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We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser
pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential
double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model,
the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and
the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the
parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy
above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by
solving the time-dependent Schrodinger equation (TDSE) within a one-electron model. The same TDSE results
can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the
RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform
laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact
excitation and ionization cross sections are calculated using the state-of-the-art many-electron R-matrix theory.
The simulation results for double-to-single-ionization ratios are found to compare well with experimental data
and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.
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I. INTRODUCTION

The classical three-step rescattering model [1,2] has
been widely employed to qualitatively interpret laser-induced
rescattering processes in the past two and a half decades.
According to this model, an electron is first ionized near the
peak of the laser’s oscillating electric field. In the second step,
the electron is subsequently driven by the laser field and has the
chance to return back to the parent ion when the field changes
direction. Upon return (third step), the electron may scatter
from the ion core. The elastic scattering can result in high-
order above-threshold ionization (HATI) [3] photoelectrons.
The returning electron can also recombine with the parent
ion with the emission of photons for high-order-harmonics
generation (HHG) [4]. Both HATT and HHG are basically one-
electron processes and can approximately be treated by using a
single-electron model. For multielectron targets, the returning
electron may ionize another electron of the ion or it may excite
the electron to an excited state, which is subsequently ionized
by the laser. These latter processes result in nonsequential
double ionization (NSDI) [5,6]. While HATT and HHG may be
calculated accurately within a single-electron model by solving
the time-dependent Schrédinger equation (TDSE), NSDI is
intrinsically a two-electron process resulting in two continuum
electrons in the final state. Accurate calculations of NSDI,
therefore, continue to present a great challenge, for which
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sophisticated theoretical modeling beyond the single-active
electron (SAE) approximation is needed.

According to the three-step model, HATI, HHG, and NSDI
all result from electron recollisions with the parent ion. Never-
theless, the three-step model was incapable of making actual
calculations before the quantitative rescattering (QRS) model
[7] was developed. According to the QRS model, the yields for
HATI, NSDI, and HHG can be expressed as a product of the
returning electron wave packet (RWP) with various field-free
electron-ion scattering cross sections, namely, elastic electron
scattering, electron impact ionization, and photorecombina-
tion, respectively.

While the QRS model developed by Lin and co-workers
has been widely used to simulate photoelectron energy spectra
and two-dimensional momentum distributions for both HATI
electrons [8—11] and HHG spectra [12,13] with great success,
there have been fewer investigations of NSDI. To study NSDI,
field-free inelastic electron impact excitation cross sections
and electron impact ionization cross sections are needed over a
broad energy range. Thus, while a few NSDI studies have been
carried out with the QRS model, such as the laser-intensity
dependence of nonsequential double ionization [14,15] as
well as the correlated electron momentum distributions and
their dependence on the carrier-envelope phase [16,17], the
accuracy is always marred by the limited quality of the field-
free inelastic electron impact excitation and ionization cross
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sections. Such limitations may not be too severe for studying
the laser-intensity dependence and the carrier-envelope phase
(CEP) dependence of the NSDI process, but this implies that
the role of target structure has not been clearly explored in
these experiments.

From the experimental point of view, the ratios of double
ionization versus single ionization by a strong laser field vs
laser intensity are likely to be the most accurate parameters that
can be determined in the laboratory. They can be determined
by taking the ratio of doubly to singly charged ions. While the
actual experimental intensity cannot be accurately determined
in general, a method based on the Perelomov-Popov-Terentév
(PPT) theory [18] was suggested recently to efficiently retrieve
accurate peak laser intensity from the measured ionization
signals [19]. The total single-ionization probability can also
be accurately calculated by solving the TDSE within the SAE
model for short pulses. If there is a reliable method to calculate
the NSDI yields, then the theoretical ratios can be compared to
the experimental ratios. In such comparisons, both single- and
double-ionization calculations should account for the actual
intensity distributions within a focused laser beam.

While single-ionization yields can be calculated for a known
laser field with reasonable accuracy, this is not the case for
double ionization, especially for the NSDI process. A direct
numerical solution of the TDSE for the NSDI process for
the two-electron helium atom in an 800-nm field has still not
been reported due to the difficulties of achieving numerical
convergence. However, the ratio for a 390-nm laser pulse was
predicted by Parker et al. [20]. Since NSDI is a rescattering
process, it is interesting to investigate whether accurate total
NSDI yields can be determined using the QRS theory. In the
present paper, this is carried out with two recent developments.
First, the returning electron wave packet in the QRS is properly
normalized to the TDSE results. Second, accurate electron
impact excitation and ionization cross sections for He' and
Ne™ in the low-energy region are calculated using the many-
electron B-spline R-matrix (BSR) method [21,22]. In order to
compare with the ratios obtained from actual experiments, the
calculations were carried out for He exposed to a 390-nm laser
pulse and Ne exposed to a 400-nm laser pulse.

The remainder of the present paper is arranged as fol-
lows. Section II summarizes the ingredients of the theoretical
methods. The details of the numerical procedure and the final
simulated results are presented in Sec. III. Finally, our conclu-
sions are given in Sec. IV. Unless indicated otherwise, atomic
units (a.u.) (i = |e| = m = 4mwep = 1) are used throughout the
manuscript.

II. THEORETICAL MODEL

A. The strong-field approximation

In the familiar strong-field approximation (SFA), the first
two terms of the perturbation series, called SFA1 and SFA2,
respectively, express the momentum-dependent ionization am-
plitude as

fsea(P) = fsea1(p) + fseaz2(p), (D

where p is the momentum of the detected photoelectron.

The SFA1 amplitude is given by

o0
fsear(p) = —i / dt(xp()lr - E@)|B0)Vi(1)), (2)
where E(t) = —9dA(t)/0t is the electric field of the laser, and
; is the initial ground-state wave function. The decay factor
B(t) introduced in Eq. (2) accounts for the depletion of the
initial state, which is given by

B(t) = exp [— / t dr’W(f)/z], 3)

where W(¢) is the time-dependent modified Ammosov-
Delone-Krainov (ADK) [23] rate proposed by Tong and Lin
[24]. The Volkov state x, in Eq. (2) is given by

(rixp(@) = Goame AT, 4)
where the action S is
1 ! / /
S(p.) =3 f dt'[p + At (5)

The second term in Eq. (1) accounts for laser-induced
rescattering, i.e., elastic scattering of the returning electron
from the parent ion. This term, called SFA2, is expressed as

/ dt/ dt/dkxp(t)|V|Xk(f)>

X (e H; (D) B()Wi (1)), (6)

where V is the scattering potential. It takes the form

Ssea2(p) =

V() = — 28 e, )
r

where « is a screening factor introduced to avoid the singularity
in the integrand in Eq. (6). The SFA2 amplitude (6) consists
of a five-dimensional integration, which can be reduced to
two dimensions by using the saddle-point approximation for
the integration with respect to k, as proposed by Lewenstein
et al. [25].

With the momentum-dependent ionization amplitude, the
momentum distribution of an electron emitted with energy
E = p?/2 in the direction of p is given by

d*Pgea
d3p

From Egq. (8), we obtain the energy spectra,

dPg; !
—SMA —27V2E / | fsra(p)|*d(cos 6), ©)
1

= | fsea(p)I*. 3

dE
and the total-ionization probability for single ionization,
dPga;
P = / —dEA dE. (10)

In Eq. (10), the contribution from SFA2 is neglected since it is
much smaller than the SFA1.

B. The time-dependent Schrodinger equation

The numerical solution of the Schrodinger equation in
a time-dependent laser field provides a reliable quantum
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description of both direct ionization and HATTI due to elastic
rescattering. Within the SAE approximation, the TDSE for an
atom in the presence of a linearly polarized laser field, in the
length gauge, can be written as

%%WOu)z[—%V2+me0)+r‘Equ“nﬂ’ an

where the model potential Vsag for atoms is parameterized in
the form
14+ aje™®" 4+ azre™ ™" + ase™ %"
Vsag(r) = — .12

r

The parameters in Eq. (12) are obtained by fitting the calcu-
lated binding energies from this potential to the experimental
binding energies of the ground state and the first few excited
states of the target atom [26].

The time-dependent equation is solved by using a second-
order split-operator method [27,28], and the wave func-
tion is expanded into direct products of discrete-variable-
representation basis sets [29-31] associated with Legendre
polynomials.

The momentum-dependent ionization amplitude is obtained
by projecting the total final wave function at the end of the
laser pulse onto eigenstates of a continuum electron with
momentum p,

Jrose(p) = (P, W (1 = 00)), (13)

where the continuum state @ is obtained by solving the
differential equation

1, — P2 _
—EV —I—VSAE(F) CDP = E(DP (14)

C. The QRS model for HATI

According to the QRS model, the momentum distribution
for HATT photoelectrons can be expressed as a product of the
returning electron wave packet and the elastic differential cross
section (DCS) for free electrons scattering from the target ion.
In the SFA model, the direct ionization and the ionization due
to rescattering are calculated by SFA1 and SFA2 separately,
and only SFA2 accounts for rescattering. Therefore, for a
photoelectron with momentum p detected at an angle 6 with
respect to the polarization vector of the laser field, we have

dO-B (kr aer)
e,

where Wggaz(k,) is the RWP describing the momentum distri-
bution of the returning electron. Furthermore, dop(k,,6,)/d<2,
is the DCS obtained in the first-order Coulomb-Born or plane-
wave Born approximation (PWBA) for elastic scattering of the
returning electron from the parent ion with momentum k, at an
angle 6, with respect to the direction of the returning electron.
In the PWBA, where the continuum electron wave functions
are represented by plane waves, the elastic scattering amplitude
is given by

| fsra2(P)I> = Wspao(ky) (15)

- g PV (dr = -2 (16
f(Q)——E/eXP(l‘I'r) (”)r—_q2+a2’ (16)

where ¢ is the momentum transfer. The latter is related to the
rescattering angle 6, and the returning electron momentum k,

by
g = 2k, sin(6,/2). (17)

Consequently, the elastic-scattering DCS in Eq. (15) can be
expressed as
dUB (kr 79r)
dse,

The photoelectron momentum p and the momentum k, of the
returning electron after scattering are related by

p=k — A, 19)

= f(@I* (18)

where A, is the instantaneous vector potential at the time when
the electron returns to the origin. Furthermore, to establish a
one-to-one relation between p and k,, one may use, approxi-
mately,

k, ~ 1.26|A,| (20)

for returning electrons near the cutoff. This may be calculated
from the one-dimensional classical theory of a free electron in
an oscillating laser field [8]. Similarly, for the TDSE calcula-
tions, the momentum distribution for HATI photoelectron can
be expressed as

do (k,,6,)
aQ,

It has been carefully verified that in the above equation, if
Wrpse(k;) is replaced by Wgga(k, ) obtained from Eq. (15) and
do (k.,0,)/d<2, is evaluated using standard potential scattering
theory, the shapes of the TDSE momentum distributions for
HATT electrons are well reproduced [8], while the absolute
magnitudes are different by a constant factor. On the other
hand, with the TDSE momentum distributions and accurate
DCSs, Wrpsg(k,) obtained from Eq. (21) is also in good
agreement with Wspao(k,), except for a normalization factor
owing to the error of the ionization rate in the SFA model.

| frose(P)I* = Wrpse(k,) 1)

D. The QRS model for NSDI

The QRS model can be applied to all laser-induced rescat-
tering processes. Unlike for HATI electrons, where the re-
turning electrons are elastically scattered by the ion, in NSDI
the returning electrons are inelastically scattered by impact
ionization and excitation processes. The total NSDI yield can
be calculated from [14,15]

’P2+ = der[WL(Er) + Wr(E})]

X [aexc(Er) + GeZe(Ei')]v (22)

where oex.(E,) and 0.,.(E,) are the total cross sections (TCSs)
for electron impact excitation and ionization from the ground
state of the target ion at incident energy E,. This is related to
the momentum of the returning electron by E, = k?/2, and
Wi (E,) and Wg(E,) are the RWP extracted from the “left”
(p; < 0) and the “right” (p, > 0) sides of the momentum
distributions for HATT photoelectrons, respectively. For the
long pulses considered here, W, (E,) = Wg(E,). As men-
tioned above, it has been demonstrated that the RWP obtained
from SFA2 and the TDSE agree well with each other [8], except
for an overall normalization factor.

013425-3



CHEN, LI, ZATSARINNY, BARTSCHAT, AND LIN

PHYSICAL REVIEW A 97, 013425 (2018)

V (a.u.)

z (au.)

FIG. 1. Barrier in the combined atomic and electric field potential
along the polarization axis z of the laser field (red solid curve). The
atomic potential is chosen as Coulombic with Z = 1 (black dashed
curve) and the (static) electric field is chosen as 0.07. The latter
corresponds to the returning time for wt = 290° in a laser field with
a peak intensity of 15x10'* W/cm?.

Clearly, it is much more convenient to employ SFA2 rather
than TDSE to calculate the RWP, especially in the case of
long laser pulses at high intensities, for which the TDSE
calculations are extremely challenging. Consequently, all the
RWP in Eq. (22) are taken from the SFA2 calculations after the
normalization factor was determined by comparing the RWPs
with those from a few representative TDSE calculations.

It should be noted that in Eq. (22), we assumed that all
excited electrons are tunnel ionized. The integration should be
performed over all energies higher than the threshold energy
of the returning electron.

E. Lowering of the threshold potential

According to the rescattering model, the maximum kinetic
energy that a returning electron can gain from the field is
3.17U,, where U, is the electron ponderomotive energy,
which is proportional to the intensity. Since a minimum kinetic
energy is required for the returning electron to ionize an
electron of the residual ion or to promote this electron to an
excited state, a single threshold energy of the ion is always
predicted by the QRS model. This model, however, as pointed
out by van der Hart and Burnett [32], does not account for
the effect of the laser field on the target ion. In particular, one
expects that the laser field will lower the threshold energy of
the returning electron for excitation and ionization, as depicted
in Fig. 1 in the static limit. The amount of lowering can be
calculated from the saddle point of

V(i) =zF, — Z/z. (23)
Here the reduction of the potential at the saddle is given by

Vi = =2/ Z|F,|, (24)

where F, is the electric field at the instant of scattering, and
Z = 2 for electron impact ionization and Z = 1 for electron
impact excitation of a singly charged ion, respectively. Thus,
for electron impact ionization and excitation taking place in
an electric field, the required minimum kinetic energies of the

laser-induced returning electron are lowered by |V} | compared
to the field-free case. In order to account for this effect,
therefore, Eq. (22) should be modified as

P — /dE,[WL(E,) + Wr(E,)]

X [Uexc(Er + 2\/ |E|) + GHZE(EV + 2\/ 2|Fr|)] (25)

Since the lowering of the potential saddle changes with time,
an effective average lowered potential at the return time of
t = 290°/w was used in this correction; see Ref. [15]. Note
that the lowered potential depends on the laser intensity.

In Ref. [32], it is suggested that for electron impact ion-
ization, the minimum energy with which the ejected electron
can escape is also lowered in the presence of the electric
field, and therefore another term corresponding to the barrier
height should be added to the scattering energy. Like Eremina
et al. [33], we do not follow their suggestion. In our R-
matrix calculation, the modification of the potential cannot
be separated into before and after the collision since energy is
conserved in the (e, 2¢) collision.

F. Focal averaging

The procedures outlined above only apply to a single
intensity. In an actual experiment, on the other hand, the
intensity distribution of a focused laser beam is not uniform in
space. Since the electrons collected experimentally originate
from atoms located somewhere in the interaction volume,
focal-volume averaging has to be taken into account in the
numerical simulations when comparing to experiment. To
achieve this, the total single-ionization rate at a peak intensity
I is expressed as

Iy
PH(ly) = 7>+(1)3—Vd1. (26)
0 al
For a laser beam with a Lorentzian distribution in the propa-
gation direction and a Gaussian distribution in the transverse
direction, the focal volume in Eq. (26) is given by [28]

AA. I°+2‘/1° 1 27)
ar I\1 T

To obtain total NSDI yield to compare with experiment,
volume integration over Eq. (25) has to be carried out. Since
the wave packet is a smooth function of returning electron
energy, we can simplify the volume integration to

P = /dE,[WL(E,) + Wr(E,)]

X [Oexc(Er + 2V | Fy|) + 0e2e(Er + 24/2|F])], (28)

where W; and Wy, are the focal-volume-averaged RWPs. It has
been tested that the difference between the double-ionization
yield obtained from Eq. (28) and that by performing focal-
volume integration on Eq. (25) directly is less than 8%.

III. RESULTS AND DISCUSSION

We aim to simulate the experimentally measured double-
to-single-ionization ratios for He in 120 fs linearly polarized
laser pulses at 390 nm [34], and Ne in 40 fs linearly polarized
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FIG. 2. Single-ionization yields for Ne exposed to linearly po-
larized laser pulses at 400 nm. The experimental data are taken
from Ekanayake ef al. [35], and the simulated results from the SFA
model are normalized for good visual agreement with experiment.
The calculations include the integration over the focal volume of the
laser.

pulses at 400 nm [35]. For this purpose, we first evaluated
the total single-ionization rate using the SFAIl. Figure 2
shows the simulated yields of Ne™ ions as a function of peak
intensity together with the corresponding experimental data of
Ekanayake et al. [35]. It can be seen that the normalized SFA1
results for Ne are in very good agreement with experiment
over the entire intensity range considered here. Note that the
integration over the focal volume of the laser was performed
in the numerical simulations.

In order to obtain the double-ionization yields for NSDI,
we need to evaluate the RWP and the TCS for electron impact
excitation and ionization of the target ions. The RWPs calcu-
lated using Eq. (15) with the focal-volume effect considered
are shown in Fig. 3 for He and Ne exposed to linearly polarized
laser pulses at 390 and 400 nm, respectively. It has been shown
that the RWP depends on the screening factor introduced in
Eq. (7). If a large screening factor is used, however, the RWP
converges [15]. In this paper, like in Ref. [15], we chose a
screening factor o« = 4. For the NSDI process, the returning
electron energy is large, meaning that scattering is being
contributed from small distance of the atom. Since the SFA2
integral contains a fast oscillating exponent, choosing a large o
avoids the need to integrate over a large volume which would
incurs numerical errors. The choice of large « is to avoid such
errors in the wave packet included in Eq. (28). Since the wave
packet calculated from SFA2 still has to be normalized to the
one from TDSE at one energy point, the specific o used is
not critical. Figure 3 shows that the RWPs at four selected
intensities drop rapidly at low energies, followed by a plateau
at high energies. Going into more detail, the flatness of the
RWPs at high energies for He is slightly different from that
seen for Ne. This is at least partially due to the fact that different
laser parameters were used for these two atoms and that the
focal-volume integration was included.

InFig. 3, the excitation thresholds of Het (40.8 eV) and Ne™
(27.0 eV) in the field-free case are marked by the vertical solid

Wavepacket (arb. units)

Electron energy (eV)

FIG. 3. Returning electron wave packets for (a) He and (b) Ne
in linearly polarized laser pulses at 390 and 400 nm, respectively.
The calculations include the integration over the focal volume of the
laser. The vertical solid lines mark the excitation thresholds of Het
and Ne™ in the field-free case, while the vertical dotted lines mark the
corresponding thresholds for excitations in the field at a peak intensity
of 15x10™ W /cm?. See text for details.

lines, while the vertical dotted lines mark the corresponding
thresholds for excitations in the field at a peak intensity of
15x10' W /cm? when the returning electron approaches the
parention at the time t = 290° /w. It should be emphasized that
as an assumption, the electric field at the moment of recollision
does not affect the energies of any bound states. The change
of threshold only means that the minimum energy required for
the returning electron to promote the ground-state electron to
the excited state is reduced due to the lower potential barrier
caused by the electric field.

We use the BSR method [21,22] to calculate the TCSs for
ionization and excitation of He™ and Ne™ by electron impact.
The results are plotted in Fig. 4. The details of the R-matrix
calculations for electron impact ionization and excitation of
He™ were given in our previous paper [15], and the ideas for
Ne™ are similar. With a large number of pseudostates included
in the close-coupling expansion, the numerical results obtained
here can be considered converged to an overall accuracy of a
few percent or even better. It should be noted that for laser-
induced collisions of the returning electron with the parent
ion, only singlet scattering occurs for both cases. This is due
to the fact that the returning electron is initially in the ground
state, a singlet spin state, and that the total spin is preserved
during the collision in our nonrelativistic models. The singlet
TCSs for e-He™ collisions are shown in Fig. 4, while only
spin-averaged TCSs from prior calculations are currently
available for e-Ne™ collisions. However, due to the uncertainty
of the laser-intensity distributions in the gas cell and the steep
variation of the NSDI yields with peak laser intensity, it is
not expected that the sensitivity of the comparison with theory
is large enough to justify the computational effort needed to
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FIG. 4. Total cross sections for electron impact ionization (blue
dotted curves) and excitation (red broken curves) of (a) He' and
(b) Ne™ in the ground state, respectively. The black curves represent
the summed total cross sections for ionization and excitation. For
He™, only the singlet total cross sections are presented for both
excitation and ionization. The arrows mark the maximum energies
of the returning electron.

(re)generate TCSs for the singlet spin channels only. In the fu-
ture, if correlated two-dimensional momentum distributions of
the two electrons are available experimentally for the 400-nm
laser pulses, then such a calculation will be justified. For
electron impact excitation of Ne™, the TCSs include combined
excitations to 12 excited states from 252 p° to 2522 p*5 f. Based
on the n =3 scaling law, the excitations to higher states can safely
be neglected.

For the current purpose, the highest laser intensities are
2.8x10'" and 2.0x10'> W/cm? for He and Ne, respectively.
The arrows in Fig. 4 mark the corresponding maximum
returning electron energies of 127 and 96 eV, respectively. The
figure shows that the sum of the singlet TCSs for He is about
half of the spin-averaged one for Ne, although the individual
TCSs for He were already increased by about a factor of 2
when the spin conservation was accounted for [15,36]. For the
energy range considered here, excitation dominates ionization
for both He™ and Ne ™.

With the obtained RWPs and TCSs, the calculation for
the total yield of NSDI is straightforward by performing
the integration in Eq. (28), in which both the focal-volume
averaging and the change of the thresholds due to the presence
of the electric field at the time of rescattering are taken into
account. The simulated NSDI yields for Ne are plotted as a
function of intensity in Fig. 5. Recall that to fit the experimen-
tal measurements of Ekanayake er al. [35], a normalization
factor is used in Fig. 2. After normalization, similar to the
total single-ionization rate shown in Fig. 2, the normalized
numerical results for NSDI of Ne are again in good accord
with experiment.

Experimentally, absolute single-ionization or double-
ionization yields currently cannot be accurately determined.
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FIG. 5. Double-ionization yields for Ne exposed to linearly po-
larized laser pulses at 400 nm. The experimental data are taken
from Ekanayake et al. [35], and the simulated results from the QRS
model are normalized for good visual agreement with experiment.
The calculations include the integration over the focal volume of the
laser.

However, the ratio of double to single ionization from a given
experiment can be more definitely obtained. In theoretical
calculations, strong-field double and single ionization can
be calculated by solving the many-electron TDSE directly.
However, such calculations are extremely difficult for Ti-
sapphire and midinfrared wavelength lasers, even for the
two-electron helium target. By going to about 400-nm lasers,
converged TDSE calculations appear possible. It would be
computationally expensive, however, to account for the volume
integration since the latter requires the calculations be carried
out over many intensities. Thus it is desirable to develop
theoretical models for single and double ionization, by which
absolute yields can be calculated accurately, while the ratios
of double to single ionization can be compared directly to
experiments. The calculations should also be relatively fast
so that volume integration can be accounted for.

For single ionization in strong fields, TDSE calculations
within the single-electron model as described in Sec. II B can
be readily calculated. Single ionization can also be calculated
using the SFA1 model. Even though SFA1l does not give
accurate absolute ionization probabilities, it does provide an
accurate intensity dependence. By comparing TDSE and SFA 1
results, therefore, the normalization factor for single ionization
is readily obtained.

To obtain absolute double-ionization yields, on the other
hand, there are generally no TDSE results available to calibrate
a model for any target, and particularly in the nonsequential
double-ionization intensity regime. It is well established,
however, that in the NDSI intensity regime, double ionization
proceeds through electron impact excitation and ionization of
the target ion by the returning rescattering electrons. In the QRS
theory, the returning electrons are represented by the RWP,
which is also responsible for the emission of HATT electrons
and HHG. Both HATI and HHG processes are primarily
one-electron processes, and hence they can be calculated by
solving the one-electron TDSE, as well as by using the SFA2.
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FIG. 6. Comparison of energy spectra between the QRS and
TDSE calculations for high-order above-threshold ionization of (a)
He exposed to a 390-nm laser pulse at a peak intensity of 8.0x 10"
W/cm? and (b) Ne exposed to a 400-nm laser pulse at a peak
intensity of 9.6x10'* W/cm?, respectively. All calculations were
performed for five-cycle pulses at a single intensity without focal-
volume integration.

As explained in Sec. II C, however, in SFA2 the cross sections
for electron collisions are calculated using the first-order Born
approximation. The latter is well known to be inaccurate at
lower energies. On the other hand, the RWP is dominated by the
intense laser field once the electron is removed from the parent
atom. It has been demonstrated that the RWP has the correct
energy dependence and is fairly independent of the target for
a given laser pulse. Thus one can obtain the RWP correctly,
except for a normalization factor. Within the QRS model,
the RWPs for HATT electrons and for NSDI are the same.
They differ only by HATI being due to elastic scattering,
while NSDI is an inelastic scattering process. The former can
be accurately calculated within a one-electron model, while the
latter requires many-body calculations. According to the QRS
theory, both of these calculations are needed for electron scat-
tering without the laser field. Then the RWP can be extracted
from SFA2. By replacing the HATI spectrum obtained from
the QRS theory with the one calculated by solving the TDSE,
the normalization factor can be obtained. In Fig. 6, we compare
the high-energy photoelectron spectra from TDSE and QRS.
With an appropriately chosen normalization factor, the HATI
energy spectra above 4 U, due to elastic rescattering of the
returning electron with the parent ion, as obtained from the
QRS simulations, are in very good agreement with the TDSE
results for both He and Ne.

With all the above ingredients carefully prepared, we are
finally able to obtain the ratio between double and single
ionization. Figure 7 shows the ratio between double and
single ionization of He in a 120 fs pulse with a wavelength
of 390 nm and Ne in a 40 fs pulse with a wavelength of
400 nm, respectively. In Fig. 7(a), the measured intensities
are multiplied by 1.5, as suggested by Parker et al. [20].
With the shift of the measured intensities, the present QRS
simulations are in excellent agreement with the experimental
data of Sheehy et al. [34] as well as with the TDSE calculations
of Parker et al. [20] for almost the entire intensity range, with
the exception being intensities below 5.0x10'* W/cm?. At
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FIG. 7. Ratio between double and single ionization as a function
of intensity for (a) He in a 120 fs pulse with a wavelength of 390 nm
and (b) Ne in a 40 fs pulse with a wavelength of 400 nm. In (a),
the present simulations are compared with the experimental data of
Sheehy et al. [34], the TDSE calculations of Parker ez al. [20], and the
calculations of van der Hart and Burnett [32] based on the rescattering
model. All experimental data points were shifted to higher intensity
by 50%, as suggested by Parker et al. [20]. In (b), the present results
are compared with the experimental data of Ekanayake et al. [35].

these very low intensities, double ionization and the ratios
are relatively small. We believe that noise in the experiment
and convergence problems in the TDSE calculations are the
most likely reasons for the discrepancies between those results
and the QRS predictions. The calculations of van der Hart
and Burnett [32] are also based on their version of the
rescattering model. Their predicted ratios exhibit a similar
intensity dependence but are shifted to higher intensities.

In Fig. 7(b), the experimental data for the double-to-single-
ionization ratio of Ne were deduced from the total-ionization
yields of Ne?* and Ne™ measured by Ekanayake et al. [35].
Again, the QRS simulations are in very good agreement
with experiment. The good agreement owes much to the use
of accurate electron impact excitation and ionization cross
sections calculated with the BSR method. With 400-nm lasers,
the returning electron energies are relatively small, and thus
many-body calculations are essential. In the actual numerical
calculations, shorter laser pulses (65 fs for He and 40 fs for Ne,
respectively) than those in the experiments were used since the
ratios of the total-ionization yields are not expected to depend
significantly on the duration of the laser pulses.

It is interesting to note from Fig. 7 that the intensity
dependence of the measured double-to-single-ionization ratio
of He is rather different from that of Ne. While the ratio for He
changes by approximately a factor of 200 over the measured
intensity range, the ratio for Ne only changes by a factor
of less than 35. The larger ratio for Ne is due to the larger
returning electron wave packets for Ne in the same intensity
range when compared to He. Figure 4 shows that the excitation
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and ionization cross sections between Net and He™ differ by
about a factor of two, but Fig. 6 shows that the probability
density for HATI electrons at the same electron energy is one
to two orders larger for Ne when compared to He.

IV. CONCLUSIONS

Using the QRS model, we have performed numerical simu-
lations for the double-to-single-ionization ratios of He and Ne
exposed to laser pulses at 390 and 400 nm, respectively. Since
the returning electron wave packet is usually obtained from the
strong-field approximation (SFA2), an overall normalization
factor has to be determined. According to the rescattering
model, the returning electron wave packets for HATT electrons
and for NSDI processes are the same, and hence the correct
returning electron wave packet can be extracted from solving
the TDSE for HATI electrons using the one-electron model.
By comparing the returning electron wave packets obtained
from TDSE and SFA2, an overall renormalization factor is
obtained. Once this factor is determined, the QRS theory can
be applied to NSDI processes using accurate electron impact
excitation and ionization cross sections from methods such as
BSR, where many-electron effects are properly accounted for.

Taking advantage of the simplicity of the QRS theory, single-
and double-ionization yields can be calculated by including the
intensity distributions of the focused laser beam. The resulting
ratios calculated with these procedures are then compared to
experimental data. The present results were found to be in very
good agreement with experiment for both He and Ne, thereby
validating the QRS model for calculating nonsequential double
ionization, provided that accurate electron impact excitation
and ionization cross sections are available.
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