling regime firmly coexist with the
universal scaling regime of percolation theory in superfluid
coarsening systems? If so, the critical exponent and the effect
of the microscopic nature on the scaling behavior should be
important for a deeper understanding of the physics of SSB
development, e.g., seeking different scaling relations. These
aspects were unclear in the previous works [21,22].

To answer these questions, we demonstrate the dynamic-
scaling analysis according to the combined theory of phase or-
dering kinetics and percolation, called phase ordering percola-
tion. The theoretical conjecture presented here is summarized
in Fig. 1. Assuming an asymptotic form of the domain-area
distribution, this theoretical analysis is universally applicable
to different coarsening systems. The domain-area distribution
has two distinct scaling regimes, namely, the microscopic
and macroscopic regimes, which are characterized by the
exponents τmic and τmac = τF , respectively. Numerical exper-
iments of binary BECs reveal that the microscopic exponent
τmic of the superfluid system reaches to the theoretical upper
limit 3

2 , which is quite different from those of conventional
coarsening systems. This anomalous behavior is connected
to the quantum-fluid effect of a circular vortex sheet by
finding a dynamic-scaling law derived from the quantum-fluid
dynamics. Finally, an analogy to the hierarchy in quantum
turbulence and the applicability of this scaling theory to the
system of chiral-domain formation in quasi-two-dimensional
superfluid 3He-A will be discussed.

II. GENERAL SCALING FORMALISM

We first formulate a generalized theory for evaluating
the scaling behavior of phase ordering percolation before
discussing superfluid systems.

A. Dynamic scaling of domain-area distribution

Consider the time evolution of domain-area distribution ρ

in a coarsening system that undergoes Z2 symmetry breaking
in two dimensions. There are two kinds of domains, namely, ↑
and ↓ domains. We write the number of ↑ or ↓ domains, which
have areas between S and S + dS, divided by the system area
L2 at time t as ρ(S,t)dS.

According to the dynamic-scaling law in the phase ordering
kinetics, domain structures of different times can be statis-
tically similar by rescaling length with the mean interdefect
distance l(t). By applying this empirical law to the domain-area
distribution, ρ(S,t) is described by a dimensionless universal

function ρ̃(S̃) of S̃ = S/Sl with Sl = πl2:

ρ̃(S̃) = S2
l ρ(S,t). (1)

This is another expression of the dynamic-scaling law in the
sense that the law is conventionally examined by observing the
structure factor or the correlation function [5]. The dynamic-
scaling law (1) has been experimentally [8] and numerically
[7,21–23] confirmed in different coarsening systems.

B. Normalization condition of wall length

To analytically evaluate the rescaled distribution function
(1), it is useful to introduce the normalization conditions or
sum rules for the domain-area distribution. The condition for
the total domain area was demonstrated in Ref. [7]. Here, we
formulate the condition for the total domain-wall length

R(t) = L2/l(t)

that yields useful input for the analysis of microscopic expo-
nent τmic.

Because domain walls exist between ↑ and ↓ domains, the
length R is calculated by integrating the total length of the
walls surrounding all ↑ or ↓ domains. Thus, by introducing
the length lw(S) of the wall surrounding a domain of area S,
we have the normalization condition

R

L2
=

∫ Smax

Smin

lwρ dS = 1

πl

∫ S̃max

S̃min

l̃wρ̃ dS̃ (2)

with l̃w ≡ lw/l and

S̃min ≡ Smin

Sl

∼
(

lmin

l

)2

, S̃max ≡ Smax

Sl

∼
(

L

l

) 91
48

. (3)

The lower cutoff Smin is determined by the microscopic length
of the system, that is, by the thickness lmin of the domain wall;
a domain is ill defined if its area is smaller than

Smin = πl2
min.

The upper cutoff Smax comes from percolation theory, ap-
plied after rescaling L by l with the effective system size
L̃ = L/l [20]. Here, I mention briefly this point although
Smax is not so important to the main topic of this work.
According to the percolation theory in two dimensions, the
largest domain is called the percolating cluster or domain with
a nontrivial fractal dimension. The area Smax of the percolating
domain is connected with the percolation probability P (p) at
percolation threshold p = pc, P (p = pc) = limL→∞ Smax

L2 =
limL→∞ Smax/Sl

L2/Sl
∼ L̃−β/ν , with the exponents β = 5

36 and ν =
4
3 for two-dimensional percolation [6]. Here, pc = 0.5 is
assumed for the coarsening dynamics of conventional systems
[7–10], which has been numerically confirmed for segregating
binary BECs [20].

C. Microscopic and macroscopic regimes

We assume an asymptotic form for S̃min 
 S 
 1 and 1 

S 
 S̃max (see Fig. 1),

ρ̃ ∼ S̃−τ , l̃w ∼ S̃D/2 (4)

013617-2



DOMAIN-AREA DISTRIBUTION ANOMALY IN … PHYSICAL REVIEW A 97, 013617 (2018)

with different exponents τ and D in the two scaling regimes:

(τ,D) =
{

(τmic,Dmic) for S̃min 
 S̃ 
 1,

(τmac,Dmac) for 1 
 S̃ 
 S̃max.
(5)

The exponent D characterizes the fractal behavior of the
domain walls, and thus

1 � D � 2. (6)

The trivial exponent D = 1 is realized for circular domains
with a relation

lw = 2
√

πS ⇒ l̃w = 2π
√

S̃ ⇒ l̃w ∼ S̃0.5. (7)

The upper bound D = 2 comes from the spatial dimension of
our system.

Under the above assumption, multiplying Eq. (2) by l, one
obtains

λmic + λmac + λP ∼ 1 (8)

with

λmic =
∫ 1

S̃min

l̃wρ̃ dS̃, λmac =
∫ S̃max

1
l̃wρ̃ dS̃.

Here, the contribution from the domain walls surrounding the
largest (percolating) domain is extracted explicitly as

λP = lw(Smax)/R

in Eq. (8).

D. Restrictions on dynamic-scaling exponents

The theoretical restrictions for τmic and τmac are obtained
by evaluating the condition (8) in the limit of S̃min → 0
and S̃max → ∞. All terms on the left-hand side of Eq. (8)
must be on the order of unity or zero. From the condi-
tion (6), l̃w(Smax) is smaller than or on the order of S̃max,
and thus l̃w(Smax) � S̃max ∼ (L/l)91/48. Then, we have λP =
ll̃w(Smax)/R � l(L/l)91/48/(L2/l) = (l/L)2−91/48 → 0 in the
limit. Substituting Eq. (4) into λmic, one obtains λmic ∼∫ 1
S̃min

S̃Dmic/2−τmicdS̃, and thus we have the restriction for τmic

as

τmic < Dmic/2 + 1. (9)

Similarly, the restriction for τmac is derived as τmac > Dmac/2 +
1. A similar evaluation is available for the area condition
1/2 = ∫

Sρ dS, where the integral represents the total area
L2/2 occupied by ↑ or ↓ domains, divided by the system area
L2. This condition yields τmic < 2 and

τmac > 2. (10)

The restriction (10) has been obtained in Ref. [7] and is
consistent with the prediction of the percolation theory: τmac =
τF = 187/91 > 2.

To validate our theory, the obtained restriction (9) in the
microscopic regime is compared with results in conventional
coarsening systems of nonconserved and conserved order
parameters at zero temperature [7,23]. For nonconserved
coarsening in the two-dimensional Ising model (2DIM) [7], the
distribution function ρ becomes flat for S → 0 with τmic = 0.
On the other hand, 2DIM simulations for the conserved case

[23] indicate τmic = −0.5. Smaller domains are close to or
indeed circular with Dmic = 1.1 and 1 for the former and latter
cases, respectively; the restriction (9) is safely satisfied. These
results suggest that τmic varies depending on the “microscopic”
dynamics of the domain wall in different types of coarsening
systems, while τmac takes the universal value τmac = τF for
conventional systems [7,23] as was mentioned in the Introduc-
tion.

III. NUMERICAL EXPERIMENTS OF SEGREGATING
BINARY SUPERFLUIDS

Our main goal is to study the realizability of the microscopic
regime in superfluid systems together with the universal macro-
scopic regime and identify the scaling behavior. Fortunately,
the numerical experiment of segregating binary BECs [20,21]
can be used to achieve this goal. Figure 2 shows a time evolution
of ↑ and ↓ domains in a numerical experiment of segregating
binary BECs.

A. Segregation of binary condensates

The segregation dynamics were simulated by solving the
coupled Gross-Pitaevskii (GP) equations [24] derived from the
GP Lagrangian in a quasi-two-dimensional system,

L =
∫

d2x[P↑(�↑) + P↓(�↓) − g↑↓n↑n↓]. (11)

Here, we used

Pj = −h̄nj ∂t θj − h̄2

2m
(∇√

nj )2 − m

2
njv

2
j − gjj

2
n2

j

with atomic mass m, complex order parameter �j = √
nje

iθj ,
and superfluid velocity vj = h̄

m
∇θj of the j component (j =

↑ , ↓). The Z2 symmetry breaking is caused by the dynamic
instability starting from the initial state with a constant density
|�↑|2 = |�↓|2 = n/2 = const and zero velocity vj = 0 for
the coupling constants g↑↓ > g↑↑ = g↓↓ = g > 0. For strong
segregation in our simulation with g↑↓/g = 2, the domain-wall
thickness is on the order of the healing length

ξ ≡ h̄√
gmn

, (12)

and we set lmin = ξ . For making the segregation dynamics
of binary BECs, the coupling constants are controlled by
changing the oblateness of the trapped condensates, using tech-
niques of magnetic Feshbach resonance [25,26] and dressed
states [27,28], and changing the internal states of atoms [29].
Since spinor BECs can be described effectively by the same
hydrodynamics, the system is also available for examining the
scaling behaviors, demonstrated here, in cold-atom systems.
See also the references in, e.g., Ref. [18].

The dynamic instability, triggered by adding small random
seeds to the initial state, develops into complicated domain pat-
terns with characteristic length l (see Fig. 2). We investigated
the domain-area distribution after the time (t = τ0 ∼ t0 ≡ h̄

gn
)

when domain patterns emerge clearly in the initial stage (0 <

t � τ0) of the SSB development. The characteristic length l0
of the initial domain patterns at that time is on the order of ξ

as is determined from the Bogoliubov theory [20]. For weakly
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(a) 21.2 (b) 46.3 (c) 101 (f) 1049(e) 481(d) 220

0

-domain

-domain

0

FIG. 2. A time evolution of domain coarsening dynamics in a numerical experiment of segregating binary BECs. Black regions show
↑ domains (↓ domains) from t/t0 = 21.2 to t/t0 = 1049 in upper (lower) panels. The gradation represents spatial distribution of the phase
θ↓(↑) = arg�↓(↑) in ↓ (↑) domains. A vortex is represented by a end point of branch cut (jump from θ↑,↓ = −π to π ). The phase θ↑(↓) is nearly
homogeneous in some of small ↑ (↓) domains (S < Sl), at which branch cuts of θ↓(↑) end, by forming vortex sheets along their domain walls.

segregated systems, l0 and lmin diverge as ∝1/
√

g↑↓/g − 1.
Then, the characteristic time τ0, at which the initial domain
pattern emerges, becomes larger as τ0 ∼ t0

g↑↓/g−1 ln n
2δ2 . Here,

δ2 is the amplitude of the density fluctuation due to the initial
random seeds made by a white noise or Gaussian one. To
realize the scaling behaviors for a finite-size system of binary
BECs with a finite lifetime, it is better to use the systems of
stronger intercomponent interaction with smaller l0, τ0, and
lmin. In this way, we require a computational system whose
size is much larger to satisfy the conditions S̃min 
 1 and
S̃max 
 1 for attaining the coexistence of the microscopic and
macroscopic regimes. In our simulation, the size and number
of the numerical grids are set to meet these requirements during
the time development. For more details on numerical analysis,
see the Appendix.

B. Dynamic-scaling plot of domain-area distribution

Figure 3 shows rescaled plots of the time evolution of the
domain-area distribution. Because we have l ∼ l0 (∼ ξ ), that
is, Sl ∼ Smin in the initial domain patterns, there are fewer
domains in the microscopic regime, where the size of domains
is comparable to or smaller than the domain-wall thickness
lmin ∼ ξ and then domains are ill defined physically (see also
the discussion on a coreless vortex in Sec. IV). Thus, in the
early stage (t/τ0 � t/t0 � 220 with l/ξ ∼ 1), the power-law
behavior (4) of the microscopic regime is ill established and the
rescaled plots of different times do not coincide for S̃ � 1, al-
though the scaling behavior appears clearly in the macroscopic
regime with τmac ≈ τF . In the late stage (t/t0 � 220 with l/ξ �
10), a power-law behavior becomes well established in the
microscopic regime too with τmic ≈ 3

2 . Then, plots of different
times collapse onto a universal curve of the asymptotic form
of Fig. 1 in both regimes. The dynamic-scaling plot for l̃w
becomes successful also in the late stage (see Fig. 3 inset). We
have exponents Dmic ≈ 1 and Dmac ≈ 2, which is similar to
the results of conventional systems [23]. Figure 4 illustrates
schematically the typical domain shapes in the macroscopic
and microscopic regimes.

The exponent τmic reaches to the upper limit, 3
2 of the

restriction (9) with Dmic = 1, that is, the number of domains is
maximized in the superfluid system. This anomalous behavior
in the microscopic regime is in contrast to the behavior of
the above-mentioned conventional systems, while the macro-
scopic regime shows the universal behavior of the percolation
criticality.

The configuration of the domain-area distribution in the
connection regime (S̃ ∼ 1) can differ depending on coarsening
systems and the initial conditions. We see a fine structure
around the connection regime in Fig. 3. However, the restric-
tions (9) and (10) are obtained independently of the connection
regime. Thus, the detailed structure of the connection regime

FIG. 3. Dynamic-scaling plot of the averaged domain-area dis-
tribution 〈ρ(S)〉. The graph legends represent the time from t/t0 =
21.1 to 1049 with t0 = h̄

gn
. The table provides information on the

corresponding values of l/ξ and L/l. The inset shows the cor-
responding scaling plot for l̃w from t/t0 = 101 to 1049 with the
solid line l̃w = 2πS̃. Error bars correspond to the standard deviation
S2

l

√
δ2
X [(2π )−1

√
δ2
X] of the ensemble average S2

l 〈X〉 [(2π )−1〈X〉]
for the quantity X (= ρ or l̃w/

√
S̃), where the average 〈X〉 and its

variance δ2
X = 〈(X − 〈X〉)2〉 is calculated over the 64 samples of the

numerical simulations.
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(a) (b)

FIG. 4. Schematic of typical shapes of (a) a larger domain
(S 
 Sl) and (b) a smaller domain (S 
 Sl) that appear in a domain
structure in the SSB development. The black curves show domain
walls whose thickness lmin is much smaller than the mean distance
l between domain walls in the late stage of the SSB development.
(a) A domain in the macroscopic regime is like a snaky and branching
trail of width ∼l and length ∼lw/2; the area of a trail is given by
S ≈ llw/2. This relation between S and lw is consistent with the
dynamic-scaling relation l̃w = 2πS̃ ⇒ lw/l = 2πS/Sl ⇒ S = llw/2
of the macroscopic regime in the inset of Fig. 3. (b) The domain
is almost circular by obeying the relation of Eq. (7) approximately;
S ≈ l2

w/(4π ). The ↑ domain (white region) contains a vortex with a
circulation κnv, whose core is occupied by a circular ↓ domain (black
region) at rest. The hydrostatic pressure of the ↑ domain on the wall
is smaller than that of the ↓ domain, ph

↑ < ph
↓, in the presence of the

circular superflow (|v↑| = κ|nv |
2πR

).

is not relevant to our discussion on the scaling exponents τ and
D in the limits of S̃min → 0 and S̃max → ∞.

IV. A CIRCULAR VORTEX SHEET
AS A QUANTUM-FLUID EFFECT

Generally speaking, the dynamic-scaling behavior in the
microscopic regime of the domain-area distribution reflects the
“microscopic” dynamics of domain walls in the system under
consideration. An effective theory that describes the dynamics
in our system is quantum-fluid dynamics for multicomponent
superfluids. It is interesting how the quantum-fluid effect
is connected to the anomalous behavior of the microscopic
regime in the quantum fluids. Here, the anomaly is suggested
to occur in the presence of circular vortex sheets described in
the quantum-fluid dynamics.

A. Hydrodynamic description

To provide a quantitative evidence of the above suggestion,
we introduce a hydrodynamic theory for a vortex sheet between
two domains in a two-component superfluid. Consider a
coreless vortex of circulation κnv(nv = 0,±1,±2, . . .) with
the circulation quantum κ in the superfluid, where the core
of a vortex in a sufficiently large ↑ domain is occupied by a ↓
domain at rest as is illustrated in Fig. 4(b). The domain may
be not completely circular in the highly nonequilibrium SSB
development while the stationary solution of a coreless vortex
has a circular domain wall. Since the ↑ domain has a circular
superflow along a domain wall between ↑ and ↓ domains,
a relative rotational velocity between the domains causes a
distribution of vorticity along the wall forming a circular vortex
sheet. For example, see Fig. 2 in Ref. [30].

Here, we shall describe a circular vortex sheet as an
equilibrium state. According to a theory of quantum-fluid
dynamics [30], such a state is stabilized by the centrifugal
force caused by the rotational superflow, while a flat vortex
sheet is dynamically unstable without external forces owing
to the Kelvin-Helmholtz instability (KHI) [31]. The radius R

of the circular wall is estimated by the equation of pressure
equilibrium [32]

�ph = ph
↓ − ph

↑ = σwall

R
(13)

with the tension coefficient σwall of the wall and the hydrostatic
pressure ph

j (j =↑ , ↓) along the wall in the j domain. In
quantum-fluid dynamics for the GP Lagrangian (11), there is a
so-called quantum pressure originating from the uncertainty re-
lation or the spatial gradient of the order-parameter amplitude.
The quantum pressure is included in the tension coefficient
σwall and neglected in the pressure ph

j for our hydrodynamic
theory, where the fluid compressibility is neglected in bulk.

The pressure p̄h
j in the bulk, where the superfluid is at

rest, is the sum of ph
j and the hydrodynamic pressure pd

j =
1
2ρjv

2
j ; p̄h

j = ph
j + pd

j according to the Bernoulli’s principle.
Here, ρj and vj are the mass density and superfluid velocity
along the domain wall in the j domain, respectively. The
Z2 symmetry of the Hamiltonian for the multicomponent
superfluid corresponds to p̄h

↑ = p̄h
↓, which reduces to

�ph = pd
↑ − pd

↓ = 1
2ρ↑v2

↑ − 1
2ρ↓v2

↓. (14)

For example, in the case of segregated binary BECs, the
hydrostatic pressure is given by the Lagrangian density Pj

of the j component. In the incompressible approximation of
the hydrodynamic theory neglecting the quantum pressure
term ∝(∇√

nj )2, one obtains Pj → ph
j = μjnj − 1

2ρjv
2
j −

1
2gn2

j = p̄h
j − pd

j with p̄h
j = μjnj − 1

2gn2
j for a stationary

state�j (r,t) = e−iμj t/h̄�j (r), whereμj is the chemical poten-
tial of the j component. Because of the original Z2 symmetry
of the Lagrangian, we have

p̄h
↑ = p̄h

↓ = 1
2gn2 (15)

with μj = gn, with which we have the two ground states
with the same energy; (|�↑|2,|�↓|2) = (n,0) or (0,n) in bulk,
corresponding to spontaneous breaking of Z2 symmetry. Then,
we obtain Eq. (14) for the case of binary BECs too. Note that
the relation (14) is generally derived from the hydrodynamic
theory under the condition p̄h

↑ = p̄h
↓ of the Z2 symmetry.

B. Dynamic scaling of a circular vortex sheet

The hydrodynamic theory gives the dynamic-scaling re-
lation between the circulation number nv and the area S =
πR2 of a circular domain in the microscopic regime. A
dynamic-scaling law for superfluid circulation κnv is obtained
from Eqs. (13) and (14). Since the ↓ domain is at rest
(v2

↓ = 0) and the ↑ domain has a superfluid velocity v2
↑ =

(κnv/2πR)2 along the circular domain wall, one obtains n2
v =

2(2π/κ)2σwallR/ρ↑, which reduces to the dynamic-scaling law
for the vortex distribution,

|ñv(S̃)| ≡
√

lmin

l
|nv(S)| ∼ S̃1/4 (S̃min 
 S̃ 
 1). (16)
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FIG. 5. Dynamic-scaling plot of the circulation quantum number
|nv(S)| from t/t0 = 101 to 1049. The inset shows the ratio Pv(S̃) of
the number of domains with |nv| �= 0 from t/t0 = 21.2 to 1049. Error
bars correspond to the standard deviation for the quantities

√
ξ/ l|nv|

and Pv.

Here, we used the fact that the length

ξwall ≡ 1

2

(
κ

2π

)2
ρ↑

σwall
(17)

characterizes a length scale related to the domain wall, and
thus, it should be on the order of the wall thickness lmin.

In the conventional coarsening systems, a circular domain
(Dmic = 1) shrinks and finally collapses in bulk owing to
dissipation or evaporation. In contrast, a circular domain with
vortices (nv �= 0) in the quantum fluid is stable with a rotational
superflow in equilibrium. This is why the number of domains
in the microscopic regime is statistically enhanced up to the
upper limit τmic → 3/2 in the superfluid system.

To apply the dynamic-scaling law (16) without any change,
we assume that circular domains in the microscopic regime
are independent as was assumed in the literatures [7,23]. More
specifically, the domains in the regime are not expected to
have holes of opposite component within. In other words,
there are no domains embedded inside a circular domain in
the microscopic regime. Actually, we could not find such
small domains embedded inside domains with S 
 Sl in the
numerical experiments [see, e.g., Figs. 2(e) and 2(f)].

C. Dynamic-scaling plot of circulation number

We examined the dynamic-scaling law (16) for the nu-
merical experiments of binary BECs. Figure 5 shows the
dynamic-scaling plot of the ensemble average of |nv(S)| for
domains with nv(S) �= 0. The number nv was obtained by
numerically integrating the superfluid velocity along domain
walls. The scaling law (16) is observed in the late stage for the
same reason as is the case of the scaling plot of Fig. 3. It is
interesting that the dynamic-scaling plot is successful even in
the macroscopic regime with |ñv| ≈ S̃2/5.

Each plot of different times in Fig. 5 has an upturn at
S̃ ∼ S̃min. The upturn effect reflects the core structure of a
coreless vortex whose core has a radius on the order of
lmin, which was neglected in the process of the derivation of
Eq. (16). The correction for the upturn effect is computed
qualitatively by considering the density variation owing to the
rotational superflow in the stationary solution of a coreless
vortex for the GP Lagrangian (11). Considering the situation
of Fig. 4(b) for S � Smin and neglecting the quantum pressure

term ∝(∇√
nj )2 again, we may write as gn↑ = μ↑ − h̄2n2

v
2mr2 (r >

R � ξ ) and gn↓ = μ↓ (r < R) in the stationary vortex solu-

tion. Then, �ph = 1
2gn2

↓ − 1
2gn2

↑ = 1
2gn2[1 − (1 − n2

vξ
2

2R2 )
2
] =

σwall
R

reduces to

|nv| = R

ξ

√√√√√2

⎛
⎝1 −

√
1 − ξ 2

ξwallR

⎞
⎠. (18)

This formula consistently reproduces the upturn effect around
R ∼ lmin (S ∼ Smin) with lmin = ξ ∼ ξwall. Moreover, Eq. (18)
reduces to the dynamic-scaling law (16) for lmin 
R (Smin 
S)
approximately.

D. Vortex supply by Kelvin-Helmholtz instability

The above statistical discussion is meaningful when do-
mains with vortices are dominant over vortex-free domains
(nv = 0) in the microscopic regime. The inset of Fig. 5 shows
the plot of the probability Pv(S̃) in which a domain of S̃ has
vortices with nv �= 0. The probability is very small in the initial
stage and then grows in the early stage. In the late stage, most
domains contain vortices.

One might assume that quantized vortices are nucleated
due to the Kibble-Zurek mechanism [33,34]. The mechanism
causes nucleation of quantized vortices via a spatially inho-
mogeneous growth of a complex scalar field of the superfluid
order parameter from zero in the initial state. In our system,
however, the superfluid order parameters �↑ and �↓ are finite
initially. Instead, a real scalar field, e.g., n↑ − n↓, can be our
effective order parameter, where not vortices but domain walls
are nucleated as topological defects of this system. In fact,
the phase θ↑,↓ is almost uniform and there are less vortices in
earlier times [see Fig. 2(a)].

How are quantized vortices that exist in the late stage
nucleated? A possible mechanism for the vortex nucleation
is the KHI. The KHI can occur when there is a vortex sheet
between two fluids. If the relative velocity across the vortex
sheet exceeds the critical velocity VKH for the KHI in binary
BECs, a ripple wave is excited on the domain wall and
the vortex sheet releases a portion of “vorticity charge” as
quantized vortices (see, e.g., Fig. 1 in Ref. [31] for the dynamics
under external potentials). A vortex sheet can exist due to
a local superflow induced by complex motions of domain
walls during the highly nonequilibrium development. Since
the critical velocity VKH is zero without external potential,
quantized vortices are easily nucleated from vortex sheet in
our system. Note that VKH is nonzero for the circular vortex
sheet in the microscopic regime since the centrifugal force
due to the rotational superflow plays the role of the stabilizing
force.

In the initial stage, relative motion between two components
is negligible since the Bogoliubov excitations, amplified due
to the dynamic instability from the fully mixed state (�↑ =
�↓ = const), does not cause momentum exchange between
two components [35]. This is why there are less vortices
nucleated by the KHI in earlier times [Figs. 2(a) and 2(b)]
but we found vortices in later times [Figs. 2(e) and 2(f)] after
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domain walls start to make a complex motion by inducing a
relative velocity locally.

The released vortices due to the KHI can be absorbed again
by domain walls. When vortices are absorbed into a domain
in the microscopic regime by forming a vortex sheet, the sheet
can be stabilized against the KHI as its equilibrium condition
was described by Eq. (13). Such a circular vortex sheet survives
long unless the domain collides to other domains. As a result,
the probability Pv grows with time, becoming substantially
large in the late stage, where almost domains contain vortices.
This result clearly shows that the influence of superflow is
essential to understand the later-stage dynamics.

V. SUMMARY AND DISCUSSION

A dynamic-scaling hypothesis for the domain-area distri-
bution during coarsening dynamics of Z2 symmetry breaking
was proposed (Fig. 1). The large-scale numerical simulations
of segregating binary superfluids supported the prediction of
the hypothesis for the late stage of the SSB development: there
exist the two scaling regimes with distinct exponents τmic ≈ 3

2
and τmac ≈ 2 in the microscopic and macroscopic regimes,
respectively (Fig. 3). Such a hierarchy was a missing piece
of the puzzle numerically and theoretically in the previous
studies with smaller systems [21,22]. The number of domains
in the microscopic regime is anomalously maximized in the
superfluid systems while the macroscopic regime exhibits the
universal scaling behavior of percolation theory. The dynamic-
scaling law (16) for the vortex distribution and its dynamic-
scaling plot (Fig. 5) showed that the anomaly is induced by
the quantum-fluid effect in the presence of circular vortex
sheets in the microscopic regime. Since a large-scale system
of binary or spinor BECs has been realized for investigating
nonequilibrium fluid dynamics in quasi-two-dimensions [36],
it is in great hope that the dynamic-scaling behaviors of
segregating binary superfluids will be observed in future
experiments, which would pioneer the research on a different
type of nonequilibrium statistical mechanics raised in the
quantum systems.

Interestingly, the dynamic-scaling plot for circulation num-
ber nv yields a different scaling behavior with |ñv| ∼ S̃2/5

in the macroscopic regime. This suggests that distribution
of velocity or vorticity may obey a different scaling law or
power law for length scales larger than the average distance
l between domain walls. This situation is similar to the
hierarchy in quantum turbulence, where the Kolmogorov or
semiclassical power law is realized over length scales larger
than the average distance between vortex lines and a different
power law is expected for smaller length scales [37,38]. In the
field of quantum turbulence, the connection regime between
the two scaling regimes has also received a lot of attention and
should be discussed further qualitatively here. An excitation
of Kelvin wave, a perturbation mode of a quantized vortex,
due to reconnections of vortices is crucial in the context of the
transition from the Kolmogorov cascade in the “macroscopic”
(semiclassical) regime to the Kelvin wave cascade in the
“microscopic” (quantum) regime [39,40]. By using the above
analogy between quantum turbulence and our system, an ex-
citation of ripple wave, a perturbation mode of a domain wall,
due to collisions of domain walls can be important to describe

the connection regime. This situation is in contrast to the
conventional coarsening systems of nonconserved field where
collisions of domain walls occur rarely and most of domain
walls are smooth curves owing to the energy dissipation.
A hierarchy in turbulent superflow has never been observed
experimentally in a direct way, and then the scaling behavior for
smaller length scale have never been identified. In this sense,
theoretical and experimental investigations into these aspects
are fruitful for the domain coarsening system of binary BECs.

To reinforce our hypothesis on phase ordering dynamics, the
theory can be applied to different multicomponent superfluids,
where vortex sheets are stabilized. An important application is
quasi-two-dimensional 3He-A confined in a slab system, where
chiral domain walls were recently visualized [41]. The order
parameter is the vector field l̂ that represents the direction of
orbital angular momentum of the Cooper pair in the dipole-
locked 3He-A. A one-to-one correspondence exists between
the l̂ field of 3He-A and the (pseudo)spin field of spinor (binary)
BECs, according to the Mermin-Ho relation that represents
vorticity distribution due to the vector-field texture [42–44]. In
this sense, these superfluid systems can show a similar effect
even if the “microscopic” dynamics differs between the 3He-A
and spinor (binary) BECs. By quenching the 3He-A system
to the superfluid phase from the normal fluid phase, domain
growth should occur. Then, the characteristic domain-area
distribution, as is illustrated in Fig. 1, will be observed when
the characteristic domain size is much larger than thickness of
domain wall and much smaller than the system size.
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APPENDIX: TECHNICAL DESCRIPTION
ON THE NUMERICAL ANALYSIS

The numerical simulation of the coupled Gross-Pitaevskii
(GP) equations is computed on a two-dimensional lattice of
square grids. The grid size �x must be smaller than ξ to
precisely simulate the dynamics of the instability and the quan-
tized vortices, which will appear at the late stage. We require
a computational system whose size is much larger to satisfy
the conditions S̃min 
 1 and S̃max 
 1 for attaining the coex-
istence of the microscopic and macroscopic regimes. In our
simulation, which utilized the Crank-Nicolson method with
periodic boundary conditions, the size and number of the nu-
merical grids are set to meet these requirements during the time
development as �x/ξ = 0.4 and L/�x = 4096, respectively.

The numerical results are obtained by averaging 64 samples
of the time evolution. The ensemble averages, except for the
average of l, were taken by considering the periodic boundary
conditions; averaged quantities are calculated by averaging
64 samples after the secondary average over the 8×8
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pseudosamples obtained by shifting the field data of a single
simulation in the x and y directions by i × L/8 and j × L/8
with integers i and j (0 � i,j � 7), respectively. The length
L/8 is much larger than the characteristic length l of the field,
so the secondary average improves the statistical analysis
substantially.

The domain-area distribution was calculated as follows.
A domain wall is defined as a collection of sides between
neighboring grids with nd ≡ n↑ − n↓ > 0 and nd < 0. A
domain is surrounded by a closed domain wall (or the system
boundary and a open domain wall that ends at the boundary).

A saddle point, an intersection of the walls in the numerical
lattice, occasionally occurs when two domain walls are close
to each other. Then, we calculate the average value n̄d of nd

over the four grids around the saddle point and then regard the
point with n̄d > 0 (<0) as a point occupied by the ↑ (↓) com-
ponent connecting the diagonal domains with nd > 0 (<0). All
domains are labeled with different numbers. The area of each
domain is calculated by counting the number of grids existing
inside the domain. By performing a histogram analysis for the
number distribution of domain area, we obtain the domain-area
distribution after averaging the data over the samples.
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