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Ultracold atoms in multiple radio-frequency dressed adiabatic potentials
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We present the first experimental demonstration of a multiple radio-frequency dressed potential for the
configurable magnetic confinement of ultracold atoms. We load cold 87Rb atoms into a double-well potential
with an adjustable barrier height, formed by three radio-frequencies applied to atoms in a static quadrupole
magnetic field. Our multiple radio-frequency approach gives precise control over the double-well characteristics,
including the depth of individual wells and the height of the barrier, and enables reliable transfer of atoms
between the available trapping geometries. We characterize the multiple radio-frequency dressed system using
radio-frequency spectroscopy, finding good agreement with the eigenvalues numerically calculated using Floquet
theory. This method creates trapping potentials that can be reconfigured by changing the amplitudes, polarizations,
and frequencies of the applied dressing fields and easily extended with additional dressing frequencies.
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I. INTRODUCTION

Our understanding of quantum systems has been shaped by
the ability to study ultracold atoms in a variety of trapping
geometries. These range from regular potentials such as lat-
tices [1], waveguides [2], rings [3,4], and box traps [5,6] to
more arbitrary configurations such as tunnel junctions [7] and
disordered potentials [8]. Such traps are often implemented
using optical methods, exploiting their versatility in spite
of drawbacks such as unwanted corrugations from fringes,
sensitivity to alignment, and off-resonant scattering processes
that require large detunings and associated optical powers.

The application of a radio-frequency (RF) field to a static
magnetic trap dramatically changes the character of the con-
finement [9,10], providing additional parameters to control the
potential while retaining the advantages over optical dipole
force traps. A single RF applied using an atom chip [11] has
been used to coherently split a one-dimensional (1D) quantum
gas [12], a technique since used to shed light on the nature of
thermalization in near-integrable 1D quantum systems [13]. RF
‘dressed’ adiabatic potentials (APs) have also been employed
to probe 2D gases [14,15]. Ring traps can be implemented by
time averaging [16,17] or by the addition of an optical dipole
potential [18] and are used to study superflow or for matter-
wave Sagnac interferometry [2]. The introduction of a multiple
radio-frequency (MRF) field provides an additional means by
which to shape these potentials [19], further increasing the
versatility of magnetic traps.

In this work we demonstrate MRF APs for the first time,
creating a highly configurable double-well potential with
three radio-frequencies. Dynamic control over these potentials,
which take the form of two parallel sheets, can be achieved by
manipulating the RF polarization and amplitude or properties
of the underlying static field [2,20,21]. These traps are intrinsi-
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cally state and species selective [19,22,23], with demonstrably
low heating rates when created using macroscopic coils located
a few centimeters from the atoms [14]. Magnetic double-well
potentials have previously been demonstrated using a single
RF on an atom chip [12,20] and by time-averaging either
a bare magnetic trap [24,25] or an AP [16,17]; our MRF
method builds upon these works to offer increased tunability
through independent control of the constituent dressing-field
components. This double-well potential could be developed
to investigate tunneling dynamics or cold-atom interferometry
[12,26] between pairs of 2D sheets. As a natural extension,
additional frequency components can be applied to produce
lattices [19], continuous potentials, or wells connected to a
reservoir [27].

Our discussion begins with an introduction to the theory
of MRF dressed potentials in Sec. II, focusing on the exper-
imentally demonstrated three-frequency field. In Sec. III we
present our experimental results, exploring the manipulation
of atoms in our MRF double-well potential. We describe
the experimental apparatus and methods in Sec. III A and
demonstrate precise control over the potential landscape in
Sec. III B.

After a discussion of RF spectroscopy methods in Sec. III C,
we use this technique to probe the MRF potential landscape
and validate our theoretical model in Sec. III D. We conclude
in Sec. IV by outlining the experimental possibilities arising
with complex trapping geometries controlled by multiple RF
fields.

II. ATOMS IN A MULTICOMPONENT RF FIELD

The dressed-atom picture of atom-radiation interaction
[28,29] can be used to describe atoms trapped in optical, mi-
crowave [30,31], and RF fields [9]. An RF dressed adiabatic po-
tential provides a trapping mechanism for cold atoms subjected
to uniform RFs and inhomogeneous static magnetic fields
[9,32]. We describe the theory of MRF dressed potentials in
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two parts: Sec. II A presents the calculation of the quasienergy
spectrum using Floquet theory, and Sec. II B describes the
resulting potential surfaces and practical considerations of their
implementation.

A. Atom-photon interactions

In this work we consider 87Rb atoms in the F = 1 hyper-
fine ground state, originally confined in the static magnetic
quadrupole field

B0(r) = B ′
q(xêx + yêy − 2zêz), (1)

with B ′
q the radial quadrupole gradient and êx , êy , and êz the

Cartesian unit vectors. This inhomogeneous field introduces a
spatial dependence to the Zeeman splitting between hyperfine
sublevels. We apply the homogeneous MRF dressing field

BMRF(t) =
∑

j

Bj

cos(ωj t + φj )êx − κj sin(ωj t + φj )êy√
1 + κj

,

(2)

where Bj , ωj , and φj are the amplitude, angular frequency,
and relative phase of each frequency component, respectively.
In our experimental implementation we use three RF com-
ponents, ωj = ω1,2,3 = 2π × (5,6,7) × 0.6 MHz, producing
circularly polarized dressing fields for κj = 1 and linearly
polarized fields for κj = 0. The following discussion describes
either linear or circularly polarized RF fields, for which the
dressed-atom Hamiltonian of the system reads

V =
∑

j

h̄ωja
†
j aj + gF μBF · [B0(r) + BMRF], (3)

where

F · BMRF =
∑

j

Ej

(
αj√

2
F+ + βj√

2
F− + ζjFz

)
a† + H.c.

(4)

In this expression, BMRF(t) now describes the second quantized
operator for the MRF field with mode densities Ej and
amplitudes αj , βj , and ζj as defined in Eqs. (5) and (6). The
Hermitian conjugate is indicated by H.c., while gF denotes the
Landé g factor and μB the Bohr magneton.

The first term in Eq. (3) accounts for the energy of the
RFfield component j with angular frequency ωj and the corre-
sponding photon creation and annihilation operators a

†
j and aj .

The second term describes the interaction between the atomic
spin F, defined following the convention in Ref. [33], and the
total magnetic field, comprising static and RF components with
operators B0(r) and BMRF(t), respectively.

The combined system of a magnetically confined atom, RF
radiation, and the interaction between them can be intuitively
described in the dressed-atom picture, as illustrated in Fig. 1 for
a single- and triple-frequency field. In the absence of interac-
tions with the RF field, the dressed eigenstates |n1,n2, . . . ,mF 〉
are the tensor products of the Fock states of each RF field |nj 〉
and the atomic Zeeman substates |mF 〉. These form a ladder
of eigenenergies gF μBmF |B0| + ∑

j nj h̄ωj in which the three
Zeeman substates are repeated with a spacing of ωf , the highest
common factor of RF photon frequencies ωj . The interaction

described by Eq. (4) drives transitions between dressed states,
turning energy level crossings into avoided crossings.

While the dressed-atom picture provides an intuitive visu-
alization of the RF dressing process, the large mean photon
number of the RF field allows it to be represented classically
by replacing Ej a

†
j and Ej aj with their mean field value 1

2Bj .
This is performed within the context of the interaction picture,
in which V → U

†
RFV URF and |ψ〉 → U

†
RF |ψ〉 with URF =

exp [i
∑

j a
†
j ajωj t].

The RF field is decomposed into components parallel and
perpendicular to a local axial vector ẑ′, where F · B0 = B0Fz′ .
The parallel component is given by 1

2Bjζj exp[i(ωj t + φj )] +
c.c., where c.c. indicates the complex conjugate, with

ζj (r) = 1√
1 + κj

(sin θ cos φ + iκj sin φ). (5)

From the definition of the static quadrupole field,
cos θ = −2z(x2 + 4z2)−1/2 and cos φ = [(x2 + 4z2)/(x2 +
y2 + 4z2)]1/2. The anticlockwise- and clockwise-rotating
components of the perpendicular field are 1

2Bjαj exp[i(ωj t +
φj )] + c.c. and 1

2Bjβj exp[i(ωj t + φj )] + c.c., respectively,
with

αj (r) = 1√
2 + 2κj

(cos θ − i sin θ sin φ − κj cos φ),

βj (r) = 1√
2 + 2κj

(cos θ + i sin θ sin φ + κj cos φ). (6)

In this basis the semiclassical version of the Hamiltonian
presented as Eq. (3) becomes

V (t) = gF μBB0Fz + gF μB

2

∑
j

[(
αj√

2
F− + βj√

2
F+

+ ζjFz

)
Bje

i(ωj t+φj ) +
(

α∗
j√
2
F+ + β∗

j√
2
F− + ζ ∗

j Fz

)

×Bje
−i(ωj t+φj )

]
, (7)

which is periodic in time with period T = 2π/ωf . The coef-
ficients αj , βj , and ζj give the projection of the field operator
in the local circular basis, with |αj |2 + |βj |2 + |ζj |2 = 1.

Using Floquet’s theorem, the eigenstates of this time-
periodic Hamiltonian, with period T , can be expressed in
the form |ψ(t)〉 = exp[iE′t/h̄] |�(t)〉, the product of a phase
term and the time-periodic state vector |�(t)〉, where |�(0)〉 =
|�(T )〉. Alternatively, one can write |ψ(t)〉 = U (t) |ψ(0)〉,
where U (t) is the time evolution operator. We calculate U

through numerical integration of the Schrödinger equation
with the interaction Hamiltonian, Eq. (7). Comparing these
two equations for |ψ(t)〉, we find U (T ) |ψ(0)〉 = |ψ(T )〉 =
exp[iE′T/h̄] |ψ(0)〉. The phases E′T/h̄ can be associated with
the energy of the dressed eigenstates of Eq. (3) at time T

[34,35] such that the dressed-state eigenenergies modulo h̄ωf

are given by the 2F + 1 eigenvalues of (−ih̄/T ) log U (T ).
These eigenenergies are illustrated in Fig. 1 for the three-RF
example that we investigate experimentally.
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FIG. 1. (a) Eigenenergies of the dressed atomic states showing the avoided crossing that forms due to a single applied RF at ω1 (dotted
vertical line). Black lines show the trapping well for atoms in |m̃F = 1〉 with Rabi frequency �1. Gray lines show the untrapped |m̃F = 0,−1〉
eigenenergies. (b) A three-component RF field forms a double well. The system periodicity is now defined by ωf , the highest common factor of
the RF components, with avoided crossings formed at the resonance of each RF component. The energies of the eigenstates at each resonance
are shifted by the presence of the other RFfield components, translating the well minima in space. Weak avoided crossings are also formed by
multiphoton couplings at integer values of h̄ωf , indicated by arrows. (c) The potential can be deformed into a broad single well by increasing
the amplitude of the middle field component. Solid and dashed lines show the potential for different barrier heights. (d) The relative amplitudes
of the outermost RFs control the imbalance in well depth. Any combination of RF amplitudes can be used to shape the potential, for example,
to mediate atom transport between the wells. Note that, for clarity, we omit effects of gravity in figures except where it serves an illustrative
purpose.

B. Adiabatic potentials

The interaction gF μBF · BMRF couples the states to form
avoided crossings at values of the static field for which the
energy splitting gF μBB0 is resonant with an integer multiple
of h̄ωf . When this interaction is sufficiently strong and the
static field orientation varies sufficiently slowly with position,
an atom traversing an avoided crossing can adiabatically follow
this new eigenstate, labeled by the quantum number m̃F [36].

In the case of a single applied RF with angular frequency
ω1 shown in Fig. 1(a), atoms trapped in m̃F = 1 experience

a trapping potential UAP (r) = m̃F h̄

√
δ2(r) + �2

1(r), where
δ(r) = |gF μBB0(r)/h̄| − ω1 gives the angular frequency de-
tuning of the RF from resonance and the Rabi frequency is
determined by the applied RF amplitude and polarization.

The spatial variation of the static field amplitude B0(r)
translates the detuning dependence of the potential to a spatial
dependence, such that for the static quadrupole of Eq. (1)
the resultant trapping potential forms an oblate spheroidal
‘shell trap.’ Atoms are trapped on the surface of this resonant
spheroid, over which the spatial variation of the coupling
strength is dictated by the RF polarization.

The Rabi frequency for a circularly polarized RF field is
given by

�1 = gF μBB1

2
√

2h̄

(
1 ± 2z√

x2 + y2 + 4z2

)
, (8)

with B1 the magnetic field amplitude of the ω1 RF field and x,
y, and z Cartesian coordinates with their origin at the center
of the quadrupole field. The sign of the second term depends

on the handedness of the RF field polarization; in this work
the handedness is chosen such that the coupling is maximized
at the south pole of the resonant spheroid. For the case of an
RF field linearly polarized in the xy plane the Rabi frequency
instead takes the form

�1 = gF μBB1

2h̄

(
r2
⊥ + 4z2

r2
⊥ + r2

‖ + 4z2

)1/2

, (9)

where r‖ and r⊥ describe the coordinates parallel and perpen-
dicular to the polarization direction of the linear RF field. The
resonant spheroid therefore has maximum coupling at points
for which the parallel component is 0 and zero coupling at the
points on the equator for which the perpendicular component
is 0.

As illustrated in Fig. 1(b), this principle can be easily ex-
tended to the MRF case, in which the three first-order avoided
crossings form two trapping wells separated by an antitrapping
barrier for an atom in m̃F = 1. This results in trapping on
two concentric spheroids forming a spatially extended double
well in which the relative heights of the barrier and both wells
are controlled by the three separate input RFs. Multiphoton
interactions lead to cross-talk between these features, and the
impact of the amplitude �j of each avoided crossing on the
properties of its neighbors is investigated experimentally in
Secs. III B and III D. Also studied in Sec. III D is the effect of
the relative phase φj between RF components; this alters the
overall shape of the MRF waveform and thus influences the
strength of nonlinear multiphoton processes that occur.

Adiabaticity constraints motivate the choice of param-
eters including the frequency separation, RF amplitudes,
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and static field gradient. An atom moving at a constant
velocity v through this spatially varying potential will re-
main trapped with a probability approximately given by
the Landau-Zener (LZ) model: this states that PLZ = (1 −
exp[−h�2/4gF μB∂tB0(vt)])2, where the time derivative of
the static field B0 indicates the field gradient as experienced by
the moving atom [19,37]. Minimizing the well spacing requires
a dressing RF frequency separation comparable to the Rabi
frequency of each RF component.

As the piecewise approach presented in Ref. [19] is invalid
in this limit [38,39], Floquet theory is employed to calculate
the MRF dressed-state eigenenergies. Numerical artifacts are
removed by appropriate meshing over the range of magnetic
field values considered, while an intuitive depiction of MRF
dressing that uses the resolvent formalism to discard these
artifacts is explored in Ref. [35].

III. EXPERIMENTAL IMPLEMENTATION
OF THE MRF POTENTIALS

A. Trapping atoms in an adiabatic potential

In standard operation, we routinely produce BECs of 3.5 ×
105 87Rb atoms in the |F = 1,mF = −1〉 hyperfine state using
a time-orbiting potential (TOP) trap [40], via an experimental
sequence that we can truncate to load thermal atoms into an
AP prior to a final stage of evaporation. The TOP is formed by
applying a bias field, rotating at 7 kHz, to the static quadrupole
field of Eq. (1). This bias field sweeps the quadrupole field in a
horizontal circular orbit with a rotation radius given by BT /B

′
q ,

with BT the amplitude of the TOP field.
The TOP and dressing RF fields are generated by a coil array

that surrounds the atoms, with an extent of a few centimeters.
This array is illustrated in Fig. 2. The RF signals for each
coil and frequency component are independently generated
by direct digital synthesis [41]. This digital control over the
amplitude and polarization of each dressing field component
enables us to precisely sculpt the waveform and resultant
potential as a function of time. The signals for each coil
are combined using splitters [42] and amplified by 25-W
amplifiers [43]. The RF coil array has a self-resonance of
approximately 7 MHz such that, with a custom wide-band
impedance match, we can confine atoms in APs with dressing
frequencies in the range 2π × 2.7 to 2π × 4.4 MHz without
additional amplification. Mixing processes in the amplifiers
constrain us to use only combinations of dressing frequencies
with a common fundamental ωf , ensuring that the resulting
intermodulation products are far detuned from transitions
between dressed states such that we avoid losses.

We load a single-RF shell with thermal atoms as described
in [17,21,44], combining the TOP field with dressing RF
to produce a time-averaged adiabatic potential (TAAP) as
illustrated in Figs. 2(b)– 2(e). The dressing RF is switched on
while the TOP field satisfies 2h̄ω1/gF μB > BT > h̄ω1/gF μB

such that the TOP field sweeps the resonant spheroid in an orbit
outside the location of the atom cloud. With an RF amplitude
of the order of �j = gF μBBj/(

√
2h̄) = 2π × 400 kHz at the

south pole of the spheroid, decreasing BT allows us to load
the atoms into the TAAP formed at the lower of the two
intersections of the spheroid with the rotation axis under the

FIG. 2. (a) Our magnetic fields are generated by a coil array that
surrounds the ultrahigh-vacuum glass cell. The racetrack coils are
connected in pairs to generate orthogonal components of the rotating
TOP and dressing RF fields. The single circular coil provides the RF
knife used in evaporation and spectroscopy. Quadrupole gradients
are applied using the large anti-Helmholtz coils located above and
below the a.c. array. (b) Prior to loading the AP, the atoms are
confined in the TOP. When the dressing RF is applied, the rotating
bias field of amplitude BT moves the resonant spheroid in a circular
orbit. For BT > h̄ω1/μBgF the shell orbits outside the atom cloud
(yellow area). (c) Lowering BT causes an intersection of spheroid and
rotation axis, creating and loading the TAAP where RF evaporation
can be performed. (d) BT → 0, loading atoms into the shell trap. (e)
Applying three dressing RFs creates the double-shell potential.

influence of gravity. The RF field is circularly polarized in
the laboratory frame, with a handedness that maximizes the
interaction strength at the bottom of the resonant spheroid.
Using an additional weak field we then optionally perform
forced RF evaporation to BEC in 2 s, exploiting the enhanced
radial trap frequencies inherent to the TAAP. Reducing BT to
0 subsequently loads atoms from the TAAP onto the lower
surface of the shell. This reliably loads condensates of greater
than 3 × 105 atoms into the shell trap with negligible heating.

B. Potential shaping and the double shell

This single-RF configuration forms the starting point for the
MRF double-well potential, with atoms initially confined in the
shell corresponding to either ω1 or ω3 and ultimately trans-
ferred into the combined ω1,2,3 = 2π × (5,6,7) × 0.6 MHz
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FIG. 3. Typical time sequence of the dressing RF amplitudes used to load a BEC into the double-shell configuration, where �j =
gf μBBj/(

√
2h̄) denote the constituent field amplitudes. The lower panels show the three-frequency potential (including gravity) at key times

during this loading sequence, with dotted lines indicating the locations associated with the first-order resonances of the dressing frequencies,
ω1, ω2, and ω3. This illustrates the transformation into a three-frequency single well before the barrier is raised to split the cloud between the
two wells. These experimental parameters avoid losses due to the second-order resonances indicated by stars in the panels above. The relative
amplitudes of the RF components determine the final distribution of atoms between each well.

potential. In our apparatus the 2π × 0.6 MHz frequency
difference between RF components maps to a spatial well
separation of ∼140 μm at a quadrupole gradient B

′
q = 62.45

G/cm, allowing the trapping wells to be clearly resolved
with our low-resolution imaging system. The double-shell
loading procedure is shown in Fig. 3 for the case of loading
from a single shell at ω3. We first ramp up �1, which has a
minimally perturbative effect on the potential near the atoms
but establishes this resonance in preparation for the subsequent
application of the field at ω2. As shown in Fig. 1, the avoided
crossing formed by ω2 takes the form of an antitrapping barrier.
As �2 increases, the barrier is lowered and the MRF potential
is flattened, rounded out, or tilted slightly according to the
desired loading scheme and relative values of �1, �2, and �3.
To minimize any sudden changes in the width of the potential
experienced by the atoms as the barrier is lowered, �1 is held
at an artificially high value and lowered to the value at which
atoms can be transferred only once the barrier has been ramped
down fully. Once atoms equilibrate within this new potential,
we raise the barrier to separate the wells and complete the
loading process. This method is illustrated in Fig. 3 for the RF
ramps used to split a BEC between the two shells, and variants
on this loading scheme were used in the remaining figures. The
second-order resonances apparent in Fig. 3 place an upper limit
of h̄ωf on the well depth; the combination of RF amplitudes
and frequency separation is therefore chosen to complement
the temperature of atoms loaded into the potential.

The final population imbalance between the wells is in-
fluenced by the relative amplitudes of each RF component
during the ramp. The effect of the barrier height is illustrated
in Fig. 4, where we vary the maximum value of �2 to load
a controllable proportion of atoms between the lower and
the upper wells, formed by ω3 and ω1, respectively. Starting
from a cloud of thermal atoms in the lowest shell, the RF

components ω1 and ω2 are turned on adiabatically following
a procedure similar to that described in Fig. 3, in which �1 is
ramped directly to its final value. Initially, few atoms possess
sufficient energy to cross the high barrier that results from a
small �2, and minimal population redistribution between the
wells occurs. Increasing �2 to lower the barrier allows more
atoms to populate the second well. At around �2 = 2π × 400
kHz the barrier vanishes and the atoms distribute themselves
across the broad single well formed by the three RF dressing
frequencies as shown in Fig. 1(c). Finally, �2 is decreased to
raise the barrier and split the population distribution into two
distinct wells, with the proportion reflecting any imbalance
between the lowest energy of each well. Figure 4(a) illustrates
a loading process that transfers 52% of the atoms into the
well defined by ω1. This could be corrected or exacerbated
by adjusting either �1 or �3 to raise or lower the potential
energy minimum of each well.

Figure 5 illustrates the atom density arising from two pos-
sible transport sequences. Keeping the lowest energies of each
well approximately equal allows us to load the balanced double
shell with approximately 75% efficiency in atom number,
while deliberately mismatching these energies allows a full
population transfer between the wells. Crucially, Fig. 5 also
demonstrates the effect of the barrier amplitude on the positions
of the two trapping wells that is shown in the calculated energy
levels in Fig. 1: theω1 andω3 potential minima are drawn closer
together as the barrier is lowered to form the broad single well.

The simple potential shaping schemes demonstrated here
for three frequencies comprise single wells, a double well, and
a flattened three-frequency well. We have also demonstrated
a method of dynamic control that provides the intermedi-
ate stages for loading. This approach can be extended in
a straightforward manner by applying additional dressing
RFs.
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FIG. 4. (a) The percentage of atoms loaded from the wells formed
by ω3 to ω1 for a given maximum amplitude of the ω2 field, expressed
in terms of �2 = gF μBB2/(

√
2h̄) (purple circles). The RF amplitude

ramps are qualitatively similar to Fig. 3, with �1 = 2π × 192 kHz
and �3 = 2π × 442 kHz. This amplitude disparity compensates the
effects of gravity, with a quadrupole gradient of B

′
q = 154 G cm1. The

barrier was ramped to its maximum value over 400 ms, then reduced
to 2π × 90 kHz over 100 ms. The blue line shows the effective well
depth (right-hand scale) seen by atoms in the well at ω3 for each
final value of �2, and the dashed vertical line indicates the barrier
height for which a separate well at ω1 can no longer be resolved.
(b, c) Absorption images of thermal atoms in the double shell at a
quadrupole gradient of 60 G cm−1 after a 1-ms time of flight, with
(b) an approximately balanced configuration with 52% of atoms in
the upper shell and (c) 75% of the population in the lower shell. The
color bar indicates the color map used for all absorption images in this
work and has a linear scaling from 0 to the maximum optical depth
in each image.

C. RF spectroscopy

RF spectroscopy is an experimental technique commonly
used to precisely characterize bare magnetic traps and adiabatic
potentials [45,46]. A weak probe RF is applied to atoms
held within the trap, causing expulsion of atoms when the
probe RF is resonant with a transition between trapped and
untrapped states. With these resonances appearing as dips in
the measured atom number, the probe frequency is varied
to map out the spectrum of transitions. For a BEC this
resonance has a width of the order of the chemical potential
(typically kilohertz), while for a thermal cloud the resonance
is broadened due to the thermal distribution of atoms in the
trap [46].

RF spectroscopy is employed here to characterize the key
components of our trapping fields: the TOP field magnitude

FIG. 5. (a–c) Vertical slices through in-trap absorption images of
the MRF potential plotted vs the barrier amplitude �2 and averaged
over several experimental runs. Displacement is measured from the
center of the quadrupole trap, and each slice scaled to the same total
atom number. (a) All atoms begin in the shell at ω3. With �1 = 192
kHz and �3 = 446 kHz, �2 is ramped up (lowering the barrier) to
flatten the potential and load the atoms into a broad single well. (b)
Transport sequence with �1 = 2π × 192 kHz and �3 = 2π × 511
kHz. This tips atoms across the flattened 3-RF potential to load atoms
from the lower to the upper shell upon reducing �2 to raise the
barrier. (c) Loading of a double-shell configuration from the flattened
3-RF potential, with �1 = 2π × 192 kHz and �3 = 2π × 446 kHz
to maintain approximately equal atom populations in each well. The
highest values of �2 correspond to a single well, with two distinct
wells forming as �2 is reduced to raise the barrier. The apparent
transfer of atoms into the shell at ω1 around �2 = 2π × 400 kHz
is a normalization artifact, resulting from atom loss from the lower
well due to technical noise in the apparatus. (d–g) Line plots of
atom density for the snapshots in the double-shell loading sequence
at barrier amplitudes labeled in (c) and corresponding to �2 =
2π × 660 kHz (d), �2 = 2π × 622 kHz (e), �2 = 2π × 577 kHz
(f), and, �2 = 2π × 266 kHz (g). This shows the progression from
3-RF single well (d, e) to flat-bottomed ‘box trap’ (f) and double-shell
potential (g).

BT , the amplitudes of applied dressing RF components, and,
ultimately, the MRF eigenenergies. BT is measured by RF
spectroscopy of a condensate confined in the TOP, and B ′

q

calibrated by measuring the trap frequency of the center-of-
mass mode of a condensate oscillating in this approximately
harmonic potential at a known current through the quadrupole
coils.

To calibrate the RF amplitudes, transition frequencies are
measured for single-RF shells at ω1,2,3 = 2π × (3,3.6,4.2)
MHz. We use linearly polarized RF to measure the RF fields in
the x and y directions independently. The Rabi frequencies are
calculated from these measured resonances through Floquet
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theory as described in Sec. II. This calculation incorporates
the Bloch-Siegert shifts [47,48]. We also include the effect of
gravity by adding the potential energy term Hgrav = mgz to
the Hamiltonian, Eq. (3), which typically shifts the transition
by a few kilohertz. The amplitude of each RF component
used in the MRF APs is deduced using a cowound pickup
coil; we convert the measured voltage amplitudes into a
magnetic field amplitude using the single-RF Rabi frequency
calibration measurements. The linearity of the pickup coil
response was verified by repeating the single-RF spectroscopy
measurements for a variation in RF amplitude of up to 50%. We
note that the combined MRF input approaches a value close to
the saturation of the amplifier, resulting in a compression of the
amplitudes of each RF component of up to 4% for the highest
dressing RF powers applied; this saturation is accounted for
by the RF pickup measurement.

The probe RF field must be sufficiently weak that it does not
itself shift the transition. For the APs used here the Rabi fre-
quencies of the dressing RFs are hundreds of kilohertz, while
that of the probe is below 100 kHz. Selected RF spectroscopy
measurements were repeated with probe amplitudes spanning
1/3 to 3 times their standard values, with no measurable shift
of the resonance observed.

D. RF spectroscopy in the MRF potential

The closely spaced ladder of dressed-atom energy levels
resulting from the application of multiple dressing RFs leads
to a large number of transitions between different Floquet
manifolds that can be driven by an appropriate probe RF
field [32,49]. However, many of these correspond to higher-
order multiple-photon processes with low transition rates.
Determining the theoretical transition frequencies begins with
the calculation of the AP eigenenergies using the Floquet
method in Sec. II, followed by the selection of a single energy
level corresponding to the double well from the infinite ladder
of periodicity h̄ωf . The condensate is localized at the position
of minimum energy within the well near resonance with ω1.
Energy separations from this position in the trapped eigenstate
to all untrapped eigenstates of the ladder are calculated, yield-
ing a spectrum of possible transitions, but with no information
as to the strength of each individual transition.

The calculated eigenenergies are experimentally verified
using a BEC confined in the ω1 shell, using a linearly polarized
MRF field to minimize experimental variables and eliminate
any experimental uncertainty arising from the phase between x

and y field components. The spectroscopy method, calculated
values, and measured results are illustrated in Fig. 6. We
measure the dressed-state transition as illustrated in Fig. 6(a).
By separately varying �2 and φ2, the amplitude and phase of
the barrier RF, we experimentally probe the effects of these two
parameters. These results are plotted in Figs. 6(c) and 6(d),
respectively. The theoretical transitions were calculated for
each set of measured RF field amplitudes �j and phases φj

and plotted with a finite width corresponding to the uncertainty
arising from quadrupole gradient and RF amplitude calibra-
tions.

The RF amplitude ramps for these measurements follow a
method similar to that discussed in Sec. III A but starting with
a BEC in the shell formed by the linearly polarized ω1 field

component, ramped from circular polarization over 500 ms.
�2 and �3 are then ramped up to their final values with a set
relative phase, to form the MRF potential in which RF spec-
troscopy is performed. For the barrier amplitude spectroscopy
measurement plotted in Fig. 6(c), �1 = 2π × 187 kHz and
�3 = 2π × 248 kHz, while �2 takes values between 0 and
2π × 332 kHz with a quadrupole gradient B ′

q = 82.5 G cm−1.
Over the course of the �2 amplitude ramp, we measure a fall
in �1 by 5% and a rise in �3 by 1% due to amplifier saturation
and nonlinearities. This amplitude sweep is performed with a
fixed phase relationship between the RF components, with rel-
ative phase components φ(1,2,3) = (0,0.302 ± 0.001,0.132 ±
0.002)π radians, where the quoted uncertainty is given by the
standard deviation of the measured relative phase of each RF
component. The measured field amplitudes and relative phase
values are accounted for in the calculated transition frequencies
plotted as the theoretical gray line in Fig. 6. The phase variation
measurement shown in Fig. 6(d) sees barrier amplitudes fixed
at �1,2,3 = 2π × (177,310,245) kHz, with B ′

q = 82.8 G cm−1

and φ2, the relative phase of the barrier component, varied
over a π range. The amplitudes �1 and �3 are set such that
the condensate remains confined to the initial well for the
spectroscopy measurements, during which the weak RF probe
is applied for a duration of 40 ms. The potential is deformed
slowly to avoid sloshing of the condensate; ramps occur over
a duration of 800 ms, which is slow compared to the inverse of
the 200- to 400-Hz axial trap frequencies. The probe duration
is sufficiently long that any residual sloshing in the wells would
only manifest as a broadening of the measured RF spectroscopy
resonances.

The resonance point is extracted from the asymmetric
spectroscopy profile [46] by fitting a function of the form a(x −
b) + c/

√
x − d. This function provides a good approximation

to the asymmetric lineshape of the resonance profile, from
which the resonant probe frequency that minimizes the atom
number can be extracted. Only the data points lying within the
range of the resonance were included in the fit, such that the
asymmetric parabola captures the center of the resonance with
minimal free parameters.

The actual lineshape can be simulated numerically [46] and
is influenced by the amplitudes of both the dressing and probe
RF fields and the chemical potential of the trapped conden-
sate. With these factors, a separate fit for each spectroscopy
data set is impractical and at risk of overfitting. Qualitative
comparisons between the simulated lineshape and the chosen
fit function suggest that the systematic uncertainty arising from
a discrepancy between these models would be smaller than a
kilohertz. The uncertainty in the fitted resonance location for
both single-RF calibration and MRF potentials is estimated
from the 99% confidence interval of the fitted minimum and
is of order 1 to 3 kHz, although with a statistical accuracy
limited by the sample size. This forms the dominant source
of uncertainty in the measured transition frequencies, with
a smaller influence from uncertainty in measuring dressing
RF amplitudes with the pickup coils. Agreement is found
with calculated values for the transition frequencies for both
amplitude and phase measurements.

The total width of each MRF spectroscopy resonance is
of order 10 kHz, with the peak itself identifiable to within
3 kHz. The 40-kHz shift of the resonance peak over the full
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FIG. 6. (a) Sketch of the RF spectroscopy method showing dressed-state eigenenergies at two barrier heights, plotted in the absence of
gravity. States corresponding to the two barrier heights are indicated by solid purple and dotted green lines. A BEC is confined in the well near ω1,
as illustrated by the circles, offset from the minima of the potential to incorporate gravity. We apply a probe RF resonant with the dressed-state
transition, as illustrated by the arrows. (b) Measured spectroscopy resonances at �2 = 2π × 0, �2 = 2π × 244 kHz, and �2 = 2π × 332 kHz,
with �1 = 2π × 187 kHz and �3 = 2π × 248 kHz. Bold circles are included in the fit used to extract the minimum of the resonance (solid
lines; see text), with gray sections indicating the 99% confidence interval for each minimum. (c) Change in measured (circles) and theoretical
(line) resonances in the MRF potential for a range of values of �2, corresponding to the full data set of the resonances shown in (b). The phase
difference between RF components during this amplitude sweep was held constant, with relative phase values corresponding to the final circle
in (d) with a barrier phase term φ2 = 0.302π radians. (d) Change in measured (circles) and theoretical (line) resonances in the MRF potential
for a range of values of φ2 for fixed field amplitudes �1,2,3 = 2π × (177,310,245) kHz. Error bars in both plots are calculated using the 99%
confidence interval in the spectroscopy resonance fit in combination with the uncertainty in the RF amplitude and its calibration. The theory
line was obtained with no free parameters by calculating the transition energy for each value of �2 probed experimentally, with an interpolation
between these values. Its finite width corresponds to the experimental uncertainty in the three measured RF amplitudes �j at each value of �2.

range of the parameter sweep is thus clearly resolved. The
widths of each resonance are comparable to Ref. [45] although
broader than those presented in Ref. [14]. This arises from the
relatively weak vertical trap frequencies of 290 Hz in this work,
compared to 2 kHz in Ref. [14], and the consequent increase
in the broadening effect of the gravitational sag.

As shown in Fig. 6, increasing �2 to lower the barrier
reduces the energy separation between trapped and untrapped
states for the measured transition. A shift in the measured
RF spectroscopy resonance of the order of tens of kilohertz
is observed as �2 is varied, in agreement with the theory.
The variation in transition energy with phase φ2 relative to
φ1,3, resulting from the dependence of nonlinear processes on
the overall shape of the waveform, demonstrates a periodicity
in π expected from the numerical calculations; the same
calculations suggest that a 2π periodicity would arise upon
varying φ3.

IV. CONCLUSIONS AND OUTLOOK

We have performed the first experimental implementation
of a multiple-RF adiabatic potential, using three separate
dressing RFs to produce a double-well configuration with
independent control over each trapping well and the barrier be-
tween them. We have demonstrated potential shaping through
manipulation of the individual RF amplitudes, achieving trans-
port from one well to another, a reliable loading sequence
for this double well, and dynamic control over the barrier
height. Experimental characterization of the MRF potential
by RF spectroscopy of a trapped BEC validates the theoretical
calculation of MRF eigenenergies by Floquet theory.

The separation of the wells in our scheme is determined
by the quadrupole gradient and frequency spacing of the
MRF components. In this work, we have demonstrated a large
spacing, of order 100 μm.
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This choice was motivated by the desire to image the
double well in situ with a low-NA imaging system. Far smaller
separations are possible using smaller frequency intervals and
higher quadrupole gradients, limited only by the constraint that
atoms follow the potential adiabatically [37]. For example,
we have confined a BEC in a double well with a separation
of 7.5 μm, using a frequency interval of 200 kHz, which is
sufficient for matter-wave interference experiments. Exploit-
ing the anisotropic character of RF dressed potentials [14],
our technique could be used to probe the behavior of 2D
systems [50]. Further reduction to a separation suitable for the
observation of tunneling or Josephson oscillations is possible
within the constraints imposed by adiabaticity.

Dressing with multiple independently generated radio-
frequencies opens a range of new opportunities beyond the
existing single-RF adiabatic potential experiments while re-
taining their characteristic smoothness and low heating rates.
As an extension of this work, additional frequency components
enable the implementation of more complex geometries such

as lattices [19], box traps, and wells coupled to larger reser-
voirs. Independent control over both the polarization and the
amplitude of each RF component permits further manipula-
tions, for example, to connect our two trapping potentials at
different locations through the spatial variation of the coupling
strength. The MRF technique can also be combined with
existing proposals to produce AP lattices using microstructured
arrays of conductors [51,52] or provide a means of independent
species-selective confinement for mixtures of atomic species
with different gF values [23].
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