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Two different master-equation approaches are formally derived to address the dynamics of open quantum
systems interacting with a thermal environment (such as sunlight). They lead to two physical results: nonsecular
equations, which show noise-induced (Fano) coherences; and secular equations, which do not. An experimental
test for the appearance of nonsecular terms is proposed using Ca atoms in magnetic fields excited with broadband
incoherent radiation. Significantly different patterns of fluorescence are predicted, allowing for a clear test of the
validity of the secular and nonsecular approach and for the observation of Fano coherences.

DOI: 10.1103/PhysRevA.97.013421

I. INTRODUCTION

Quantum master equations (MEs) are an essential tool for
the study of the dynamics of open quantum systems, i.e.,
where a system interacts with an unmonitored environment
[1]. Formally exact integrodifferential MEs are known [2,3]
but are often intractable, reflecting the complexity of the full
quantum (system + bath) dynamics. As a result, MEs are often
simplified via a weak coupling (Born-Markov) approximation,
resulting in two general classes of equations: secular MEs,
where the system coherences and populations are uncoupled;
and nonsecular equations, where this coupling is manifest.
From a mathematical perspective, as discussed below, general
arguments exist in favor of both of these treatments, although
they can give very different results [4]. Convincing experimen-
tal tests to discern which of the two approaches is physically
correct are lacking and are sorely needed.

Recent studies have focused on the dynamics of quantum
systems excited by natural incoherent light such as thermal
noise and sunlight, often as a means of understanding natural
processes such as photosynthesis and vision. Such studies
[5–14], when nonsecular MEs are used, show significant sys-
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tem coherences, called Fano coherences. Here we propose an
experiment that would clearly expose the role of coherences in
natural-light excitation and, in doing so, provide experimental
tests for the validity of either secular or nonsecular treatments
of systems excited by natural incoherent radiation in parameter
regions where the different MEs appear equally valid.

Fano coherences, although not as yet observed, have been
suggested as important features in natural-light harvesting
[12,13] as well as significant in improving the efficiency of
quantum heat engines [6]. Hence, observing Fano coherences
also serves as motivation for the proposed experimental study.

A. Secular and nonsecular master equations

Most common among the approximations used to simplify
exact MEs is the Born-Markov approximation assuming weak
system-bath coupling and vanishing bath memory time [1,15].
However, improperly applied, these approximations can lead
to unphysical behavior, such as negative state populations
or sensitivity of the dynamics to a noninteracting spectator
system [4,16]. For example, the nonsecular Redfield equations
that result from a naïve application of the Born-Markov
approximation do not guarantee the preservation of positive
populations [4], and such negative populations, as well as
diverging populations, have been shown to plague simulations
of a suggested coherence-enhanced heat engine (e.g., Supple-
mentary Information to Ref. [16]).
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Requiring “complete positivity” provides a rigorous con-
dition for physically meaningful dynamics [4]. In this case,
any reduced dynamics with an initial uncorrelated system-
bath state is completely positive and preserves positivity in
the presence of entangled noninteracting spectator systems.
The general form of completely positive Markovian MEs
has been obtained [17–19] for discrete systems, and they
are often referred to as Lindblad equations or are said to
be of Lindblad form [1]. Unfortunately, a given Lindblad
equation may not correctly model the physics of the system.
For example, applying the standard secular approximation
to the Redfield equation decouples the coherences from the
populations, removes rapidly oscillatory terms, and yields
the secular Redfield equation, a Lindblad master equation
[1] with guaranteed positive populations. However, if not
judiciously applied, this approximation can neglect significant
contributions to the system dynamics. For example, in the case
of a system driven by incoherent light (as is of interest in this
paper), the secular Redfield equations can miss interference
effects that appear in nonsecular or partial secular treatments
[5–14]. Hence, in essence, nonsecular Redfield equations may
capture the underlying physics more effectively than their
secular form in their domain of applicability, but they can
present basic mathematical problems insofar as they may be
nonpositive. Despite these fundamental issues, Redfield theory
continues to be widely used due to the physical intuition
provided by the perturbative approach upon which it is based.

These concerns suggest returning to the formal derivations
of the Redfield equations, which include conditions on their
validity.

B. Approximations and the Davies limits

In this regard, Davies has provided a rigorous derivation of
a secular Redfield equation [20] in the weak coupling limit that
retains the physical intuition of the perturbative approach, guar-
antees completely positive dynamics, gives rigorous conditions
for the Born, Markov, and secular approximations, and defines
the domain where the resultant equations apply. Formally, the
Davies weak coupling limit is correct in the limit of vanishing
system-bath coupling constant λ but can be applied in practice
when the system relaxation, τ ∝ λ−2, is much slower than any
oscillations in the system. Since the oscillation frequencies are
determined by the energy spacing of nondegenerate system
eigenstates, this implies that τ ∝ λ−2 � ω−1, where h̄ω is the
smallest nonzero energy difference in the system. Interestingly,
this approximation also holds for systems with exactly de-
generate eigenstates. If these conditions are not satisfied, then
the secular approximation fails and the resultant equations fail
to model the system dynamics. Under these conditions, some
version of nonsecular dynamics may be required.

Significantly, Davies generalized the weak coupling limit
to treat systems with “nearly degenerate” states where the
secular approximation does not apply [21]. This is done by
first assuming that the nearly degenerate states are degenerate
and then applying the original Davies limit to the resulting
approximate system. The energy difference between these
states is then introduced as a perturbation to remove the
degeneracy. The resulting ME retains the nonsecular terms and
hence nonsecular effects between nearby states. However, the

perturbative correction that introduces the energy shift is only
accurate for small energy splitting between nearly degenerate
states. This leads to two “complementary” completely positive
approximations, the secular approximation and the nonsecular
perturbative energy shift: two equations with dramatically
different dynamics, particularly in the overlapping region
where τ ∝ λ−2 ≈ ω−1. Indeed, the dynamics in the regime
might well be non-Markovian [22].

The distinction between secular and nonsecular quantum
master equations and the formal method for obtaining them has
become increasingly relevant in the study of quantum systems
driven by incoherent light. In this case the secular treatment
neglects interference effects and gives rate-law equations that
reproduce Einstein’s theory of light-matter interaction. By
contrast, the nonsecular treatment retains the interference
effects and produces markedly different coherent dynamics
before approaching the rate-law-predicted steady state [5–14].
Computational examples of the latter include fluorescence in V
and � systems [8] with associated non-secular-based effects on
the time-resolved fluorescence of systems with closely spaced
states, the prediction [7] of a population-locked state in V
systems with degenerate excited states pumped by a single
incoherent field, and a heat engine with enhanced power due
to noise-induced coherences [6]. We have recently shown, in
theoretical studies, long-lived quasistationary coherences in
V systems with nearly degenerate excited states [11–14]. In
addition, the proper approach of these systems to an incoherent
thermodynamic equilibrium state has been discussed in detail
[9].

Although significant nonsecular effects of this kind have
been predicted in theoretical studies of noise-induced co-
herences [9–14], they have not been verified experimentally.
Specifically, these Fano coherences have not been experimen-
tally observed. Furthermore, as noted above, theoretical issues
remain unresolved. Here we propose an experiment to address
these fundamental theoretical issues by examining the role
of nonsecular contributions to the dynamics of incoherently
excited quantum systems over a large parameter range. In doing
so we would determine whether the secular or the nonsecular
quantum master equation is the physically appropriate version
of the MEs derived by Davies. In the proposed experiment the
distinction is clear: the secular result gives no contribution from
coherences, whereas the nonsecular coherence contribution is
either constant in time or oscillatory, depending on system
parameters. Scanning the experimental parameters allows for
the study of a full range of behaviors.

Below, Sec. II describes the calcium system proposed
for experimental study. Section III derives dynamical results
for this system in both secular and nonsecular descriptions.
Predicted experimental signals are reported in Sec. IV.

II. PROPOSED SYSTEM

To examine the role of nonsecular contributions to system
dynamics we propose a V system with tunable excited-state
splitting. In particular, we focus on atomic s → p transitions
with only two of the p-state angular momentum m sublevels
excited. This is achieved by irradiating an atom with a beam of
incoherent light propagating along the ẑ direction that excites
the orthogonal p states in the x-y plane. By applying a magnetic
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FIG. 1. Sketch of the V subsystem of calcium excited in the experiment. The magnetic field, B, of magnitude B, and wave vector of incident
light, k, are parallel along the ẑ direction. The excited-state (Zeeman) splitting is given by 2μBB, where μB is the magnetic dipole moment of
the 4p± states. The rightmost sketch shows the m = −1 and m = +1 levels, denoted |e1〉 and |e2〉 henceforth.

field parallel to the incident light beam, a tunable Zeeman shift
can be used to study the dynamics as a function of the spacing
between the p± energy levels. However, due to the orthogonal
polarization (circularly polarized σ±) of s → p± transitions,
an unpolarized incoherent light beam will produce identical
dynamics from both the secular and the nonsecular master
equations. To distinguish these cases, a beam of spectrally
broadened light polarized in the x̂ direction can be used. This
scenario can be experimentally realized with a beam of calcium
atoms excited by a polarized spectrally broadened laser in
a uniform magnetic field. The resultant V system generated
between the doubly occupied singlet ground state (4s2

1S0), de-
noted |g〉, and the excited triplet states (4s14p1

1P1; mj = ±1),
denoted |ei〉, is shown schematically in Fig. 1. The incoherent
beam is assumed to be sufficiently weak that the population of
doubly excited 4p2 states can be neglected.

As shown below, incoherent excitation from the calcium
4s2

1S0 ground state will generate coherences between the
excited mj = ±1 triplet states 4s14p1

1P 1 if nonsecular terms
contribute. No such coherences will be generated from secular
terms. As such, observing coherences, e.g., by detecting
quantum beats in the spontaneous emission from Ca atoms,
proves the presence of nonsecular contributions to the ME.

A summary of the experimentally accessible range of
parameters is given in Table I, including the excited-state
linewidth γ and τγ = γ −1 ∼ Ttransit × 10−3, where Ttransit is
the time over which the atom encounters the broadband laser
beam. Furthermore, the bandwidth of the spectrally broadened
laser is �ν, larger than the largest excited-state splitting �; i.e.,

TABLE I. Summary of experimental parameters for the calcium
V system shown in Fig. 1.

Parameter Magnitude

Linewidth of excited states (γ ) 2π × 34.6 MHz
Ground- to excited-state transition 709.1 THz

frequency (ω0)
Excited-state splitting (�) 0 to 2π × 400 MHz
Transition dipole moment (μ±) 2.85 e a0

Light-atom interaction time (Ttransit) 20 μs
Broadband laser output power (Plser) 20 mW
Laser spectral width (�ν) 2π × 1 GHz

�ν > 2 max �, justifying the Wigner-Weisskopff approxima-
tion used below. The range of accessible � values spans both
limiting cases, � � γ and � � γ . Indeed, as one scans from
large �/γ to small �/γ one expects to observe a transition
from the Davies weak coupling regime (secular) to the Davies
perturbative regime (nonsecular). In addition, this approach
probes the intermediate regime (� ∼ γ ) where neither of the
rigorously derived MEs holds.

III. THEORETICAL PREDICTIONS

We provide below a fundamental derivation, directly from
the Davies approach, of the MEs associated with this sce-
nario. An alternative derivation, to connect with earlier results
[11–14], is presented in the Appendix.

A. Completely positive master equation for the V system

Consider first the most general phenomenological master
equation obtained from the Lindblad form, which takes into
account only transitions in the V system and neglects leaking
of probability and pure dephasing. We write the equations for
ρeiei

and ρe1e2 only and omit the Hamiltonian contribution,
originating from the−i[Ĥ ,ρ̂], because it depends on the choice
of the excited-state basis (we keep the freedom of choosing a
convenient basis in the corresponding two-dimensional Hilbert
subspace):

ρ̇eiei
= Riiρgg − Kiiρeiei

− 1
2K12ρe1e2 − 1

2K21ρe2e1 , (1)

ρ̇e1e2 = R12ρgg − 1
2 (K11 + K22)ρe1e2 − 1

2K12(ρe1e1 + ρe2e2 ).

(2)

The requirement of complete positivity implies that [Rij ] and
[Kij ] are positive definite, i.e.,

Rii,Kii � 0, |R12|2 � R11R22, |K12|2 � K11K22. (3)

The functional form of Rij and Kij for the calcium system is
provided later.
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B. Master equations from Davies’ approach

The interaction of a V system with radiation is given in the
dipole approximation by

Hint = −D · Ereg (4)

where D is an atomic dipole operator which can be defined in
terms of the excited-state basis |e1〉 = |4px〉 and |e2〉 = |4py〉

D = (|g〉〈e1| + |e1〉〈g|)μge1
+ (|g〉〈e2| + |e2〉〈g|)μge2

. (5)

Here, μgei
is the corresponding transition dipole moment and

Ereg is the electric field (ν polarization),

Ereg = i

2∑
ν=1

∑
|k|�K

(
h̄c|k|
2ε0V

)1/2

εk,ν{ak,ν − a†
k,ν}, (6)

where k is the wave vector, and ν denotes the polarization, and
ak,ν and a

†
k,ν are the annihilation and creation operators of the

mode with wave vector k and polarization ν.
Here the incoherent radiation is assumed to be described by

a stationary state with the photon population numbers n(k,ν)
defined by (for V → ∞)

〈a†
k,νak′,ν ′ 〉 = n(k,ν)δ(k − k′)δνν ′ . (7)

We consider the two cases of ME resulting from Davies’
procedure below.

The derivations of ME using the Davies weak coupling
limit combine into a single limiting procedure with “Born,”
“Markovian,” and “secular” approximations. The basic in-
gredient is the transition to the interaction picture, followed
by the suitable averaging of oscillating terms. The averaging
process depends on the relevant time scales and creates some
ambiguity. Consider a system Hamiltonian of the form H =
H0 + εV , where H0 possesses degeneracies and where V

removes at least some of them. Then if ε is “small,” i.e., the
level splitting generated by V is small in comparison with
typical relaxation rates, we can switch to the interaction picture,
derive the ME with H0, and subsequently introduce εV as a
perturbation. In the opposite case of large splitting we must use
the full Hamiltonian H in the interaction picture. Both regimes
lead to different forms of ME, called here nonsecular and
secular, respectively. The crossover regime is non-Markovian
and requires special treatment. Similar phenomena are not
uncommon in quantum mechanics, with a notable example
of LS coupling versus JJ coupling in atomic physics, where
the intermediate angular momentum region must be treated
separately [23].

1. Nonsecular ME

Consider the case of small Zeeman splitting � � r , where
r is the pumping rate from the ground state to |e1〉 and |e2〉.
Here we apply the interaction picture and the derivation of the
ME with

H0 = h̄ω0(|e1〉〈e1| + |e2〉〈e2|), ω0 = 1
2 (ω1 + ω2), (8)

and add the splitting term at the end.

Then the standard computation yields

Kij = �ij + Rij , (9)

�ij = πc

h̄ε0

2∑
ν=1

∫
d3k|k|(μgei

· εk,ν

)(
μgej

· εk,ν

)
δ(|k| − ω0),

(10)

Rij = πc

h̄ε0

2∑
ν=1

∫
d3k|k|n(k,ν)

(
μgei

· εk,ν

)(
μgej

· εk,ν

)

× δ(|k| − ω0), (11)

with all three matrices positively defined. From the structure
of the V system it follows that μge1

⊥μge2
and |μge1

| = |μge2
|,

which implies that in the space of |e1〉 and |e2〉

� =
[
γ 0
0 γ

]
, γ =

∣∣μgei

∣∣2
ω3

0

3πε0c3
. (12)

Pumping provided by a spectrally broadened laser beam
polarized along the x direction leads to the following form
for the matrix R:

R =
[

2r 0
0 0

]
. (13)

In the next step we transform the ME into the new basis of
excited states, which corresponds to eigenvectors of the total
Hamiltonian including Zeeman splitting. Namely, now

|e1〉 = 1√
2

(|4px〉 + i|4py〉), |e2〉 = 1√
2

(|4px〉 − i|4py〉),
(14)

and in this new basis the matrices � and R have the form

� =
[
γ 0
0 γ

]
, R =

[
r r

r r

]
. (15)

Adding the splitting Hamiltonian V = 1
2 h̄�(|e1〉〈e1| −

|e2〉〈e2|) one obtains the ME for the relevant matrix elements:

ρ̇ei ei
= rρgg − (γ + r)ρeiei

− r

2

(
ρe1e2 + ρe2e1

)
,

ρ̇e1e2 = rρgg − (γ + r)ρe1e2 − i�ρe1e2 − r

2

(
ρe1e1 + ρe2e2

)
.

(16)

It is important to note that, in contrast with the ME
associated with isotropic radiation (see the Appendix and
Refs. [11–14]), the coefficient of the last term in these equations
for ρ̇ei ei

and for ρ̇e1e2 is − 1
2 r , as opposed to − 1

2 (r + γ ). This
is a consequence of the Ca atom’s being coupled to two
different photon baths, the isotropic radiative environment
and the directional excitation beam. It has been previously
shown that systems with orthogonal transition dipole moments
(p = 0) coupled to isotropic fields show no coupling between
populations and coherences [11–14]. This is the case for the
isotropic vacuum, which does not contribute to population-
coherence coupling. In contrast, an anisotropic field, such
as the polarized radiation field, can couple coherences and
populations in these systems. As a result, and as shown below,
long-lived coherences can survive in the nonsecular case.
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2. Secular master equation

Consider the case of large Zeeman splitting � � r . Then
we apply the interaction picture and the derivation of the ME
with the full Hamiltonian including the splitting term,

H = H0 + 1
2 h̄�

(|e1〉〈e1| − |e2〉〈e2|). (17)

Then, in principle, the diagonal elements of the � matrix
in Eq. (12) are different, because they are computed using
Eq. (10) at two different frequencies. However, for simplicity,
we assume that they are equal. This is equivalent to the Wigner-
Weisskopf approximation often used in quantum optics [24].
In this case the off-diagonal matrix elements in Eq. (15)
dissappear and the ME equation simplifies to

ρ̇eiei
= rρgg − (γ + r)ρeiei

,

ρ̇e1e2 = −(γ + r)ρe1e2 − i�ρe1e2 . (18)

C. Solutions

Consider the case of weak incoherent pumping by a beam
of uniform intensity and well-defined beam area. An incident
beam of ground-state calcium atoms would experience the light
as a suddenly turned-on field at t = 0, the time that it enters
the incoherent beam. For simplicity, consider the case where
the measurement of atomic polarization is conducted in the
interaction region, so that the atom experiences a constant field
intensity between t = 0 and the time of measurement. Given
the normalization condition ρgg + ρe1e1 + ρe2e2 = 1 and using
the notation ρ = [ρe1e1 ,ρe2e2 ,ρ

Re
e1e2

,ρI
e1e2

], where ρRe
e1e2

and ρI
e1e2

are the real and imaginary parts of ρe1e2 . Equations (16) and
(18) for the evolution of the V system can be written in vector
form as

ρ̇ = Aρ + d, (19)

where the secular and nonsecular equations differ in their
coefficient matrices A and driving vectors d. In Eq. (19) the
dynamics of the excited states are naturally divided into two
parts, with the pumping from the ground state given by d and
the “internal” dynamics of the excited manifold contained in
A. The nonsecular evolution, Eq. (16), is characterized by

ANS =

⎡
⎢⎣

−γ − 2r −r −r 0
−r −γ − 2r −r 0
− r

2 − r
2 −γ − r �

0 0 −� −γ − r

⎤
⎥⎦, (20a)

dNS =

⎡
⎢⎣

r

r

r

0

⎤
⎥⎦. (20b)

While the secular evolution [Eq. (18)] is characterized by
an absence of population-coherence coupling,

with

AS =

⎡
⎢⎣

−γ − 2r −r 0 0
−r −γ − 2r 0 0
0 0 −γ − r �

0 0 −� −γ − r

⎤
⎥⎦, (21a)

dS =

⎡
⎢⎣

r

r

0
0

⎤
⎥⎦. (21b)

Essential differences between the secular and the nonsecular
equations are readily seen in these expressions. That is, the
driving vectors [Eqs. (20b) and (21b)] clearly show that in the
nonsecular dynamics the field will drive ground-state calcium
atoms to coherent superpositions of the excited states, whereas
the secular equations predict that the system will be driven to
an incoherent mixture of excited states [13].

In general, the solution to Eq. (19) is given by [25]

ρ =
∫ t

0
dseA(t−s)d =

4∑
i=1

∫ t

0
ds(v i · d)eλi (t−s)v i , (22)

where λi is the ith eigenvalue of the coefficient matrix A and v i

is the corresponding eigenvector. Hence, upon solving for the
spectral decomposition of A the evolution equation is reduced
to a simple exponential integral.

For the nonsecular coefficient matrix, Eq. (20a), the char-
acteristic polynomial is given by

CharPoly(ANS) = (λ+γ + r)[(λ + γ+r)3 + 2r(λ + γ + r)2

+ (�2 − r2)(λ + γ + r) + 2r�2]. (23)

It is seen to be comprised of a term linear in λ giving the total
decay mode λ4 = −(γ + r), approximated by λ4 ≈ −γ in the
weak-pumping limit (n̄ = 2r/γ � 1), and a cubic term giving
the remaining normal modes.

The contribution of spontaneous emission in Eqs. (23) and
(24) is contained entirely in the term (λ + γ + r). Physically,
this implies that the only influence of spontaneous emission
is to introduce a uniform decay to all normal modes in the
system. To obtain more explicit expressions for the evolution
of the system under the nonsecular dynamics we consider two
complimentary limits below, those of large and small Zeeman
splitting relative to the incoherent pumping rates (i.e., r � �

and r � �).
The secular coefficient matrix, Eq. (21a), has a simpler poly-

nomial that can be factorized into the following biquadratic
form:

CharPoly(AS) = [(λ + γ + r)2 + �2][(λ + γ + r)2 + r2].

(24)

It is shown below that these terms correspond to two damped
oscillatory modes corresponding to the evolution of the co-
herences [λ(S)

3,4 = −(γ + r) ± i� ≈ −γ ± i�] and two expo-

nential modes corresponding to the population [λ(S)
1,2 = −(γ +

r) ± r ≈ −γ ].
One note is in order. Our solutions assume the sudden turn-

on of the interaction between Ca atoms and the incoherent
radiation. Since slow turn-on relative to system dynamical time
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FIG. 2. Coherences of a calcium atom in a sample large splitting regime � = 12γ irradiated with a blackbody at T = 5800 K whose
average photon occupation number at the transition energies is n̄ = 0.0633. The nonsecular dynamics generate oscillatory coherences from an
initially incoherent ground state that survive for a time τγ = γ −1, while the secular evolution produces an incoherent mixture at all times.

scales is known [26,27] to significantly reduce the magnitude of
any induced coherences, we note that sufficiently rapid turn-on,
using acousto-optic modulators, is possible in these systems.

1. Large Zeeman splitting �/r � 1

In the limit of large Zeeman splitting the rate at which
coherences oscillate is much faster than the rate rρe1e2 of
population-to-coherence coupling. A binomial approximation
to lowest order in r/� � 1 of the roots of the cubic term in
Eq. (20a) gives the eigenvalues of ANS in the large splitting
limit:

λ1,2 ≈ −γ, (25a)

λ3,4 ≈ −γ ± i�. (25b)

Similarly, one can obtain the λ eigenvalues for the secular
case, which are found to be the same as the nonsecular results.
The eigenvalues for the secular and nonsecular equations
agree since the population-to-coherence coupling terms in
Eq. (20a) are small relative to the other matrix elements. That is,
since r � γ � �, the dynamics of coherence-to-population
coupling driven by the incoherent field is much slower than
both the spontaneous emission and the phase oscillation dy-
namics. Hence, the coherence-population coupling terms do
not contribute significantly to the evolution of the calcium
population dynamics. The secular and nonsecular eigenvectors
in this limit are also found to coincide and are given by

v1 = [1,0,0,0]T , (26a)

v2 = [0,1,0,0]T , (26b)

v3,4 = [0,0,1, ± i]T . (26c)

Hence, any difference between the secular and the non-
secular evolution in this overdamped �/r � 1 regime can
be attributed to the treatment of the incoherent driving, i.e.,
Eq. (20b) vs Eq. (21b).

Given these results, the secular dynamics are described by

ρeiei
(t) = r

γ

(
1 − e−γ t

)
, (27a)

ρ(S)
e1e2

(t) = 0. (27b)

The nonsecular population dynamics are the same
[Eq. (27a)], but the nonsecular results show nontrivial coher-
ence dynamics:

ρ(NS)
e1e2

(t) = r

�
[e−γ t sin(�t) + i(1 − e−γ t cos(�t))]. (28)

Hence, the secular dynamics predict that a statistical mixture of
excited states will be produced, while the nonsecular dynamics
predict a small but nonzero oscillating coherent component of
the mixture as well as stationary imaginary coherences. The
coherences for both MEs in this regime, calculated exactly,
are plotted in Fig. 2, where the distinction between the secular
and the nonsecular evolution is evident. [These exact results
deviate slightly from Eq. (28) due to the inclusion of higher
order terms.]

The observed stationary coherences may at first appear
to violate thermodynamics, since a system in equilibrium
with a large bath is expected to be an incoherent mixture
of energy eigenstates. However, this is not the case for a
system interacting with multiple baths. Specifically, due to the
anisotropy of the radiation field one can split the interaction
into two dissipative baths. The field modes with wave vector
k|| ẑ and polarization x̂ behave as a hot bath, pumping energy
into the calcium V system, while the remaining (vacuum)
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modes of the field behave as a cold bath to which energy
is dissipated. In this picture the excitation of calcium by a
polarized beam is a transport or heat engine problem between
the hot directional field modes of the beam and the cold
isotropic vacuum modes of the field. Stationary coherences
in systems interacting with two baths is not atypical, as the
system operates out of equilibrium.

2. Small Zeeman splitting �/r � 1

In the limit of a very weak magnetic field, and hence small
�, spontaneous emission will be the dominant influence on
the undriven dynamics of the V system. Accordingly, in both
the secular and the nonsecular MEs, the four eigenvalues are
approximately degenerate at

λ = −γ, (29)

and the fourfold degenerate eigenvectors are given by vi =
ρi , where ρ = [ρe1e1 ,ρe2e2 ,ρ

Re
e1e2

,ρI
e1e2

]T . Substituting this into
Eq. (22) gives the following secular dynamics:

ρeiei
(t) = r

γ
(1 − e−γ t ), (30a)

ρ(S)
e1e2

(t) = 0. (30b)

As in the case of large Zeeman splitting the nonsecular
population dynamics are identical to the secular population
dynamics. However, the coherences produced differ signifi-
cantly; here the nonsecular coherences are the same size as the
populations, i.e.,

ρ(NS)
e1e2

(t) = ρeiei
(t). (31)

Hence, in the nonsecular case, the stationary state is a coherent
superposition. As in the large splitting regime considered in
Sec. III C 1, the stationary coherences can be understood as the
atom operating between two different baths. Figure 3 shows

FIG. 3. Coherences of a calcium atom in the small splitting
regime � = 0.012γ irradiated with a blackbody at T = 5800 K
whose average photon occupation number at the transition energies is
n̄ = 0.0633. Nonsecular result: red (�). Secular result: black (×’s).
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FIG. 4. Coherences of a calcium atom in the intermediate splitting
regime � = γ irradiated with a blackbody at T = 5800 K whose
average photon occupation number at the transition energies is
n̄ = 0.0633.

the coherences obtained from a numerical integration of the
secular and nonsecular master equations, (16) and (18).

In the intermediate coupling regime, an analytical solution
can be obtained but will, in general, be very unwieldy. An
analytical treatment of this “critically damped” regime can be
found in Ref. [13]. However, for the purpose of this study
a numerical solution in the domain of intermediate Zeeman
splitting is sufficient and is shown in Fig. 4. The secular
solution in this region still shows no coherences, while the
nonsecular solution shows coherences betweeen those of the
oscillatory coherences seen in the large splitting regime and the
quasistationary coherences seen in the small splitting regime.

In summary, and as is evident in Figs. 2 to 4, the secular
MEs show no coherences while the non-secular equations give
nonzero coherences with dramatically different behaviors that
are dependent on the value of �/r .

IV. DETECTION OF NOISE-INDUCED COHERENCES

It remains to propose a measurement scheme to efficiently
detect the coherences. Here we demonstrate that the coherences
are evident in emission from the irradiated atom. To do so we
compute the power spectrum of emitted radiation by using
the relationship between the electric-field operators and the
matter operators and, in turn, the density matrix elements. The
approach follows the structure in Appendix 10A of Ref. [24].

Consider the field annihilation operator akλ(t) for the field
mode with wave vector k and polarization λ, in the Heisenberg
picture. For each operator define the slowly varying operator
ãkλ(t) = eiνkt akλ(t), where akλ(t) is the corresponding operator
in the Heisenberg picture. Let σij = |j 〉〈i| be the atomic jump
operator from state |i〉 to state |j 〉. Correspondingly, define the
slowly varying jump operator as σ̃ij (t) = eiωij tσij (t), where
ωij is the frequency of the |i〉 → |j 〉 transition. Transitions
between atomic energy levels are accompanied by dynamics
of the field creation and annihilation operators through the
Heisenberg equations of motion. Specifically,

dãkλ/dt = −i
∑
i<j

g
(j,i)
kλ σ̃ij (t)e−i(ωij −νk )t . (32)

Here Eq. (32) assumes that the atom lies at the origin, σ̃ij (t) is
the Heisenberg picture jump operator from matter state |j 〉 to
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matter state |i〉, ωij is the corresponding transition frequency,
and νk is the frequency of the field mode with wave vector
k. No approximations have been made. Formally integrating
Eq. (32) yields

ãkλ(t) = akλ(0) − i
∑
i<j

g
(ij )
kλ e−i(ωij−νk )t

×
∫ t

0
dt ′σ̃ij (t ′)ei(ωij −νk )(t−t ′). (33)

Using the definitions E(+)(R,t) = ∑
kλ Ekεkλakλ(t)eik·R and

I (R,t) = cnr (ε0/2)E(+)(R,t) · E(−)(R,t) for the positive-
frequency electric field and intensity, respectively, where nr

is the refractive index of the medium, together with Eq. (33)
gives (with R having components R,θ.φ)

〈I (R,t)〉 = nrω
4
0

32π2ε0c3R2

[
1 + cos2 θ

2

[
ρe1e1 (t ′) + ρe2e2 (t ′)

]

+ sin2 θ
(

cos 2φρRe
e1e2

(t ′) − sin 2φρRe
e1e2

(t ′)
)
]

for the field intensity at position R in the calcium V system.
Here t ′ = t + R/c. The intensity distribution can now be
integrated to obtain the response of intensity detectors in
a variety of configurations. To maximize the detection of
coherences consider three detection setups: (a) detecting the
light scattered in all directions by the system, with the intensity
denoted Iz, (b) collecting the light in the two quarter-spheres
with θ ∈ [0,π ] and φ ∈ [−π/4,π/4] ∪ [3π/4,5π/4], with the
intensity denoted IA; and (c) light collected in the two quarter-
spheres with θ ∈ [0,π ] and φ ∈ [0,π/2] ∪ [π,3π/2], denoted
IB . These three observables are directly related to the density
matrix elements as

Iz = 8π

3
I0

(
ρe1e1 + ρe2e2

)
, (34a)

IA = 1

2
Iz + 8

3
I0ρ

Re
e1e2

, (34b)

IB = 1

2
Iz − 8

3
I0ρ

I
e1e2

, (34c)

where I0 = nω4
0/32π2ε0c

3r2.
Alternatively, also consider the “complementary wedges”

to those used for IA and IB and denote these intensities
I ′
A and I ′

B (e.g., I ′
A can be obtained from θ ∈ [0,π ] and

φ ∈ [π/4,3π/4] ∪ [5π/4,7π/4]). The coherences can then be
directly extracted from these intensities as

IA − I ′
A = 16

3 I0ρ
Re
e1e2

, (35a)

I ′
B − IB = 16

3 I0ρ
I
e1e2

. (35b)

The detection schemes outlined in Eqs. (34) and (35)
maximize the strength of the detected quantum beat signal
as they collect light from all regions where the interference
effects are of the same sign. This linear technique is similar
in philosophy to previously developed nonlinear quantum
tomography techniques [28–33] These results hold for both
�/r regions and give signals proportional to the coherences
that are dramatically different for the secular and nonsecular
cases, as shown in Figs. 2 to 4. The intensity of the signals

is given by [2ρe1e2/π (ρe1e1 + ρe2e2 )]Iz, where Iz is the total
fluorescence intensity given by Eq. (34).

V. CONCLUSION

We have proposed an experimental procedure for dis-
tinguishing between secular and nonsecular dynamics in
excitation with incoherent light, using calcium atoms in a
stationary magnetic field interacting with a polarized beam
of incoherent light. Specifically, angle-resolved fluorescence
measurements allow for the detection of coherences between
the excited states, displaying significantly different behavior
for the nonsecular and secular cases. The experimental results
will provide deep insights into the fundamental question of
the validity of secular vs nonsecular master equations, afford
a direct method for observing Fano coherences along with the
opportunity to observe stationary coherences arising from the
coupling of the Ca atom to two different photon baths.
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APPENDIX

Section III above provides a rigorous mathematical deriva-
tion of the secular and non-secular MEs using the Davies
approach. To highlight the relationship between this math-
ematical method and the typical Born-Markov and secular
approximations used in the derivation of the Bloch-Redfield
equations, we present below an alternative derivation using
a method similar to that used in previous works that dealt
with isotropic radiation [11–14]. This approach allows for a
clear appreciation of the difference between excitation with a
directed beam and that with isotropic radiation.

Incident directed radiative beam

Consider the nonsecular Bloch-Redfield master equations
and secular (Pauli rate law) equations for the calcium system.
Here, the 4s-to-4p± transitions have orthogonal polarization,
with each transition corresponding to one direction of circu-
larly polarized light (σ+ ⊥ σ−). Furthermore, both p+ and
p− spontaneously decay to the ground 4s state at the same
rate, γ− = γ = γ+. The specific character of the system and
the use of a directed beam of incoherent light result in a
different quantum master equation than previously obtained
for isotropic excitation [12]. In the isotropic case,

ρ̇ei ei
= −(ri + γi)ρeiei

+ riρgg − p(
√

r1r2 + √
γ1γ2)ρRe

e1e2
,

(A1a)

ρ̇e1e2 = −1

2
(r1 + r2 + γ1 + γ2)ρe1e2 − iρe1e2�

+ p

2

√
r1r2(2ρgg − ρe1e1 − ρe2e2 )

− p

2
√

γ1γ2(ρe1e1 + ρe2e2 ), (A1b)
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where here and below atomic (h̄ = 1) units are used. Here
ρeiej

are the density matrix elements in the |ei〉 basis, overdots
denote time derivatives, ρRe

e1e2
is the real part of ρe1e2 , and ρI

e1,e2

below denotes the imaginary part. In Eq. (A1), absorption
and stimulated emission processes are parametrized by the
incoherent pumping rates of the |g〉 ↔ |ei〉 transitions ri =
BiW (ωgei

), given by the product of the Einstein B coeffi-
cients Bi = π |μgei

|2/(3ε0) and the intensity of the incident
spectrally broad radiation at the corresponding transition
frequencies W (ωgei

). Spontaneous emission processes are
governed by the radiative decay widths of the excited states
γi = ω3

gei
|μgei

|2/(3πε0c
3), � = ωe1e2 gives the excited-state

energy splitting, and p = μge1
· μge2

/(|μge1 ||μge2 |) quantifies
the alignment of the |g〉 ↔ |ei〉 transition dipole moments,
μgei

. The radiative decay widths and incoherent pumping
rates are related by the thermal occupation number n̄ of the
electromagnetic field such that ri = n̄γi .

Consider now excitation with a polarized beam of light
derived from a spectrally broadened laser source. If theW (ωgei

)
is flat over the two |g〉 → |ei〉 transitions, then the above
equations provide a useful starting point for the case of
interest. However, unlike a blackbody source, which typically
produces unpolarized isotropic radiation with a thermal oc-
cupancy that depends only on the magnitude of the wave
vector (or, equivalently, the frequency) 〈nk,λ〉 = n̄k , a polarized
beam of spectrally broadened light shows the same frequency
dependence in the neighborhood of the transitions of interest
but has a strong dependence on the wave-vector direction and
polarization mode. Defining the beam propagation direction as
ẑ and considering x̂ polarized light gives

〈
nk,λ

〉 = δk̂, ẑδε̂ k̂,λ,x̂ n̄k, (A2)

where ε̂ k̂,λ is the polarization vector for the field mode with
wave vector k and polarization λ. Thus, the incoherent pump-
ing shows directional dependence, whereas the spontaneous
emission terms are isotropic and are unchanged from the
isotropic case previously considered [11–13]. Using the same
perturbative expansion that provided the master equations for
the V system excited by incoherent isotropic radiation [11]
gives the light-matter coupling coefficients for the polarized
directed field-driven transitions, with the following replace-
ment of Eq. (6) in Ref. [11]:

∑
kλ

∑
ij

∑
lm

g
(i,j )
kλ g

(l,m)
kλ 〈a†

kλakλ〉

→
∑
kλ

∑
m,m′=±

g
(g,em)
kλ g

(g,em′ )
kλ 〈n̄kλ〉 ≡ C, (A3)

where g
(±)
kλ = [(hνk)/(2ε0V )]1/2μ± · ε̂kλ is the matter-field

coupling coefficient for the |4s〉 ↔ |4p±〉 transition and μ± is
the transition dipole moment of the corresponding transition.
The indices m and m′ denote a sum over the magnetic
quantum numbers of the 4P states comprising the excited-state
manifold. For convenience, we have denoted the right side of
Eq. (A3) as C.

Substituting Eq. (A2) into Eq. (A3) and evaluating the
angular summation over k and the polarization sum over

λ = 1,2 reduces Eq. (A3) to

C =
∑

k

μg,em
μg,em′ (μ̂g,em

· x̂)(μ̂g,em′ · x̂)n̄k, (A4)

where μg,em
= |μg,em

| is the magnitude of the transition dipole
moment and μ̂g,em

= μg,em
/μg,em

is the unit vector in the direc-
tion of the transition dipole moment. To determine the x̂ com-
ponent of the transition dipole moments recall that |4pm=±1〉 =
1/

√
2(|4px〉 ± i|4py〉) and that 〈4px |μ|4py〉 = 0 by angular

momentum selection rules. Furthermore, 〈4s|μ|4px〉 is parallel
to x̂ and 〈4s|μ|4py〉 is parallel to ŷ by the symmetry of the p

orbitals so that μ̂g,em
· x̂ = 1/

√
2. Substituting into Eq. (A4)

allows for the evaluation of the coefficients in the perturbative
expansion as

C =
∑

k

μg,em
μg,em′

2
n̄. (A5)

Noting that μg,e1 ⊥ μg,e−1 we get p = 0 for the spontaneous
emission terms. Therefore, the alignment parameters for the
isotropic spontaneous emission terms and for the directional
pumping terms are different. Further, note that when m = m′
in Eq. (A5) the incoherent pumping rates are given by

r±1 = γ±1

4
n̄k = γ

4
n̄k = r. (A6)

Here we have used γ+1 = γ−1 = γ and redefined the pumping
rates by analogy to the isotropic case but attenuated by a factor
of 4 since the only radiation available is that parallel to the
beam direction. Using these definitions for the case m �= m′ in
Eq. (A5) gives the coefficients for the non-secular terms that
couple the populations and the coherences.

1. Nonsecular master equation

Combining these properties within the nonsecular MEs
for the isotropic case gives the following completely positive
nonsecular MEs:

ρ̇eiei
= rρgg − (γ + r)ρeiei

− rρRe
e1e2

, (A7a)

ρ̇Re
e1e2

= rρgg − (γ + r)ρRe
e1e2

+ �ρI
e1e2

− r

2

(
ρe1e1 + ρe2e2

)
,

(A7b)

ρ̇I
e1e2

= −(γ + r)ρI
e1e2

− �ρRe
e1e2

, (A7c)

where � = μBB is the Zeeman shift between the 4p± states.
Here, the states have been labeled |e1〉 = |4p−〉, |e2〉 = |4p+〉,
and |g〉 = |4s〉. As noted in the text, these equations are the
same as those for excitation with isotropic radiation [Eq. (36)
with p = 1, γ1 = γ2 = γ , r1 = r2 = r], with (γ + r) replaced
by r in the last two terms in Eqs. ((A1a)) and ((A1b)).

2. Secular rate-law equations

The secular approximation neglects the nonsecular terms
that couple the populations and coherences in Eq. (A7) to give
the following secular MEs:

ρ̇ei ei
= rρgg − (γ + r)ρeiei

, (A8a)

ρ̇Re
e1e2

= −(γ + r)ρRe
e1e2

+ �ρI
e1e2

, (A8b)

ρ̇I
e1e2

= −(γ + r)ρI
e1e2

− �ρRe
e1e2

. (A8c)
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As a consequence of the decoupling of the coherences from
the populations, a system initially in an incoherent mixture of
states will not develop coherences between any of its states
and hence will remain an incoherent mixture. This contrasts
with Eq. (A7), where, for example, a system initially in the

ground state will generate coherences between the excited
states. In the case of Eq. (A7) these coherences would result
in the localization of a p orbital along a given axis in the
xy plane, with the phase of the coherences defining the
axis.
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