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Entropy of the Bose-Einstein-condensate ground state: Correlation versus ground-state entropy
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Calculation of the entropy of an ideal Bose-Einstein condensate (BEC) in a three-dimensional trap reveals
unusual, previously unrecognized, features of the canonical ensemble. It is found that, for any temperature, the
entropy of the Bose gas is equal to the entropy of the excited particles although the entropy of the particles in
the ground state is nonzero. We explain this by considering the correlations between the ground-state particles
and particles in the excited states. These correlations lead to a correlation entropy which is exactly equal to the
contribution from the ground state. The correlations themselves arise from the fact that we have a fixed number of
particles obeying quantum statistics. We present results for correlation functions between the ground and excited
states in a Bose gas, so as to clarify the role of fluctuations in the system. We also report the sub-Poissonian nature
of the ground-state fluctuations.
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I. INTRODUCTION

The properties of a Bose condensate [1,2] are usually stud-
ied by using a grand canonical ensemble by making a number
of assumptions which can be justified in the thermodynamic
limit [3–5]. For a condensate consisting of relatively small
number of particles, it is better to use a canonical ensemble.
This ensemble is useful in understanding the particle number
distribution, as well as the fluctuations in the number of
particles in ground states and excited states, has been obtained
[6–10]. Such calculations do not require a thermodynamic
limit. An important result is the distribution of the number of
particles in the ground state. Recent work presents the entropy
of the ground state of an ideal N -particle Bose-Einstein
condensate (BEC) from the condensate density matrix [11,12]

ρn0n0 = HN−n0

(N − n0)!
e−H, (1)

where H = N (T/Tc)3 for a harmonic trap at temperature T

and critical temperature Tc and n0 is the number of atoms in
the condensate state.

This distribution has some novel features—it is like the
well-known laser distribution for photons in a single mode
laser. This distribution can be used to calculate the ther-
modynamic properties of the ground state; in particular the
approximate expression for entropy was obtained. From the
von Neumann entropy

S = −kB

∑
n

ρnn ln ρnn, (2)

with Boltzmann constant kB, one finds [12]

S = kB ln W + kB

2
, (3)

where W = [2π (�n0)2]1/2 = √
2πH. Note that, for T → 0,

we need to use the expression (1) or the full canonical
ensemble calculation (See Fig. 1).

In this paper we study the Bose gas in a three-dimensional
trap. We use the canonical ensemble to obtain exact results

for the quantum statistical entropy. Our exact results reveal
new features of the Bose gas. We consider the density matrix
associated with the ground state ρgnd and for the excited
states ρex obtained from the full canonical density matrix.
The considerations of exact canonical ensemble reveal that
the total entropy of the Bose gas at any temperature T is
equal to the entropy of the particles in the excited states;
although the entropy of the ground-state particles is nonzero.
This remarkable result implies the existence of the correlation
entropy in a Bose gas and in fact the correlation entropy
must cancel the contribution from the ground state. We trace
this result to the fact that in the ensemble the number of
particles is fixed and thus the total density matrix does not
factorize ρT �= ρgnd ⊗ ρex. The nonfactorized nature of the full
density matrix is further clarified by calculating the corre-
lation functions between the ground-state and excited-state
particles.

In Sec. II, we derive reduced density matrices from the
total matrix in number-occupation representation and consider
the corresponding entropies. An explicit example is shown in
Table I. Furthermore, the equality of the total entropy and
entropy of the excited particles is confirmed by comparing
the forms of two density matrices. In this procedure, the
correlation entropy is also defined. In Sec. III, we derive the
explicit relations among the entropies of particles in an ideal
BEC, which leads to the joint entropy theorem for the total
entropy, as shown in Fig. 2. In Sec. IV, the consideration of
correlation functions has provided more clear understanding
on the correlation entropy in BEC system. The correlations
between the occupations of ground state and that of excited
states has shown a similar tendency as the correlation entropy
along temperature, as shown in Fig. 3. In Sec. V, we conclude
this paper by asserting the equality between two entropies:
the total entropy and the entropy of the excited particles of
a BEC in the canonical ensemble. Explicit procedures to
calculate the partition function and related thermodynamic
quantities in a canonical ensemble are shown in Appendixes A
and B.
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FIG. 1. Entropy of ground state in an ideal Bose gas, which
is trapped in a 3D harmonic trap. The total number of particles
is N = 200. The critical temperature for a 3D harmonic trap is
Tc = h̄�/kB[N/ζ (3)]1/3, with harmonic trap oscillation frequency
�, and Riemann’s zeta function ζ (s). This exact result on entropy is
calculated by using the canonical ensemble partition function, which
is explained in Appendixes A and B and is drawn as a solid red line.
From the approximate density matrix, Eq. (1), the corresponding von
Neumann’s entropy is plotted as a dashed blue line.

II. BOSE-EINSTEIN-CONDENSATE JOINT
GROUND-STATE ENTROPY

We first prove that the total entropy of an ideal Bose gas at
a temperature T is the same as the entropy of excited states

of that system. At equilibrium, the total density matrix for an
ideal Bose gas with a fixed total number of particles N is given
by

ρT =
∑

n0,{ni }
p(n0,{ni})|n0,{ni}〉〈n0,{ni}|δN−n0,

∑
ni
, (4)

with the occupation distribution {ni} on the excited states
constrained by the condition

∑
i ni = N − n0. The reduced

density matrices for the ground state and for the excited states
are

ρgnd = Tr{ni }n0
(ρT) (5a)

=
∑
n0

p(n0)|n0〉〈n0|, (5b)

and

ρex = Trn0 (ρT) (6a)

=
∑
{ni }

p

(
n0 =

∑
i

ni,{ni}
)

|{ni}〉〈{ni}|. (6b)

The occupation probability for the ground state is

p(n0) =
∑
{ni }

p(n0,{ni}). (7)

Note that the probabilities for the states |{ni}〉 in ρex are the
same joint probabilities as for the states |n0,{ni}〉 in ρT. The
explicit example for calculating the corresponding probability
is explained in Table I.

TABLE I. (a) The system consists of two identical Bose particles (red dots), which are distributed among three different states (blue lines).
Due to the Bose statistics, the number of possible configurations is six. (b) The total density matrix ρT and the corresponding entropy S(ρT) and
(c) the reduced density matrix ρex for excited states and the corresponding entropy S(ρex). By comparing insets (b) and (c), we can easily confirm
the equality of the two entropies. (d) The density matrix and entropy for the ground state. The relation between the occupation probability for
the ground state and the whole joint probability is explicitly shown.
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From the von Neumann entropy, Eq. (2), the corresponding
entropies are

S(ρT) = −kBTrn0,{ni }(ρ ln ρ) (8a)

= −kB

∑
n0,{ni }

p(n0,{ni}) ln p(n0,{ni}), (8b)

and

S(ρex) = −kBTr{ni }(ρex ln ρex) (9a)

= −kB

∑
n0,{ni }

p(n0,{ni}) ln p(n0,{ni}), (9b)

showing that the entropy of the total system, Eq. (8b), is equal to
that for the excited states, Eq. (9b), since the accessible states
and corresponding probabilities are the same. Table I shows
this property explicitly for a system of two Bose particles in
three nondegenerate levels.

Similarly, we can write the entropy of the ground state:

S(ρgnd) = −kBTrn0 (ρgnd ln ρgnd) (10a)

= −kB

∑
n0

p(n0) ln p(n0). (10b)

Furthermore, the above result is applicable for any quantum
system of identical particles including ideal Fermi atoms in a
trap with a fixed total number of particles. Hence, we can say
that the removal of any single state in the canonical ensemble
preserves the entropy, since the total number of particles is
fixed by the constraint.

Since the total entropy of the system is same as that of the
excited states, what is learned from this result? In a system
of N ideal Bose particles, we can divide the system into two
parts: one is the ground state and the other is the excited states
[Eqs. (5a) and (6a)]. It is also possible to define the entropy of
each part [Eqs. (10a) and (9a)]. Since the total density matrix,
Eq. (4), does not factorize as, ρT �= ρex ⊗ ρgnd, we expect that
the entropy of the total system is not the summation of the
entropy of each part, S(ρT) �= S(ρgnd) + S(ρex), and we thus
introduce the correlation entropy [13] as

Scor(ρgnd,ρex) ≡ S(ρgnd) + S(ρex) − S(ρT). (11)

Remarkably, since S(ρT) = S(ρex), we see that

Scor(ρgnd,ρex) = S(ρgnd). (12)

Therefore, the entropy of the ground state can be interpreted as
the correlation entropy between the ground state and excited
states. According to information theory [14], the correlation
entropy Sc(ρgnd,ρex) is called the mutual information. Hence,
according to information theory we can say that the status of the
excited states can provide total information about the ground
state.

III. BOSE-EINSTEIN-CONDENSATE CONDITIONAL
GROUND-STATE ENTROPY

In statistics and Shannon’s information theory [15], con-
ditional distributions and the conditional entropy are useful
concepts. Using the conditional probability, we can identify
the amount of contribution of the ground state in entropy to
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FIG. 2. Entropy for ideal Bose gas which is trapped in a three-
dimensional harmonic trap. The detailed parameters are as in Fig. 1.
The total entropy is drawn with a dashed blue line, using the procedure
in Appendixes A and B, and the entropy of the ground state is in
the solid red line. In this picture, the entropy for the ground state is
multiplied by 100. From the behavior of the occupation number in
the ground state, we can see the entropy contribution of the ground
state is important below the critical temperature. In a similar way, in
terms of correlation entropy the relevant range of the correlation is
also below the critical temperature. The inset shows both entropies
below T/Tc = 0.2.

the excited states. The conditional probability for the excited
states with a given number of particles in the ground state is

p({ni}|n0) = p(n0,{ni})
p(n0)

, (13)

where the ground-state occupation probability is given by
Eq. (7). The entropy of ρex can be further evaluated:

S(ρex) = −kB

∑
{ni }

∑
n0

[p(n0)p({ni}n0 |n0)] ln[p(n0)]

− kB

∑
{ni }

∑
n0

[p(n0)p({ni}n0 |n0)] ln[p({ni}n0 |n0)]

(14)

= −kB

∑
n0

p(n0) ln p(n0) − kB

∑
n0

p(n0)

×
∑
{ni }

p({ni}n0 |n0) ln p({ni}n0 |n0) (15)

= S(ρgnd) +
∑
n0

p(n0)S
(
ρN−n0

ex

)
. (16)

whereρN−n0
ex is the reduced density matrix of excited states with

N − n0 particles, and S(ρN−n0
ex ) is the corresponding entropy.

Hence, the excited states S(ρex) contain information about the
ground state.

Similarly, we can rewrite the above relation for the total
entropy as

S(ρT) = S(ρgnd) +
∑
n0

p(n0)S
(
ρN−n0

ex

)
. (17)
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FIG. 3. The system is an ideal Bose gas trapped in a 3D harmonic
trap with 200 particles. The parameters are the same as in Fig. 1. The
normalized correlation function C1, Eq. (18), between the ground-
state occupation number and that of excited states is plotted as a
dashed blue line. C2, Eq. (20), is plotted as a dotted green line. The
correlation entropy, Eq. (12), or the entropy of the ground state, is also
drawn as a solid red line. In the figure we also show the sub-Poissonian
nature of fluctuations by plotting the parameter �n0/

√〈n0〉 [dashed
brown line (×5)]. The strong sub-Poissonian region corresponds to
�n0/

√〈n0〉 	 1.

This relation is known as the joint entropy theorem [14,16,17].
The entropy contribution of the ground state is in the total
entropy. We can interpret S(ρgnd) as the entropy of the ground
state and as the correlation entropy.

The explicit procedure to calculate the entropy for S(ρT)
and S(ρN−n0

exc ) is explained in Appendix B. Figure 2 shows the
entropy of the ground state, or the correlation entropy, for an
ideal Bose gas with 200 particles in a 3D harmonic trap.

IV. CORRELATION FUNCTION

To better appreciate the nature of correlations in the Bose
gas at low temperatures, we examine the variety of correlations
of occupation numbers between the ground state and the
excited states. The entropy is defined by the distribution
of occupation numbers; that is, the density matrix, and the
correlation function is defined by the corresponding random
variables; that is, the occupation numbers. For the ground-state
distribution the occupation number n0 for the ground state
is the corresponding variable, and for the excited states the
occupation number is

∑
i ni = N − n0.

As in a statistical description of the correlation between two
random variables, we can introduce the correlation between the
numbers of particles in the ground state and in excited states
as

C1

(
n0,

∑
i

ni

)
≡ 〈n0

∑
i ni〉√

〈n0
2〉〈(∑

i ni

)2〉
= 〈n0(N − n0)〉√

〈(n0)2〉〈(N − n0)2〉
. (18)
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FIG. 4. The correlation function C̃1, Eq. (21), is drawn among the
three lowest states. C̃1(n0,n1) is drawn as a solid red line, C̃1(n0,n2)
as a blue dashed line, and C̃1(n1,n2) as a green dashed-dotted line.
Since the occupation of the ground state is macroscopic in low
temperature, the correlation function is noticeable below T/Tc ∼ 0.2.
The correlation between the first- and the second-excited states
is negligible, since the occupation number in each state is small
compared with the total number of particles. The system is an ideal
Bose gas trapped in a 3D harmonic trap, and the parameters are the
same as in Fig. 1.

Note that the Schwarz inequality implies that C1 � 1. We
note that over the temperature range T/Tc ∼ [0.2 − 0.8], C1 �
1 implying a very high degree of correlation. Beyond this
temperature the correlation starts falling. Next we introduce
the correlation defined as the fluctuation around the mean:

C2

(
n0,

∑
i

ni

)
≡

[
〈n0〉

〈∑
i

ni

〉
−

〈
n0

∑
i

ni

〉]1/2

(19)

=
√

〈(n0)2〉 − 〈n0〉2. (20)

It is interesting that the conservation of total number N of
particles makes C2 identical to the (variance)1/2 of the ground-
state number. C2 shows a behavior which has similarities to the
behavior of the correlation entropy. However, the correlation
entropy shows a much slower dependence on T . This can be
understood as the ground-state entropy is the mean value of
p(n0) and is related in principle to all order of moments of n0.
If p(n0) were to be approximated by a Gaussian, then ln p(n0)
is directly related to ln C2 and because of the logarithmic
dependence, entropy shows a much slower dependence on T

than C2. In Fig. 3 we also show a very interesting character
of the statistics of the fluctuations in the ground state: the
fluctuations in the region close to T/Tc 	 1 are predominantly
sub-Poissonian as �n0/

√〈n0〉 < 1. The result from the
approximate expression, Eq. (1), is close to the exact result.

Although the fluctuations of the ground-state populations
have not been yet studied experimentally, this is possible in
principle from the snapshots of the images of the distribution of
particles in the trap. The peak and tail of the snapshots should
yield the ground-state and the excited-state distributions.
Such images have been used for studying the particle-number
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fluctuations in a trap when interparticle interactions are
important [18].

We next consider the correlation between two specific states
defined by

C̃1(ni,nj ) ≡ 〈ninj 〉√〈(ni)2〉〈(nj )2〉 , (21)

where

〈ninj 〉 =
N∑

ni=1

N−ni∑
nj =1

e−βniεi−βnj εj
ZN−ni−nj

(β)

ZN (β)
, (22)

which is derived in the supplementary information.
The correlation between the ground state and the

first-excited state is shown in Fig. 4. Although the occupation
number of the first-excited states is considerable around
T/Tc ∼ 1, the correlation between two states are negligible ex-
cept at low temperatures T/Tc � 0.1, where it is of order 1/N .

V. SUMMARY

The most important result of our exact calculation based
on the canonical ensemble is that the entropy of a Bose gas
confined to a three-dimensional harmonic trap is equal to the
entropy associated with the atoms in the excited states. This is
so even though, at any temperature, the entropy of the particles
in the ground state is nonzero. We bring out the reasons for this
surprising result by showing that the total entropy associated
with the full system consists of three contributions: the entropy
of the ground state, the entropy associated with the particles
in the excited state, and a contribution which we refer to as
the correlation entropy (analog of the mutual information from
information theory). We show on a very general ground that the
correlation entropy cancels the ground-state contribution. This
appears due to the fixed number of particles distributed among
the quantum states [19]. The explicit nature of correlations
among the particles in the ground state and excited states
is brought about by studying different types of correlation
functions involving the numbers in the ground state and excited
states. Because of number conservation, these correlations
become related to the ground-state fluctuations. Since the
entropy of the ground state is the mean value of the ln p(n0),
the fluctuations of n0 determine the value of the entropy of
particles in the ground state.
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APPENDIX A: EXACT PARTITION FUNCTION AND
OCCUPATION PROBABILITY IN CANONICAL ENSEMBLE

The partition function ZN in a canonical ensemble (CE) can
be written in terms of occupation number in each accessible

state as

ZN (β) =
∞∑

n0=0

∞∑
n1=0

· · ·
∞∑

nν=0

· · · e−βn0ε0e−βn1ε1 · · ·

× e−βnνεν · · · δ
(

N −
∑

ν

nν

)
(A1)

=
∑

n0,{ni }n0

e−β
∑

ν nνεν δ

(
N −

∑
ν

nν

)
, (A2)

where β = (kBT )−1 is the inverse temperature with the Boltz-
mann constant kB.

Let us consider the probability that state ν has more than n

particles. Then, the corresponding summation is restricted to
nν � n:

P (nν � n) = 1

ZN

∞∑
n0=0

∞∑
n1=0

· · ·
∞∑

nν=n

· · · e−βn0ε0e−βn1ε1 · · ·

× e−βnνεν · · · δ
(

N −
∑

ν

nν

)
(A3)

= e−βnεν
ZN−n(β)

ZN (β)
. (A4)

The probability for state ν to have n particles is

P (nν = n) = P (nν � n) − P (nν � n + 1) (A5)

= e−βnεν ZN−n(β) − e−β(n+1)εν ZN−n−1(β)

ZN (β)
.

(A6)

The average occupation number in state ν is

〈nν〉 =
N∑

nν=1

nνP (nν) =
N∑

nν=1

e−βnνεν
ZN−nν

(β)

ZN (β)
. (A7)

The total number of particles is given by sum of the average
occupation number of all states,

N =
∑

ν

〈nν〉. (A8)

By a simple manipulation, we get the following recurrence
relation [6,20]:

ZN (β) = 1

N

N∑
m=1

Z1(mβ)ZN−m(β). (A9)

Similar to Eq. (A5), we can write the occupation probability
for two states:

P (nν � n,nμ � m) = e−βnεν−βmεμ
ZN−n−m(β)

ZN (β)
. (A10)

So, the probability to find nν = n and nμ = m is

P (nν = n,nμ = m) = P (nν � n,nμ � m)

− P (nν � n,nμ � m + 1) (A11)

− P (nν � n + 1,nμ � m) + P (nν � n + 1,nμ � m + 1).
(A12)
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The correlation function between the two states can be easily
obtained. Explicitly, it is

〈nνnμ〉 =
N∑

n=1

N−n∑
m=1

e−βnεν−βmεμ
ZN−n−m(β)

ZN (β)
. (A13)

APPENDIX B: THERMODYNAMIC QUANTITIES
IN CANONICAL ENSEMBLE

The partition function ZN (T ,V ) in a canonical ensemble is
related to the Helmholtz free energy A(T ,V ) [3,4]:

ZN (T ,V ) = e−βA(T ,V ), (B1)

or

A(T ,V ) = −kBT ln ZN (T ,V ). (B2)

Thermodynamic quantities can be calculated from the
Helmholtz free energy through the Maxwell relations. For
example, the pressure P and entropy S are

P = −
(

∂A

∂V

)
T

, (B3)

S = −
(

∂A

∂T

)
V

, (B4)

U = 〈H 〉 = A + T S, (B5)

CV =
(

∂U

∂T

)
V

, (B6)

with isochoric heat capacity CV .
In terms of the partition function,

A

kB

= −T ln ZN, (B7)

P

kBT
=

(
∂ ln ZN

∂V

)
T

, (B8)

S = kB ln ZN + kBT

(
∂ ln ZN

∂T

)
V

, (B9)

U = kBT 2

(
∂ ln ZN

∂T

)
V

, (B10)

CV = 2kBT

(
∂ ln ZN

∂T

)
V

+ kBT 2

(
∂2 ln ZN

∂T 2

)
V

. (B11)

Derivatives of the partition function ln ZN with respect to the
temperature T or to the volume V give to the corresponding
thermodynamic quantities in canonical ensemble.
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Fluctuations of the Weakly Interacting Bose-Einstein Conden-
sate, Phys. Rev. Lett. 82, 4376 (1999).

[9] V. V. Kocharovsky, Vl. V. Kocharovsky, and M. O. Scully,
Condensate Statistics in Interacting and Ideal Dilute Bose Gases,
Phys. Rev. Lett. 84, 2306 (2000).

[10] M. Holthaus and E. Kalinowski, Condensate fluctuations in
trapped Bose gases: Canonical vs. microcanonical ensemble,
Ann. Phys. (NY) 270, 198 (1998).

[11] M. O. Scully, Condensation of N Bosons and the Laser Phase
Transition Analogy, Phys. Rev. Lett. 82, 3927 (1999); V. V.
Kocharovsky, M. O. Scully, S.-Y. Zhu, and M. S. Zubairy,
Condensation of N bosons. II. Nonequilibrium analysis of an

ideal Bose gas and the laser phase-transition analogy, Phys. Rev.
A 61, 023609 (2000).

[12] M. O. Scully, Entropy of photon and atom lasers (unpublished).
[13] The correlation entropy has been introduced in the same way as

in this article. For example, M. H. Partovi, Quantum thermody-
namics, Phys. Lett. A 137, 440 (1989); H. Huang and Girish S.
Agarwal, General linear transformations and entangled states,
Phys. Rev. A 49, 52 (1994).

[14] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information, 10th Anniversary ed. (Cambridge Uni-
versity Press, Cambridge, 2010).

[15] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity Press, Cambridge, 2013).

[16] M. Ohya and D. Petz, Quantum Entropy and Its Use, 2nd ed.
(Springer-Verlag, Berlin, 2004).

[17] A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50,
221 (1978).

[18] C.-S. Chuu, F. Schreck, T. P. Meyrath, J. L. Hanssen, G. N.
Price, and M. G. Raizen, Direct Observation of Sub-Poissonian
Number Statistics in a Degenerate Bose Gas, Phys. Rev. Lett.
95, 260403 (2005).

[19] This is also applicable to particles obeying Fermi-Dirac statis-
tics. The consequences of this will be the subject of a future
study.

[20] P. T. Landsberg, Thermodynamics with Quantum Statistical
Illustrations, Vol. 2 in Monographs in Statistical Physics and
Thermodynamics, edited by I. Prigogine (Interscience Publish-
ers Inc., New York, 1961).

013605-6

https://doi.org/10.1016/0370-1573(77)90052-7
https://doi.org/10.1016/0370-1573(77)90052-7
https://doi.org/10.1016/0370-1573(77)90052-7
https://doi.org/10.1016/0370-1573(77)90052-7
https://doi.org/10.1364/OE.1.000272
https://doi.org/10.1364/OE.1.000272
https://doi.org/10.1364/OE.1.000272
https://doi.org/10.1364/OE.1.000272
https://doi.org/10.1103/PhysRevLett.79.1789
https://doi.org/10.1103/PhysRevLett.79.1789
https://doi.org/10.1103/PhysRevLett.79.1789
https://doi.org/10.1103/PhysRevLett.79.1789
https://doi.org/10.1103/PhysRevLett.82.4376
https://doi.org/10.1103/PhysRevLett.82.4376
https://doi.org/10.1103/PhysRevLett.82.4376
https://doi.org/10.1103/PhysRevLett.82.4376
https://doi.org/10.1103/PhysRevLett.84.2306
https://doi.org/10.1103/PhysRevLett.84.2306
https://doi.org/10.1103/PhysRevLett.84.2306
https://doi.org/10.1103/PhysRevLett.84.2306
https://doi.org/10.1006/aphy.1998.5852
https://doi.org/10.1006/aphy.1998.5852
https://doi.org/10.1006/aphy.1998.5852
https://doi.org/10.1006/aphy.1998.5852
https://doi.org/10.1103/PhysRevLett.82.3927
https://doi.org/10.1103/PhysRevLett.82.3927
https://doi.org/10.1103/PhysRevLett.82.3927
https://doi.org/10.1103/PhysRevLett.82.3927
https://doi.org/10.1103/PhysRevA.61.023609
https://doi.org/10.1103/PhysRevA.61.023609
https://doi.org/10.1103/PhysRevA.61.023609
https://doi.org/10.1103/PhysRevA.61.023609
https://doi.org/10.1016/0375-9601(89)90221-1
https://doi.org/10.1016/0375-9601(89)90221-1
https://doi.org/10.1016/0375-9601(89)90221-1
https://doi.org/10.1016/0375-9601(89)90221-1
https://doi.org/10.1103/PhysRevA.49.52
https://doi.org/10.1103/PhysRevA.49.52
https://doi.org/10.1103/PhysRevA.49.52
https://doi.org/10.1103/PhysRevA.49.52
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/PhysRevLett.95.260403
https://doi.org/10.1103/PhysRevLett.95.260403
https://doi.org/10.1103/PhysRevLett.95.260403
https://doi.org/10.1103/PhysRevLett.95.260403



