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Low-frequency approximation for high-order harmonic generation by a bicircular laser field
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We present low-frequency approximation (LFA) for high-order harmonic generation (HHG) process. LFA
represents the lowest-order term of an expansion of the final-state interaction matrix element in powers of the
laser-field frequency ω. In this approximation the plane-wave recombination matrix element which appears in
the strong-field approximation is replaced by the exact laser-free recombination matrix element calculated for
the laser-field dressed electron momenta. First, we have shown that the HHG spectra obtained using the LFA
agree with those obtained solving the time-dependent Schrödinger equation. Next, we have applied this LFA to
calculate the HHG rate for inert gases exposed to a bicircular field. The bicircular field, which consists of two
coplanar counter-rotating fields having different frequencies (usually ω and 2ω), is presently an important subject
of scientific research since it enables efficient generation of circularly polarized high-order harmonics (coherent
soft x rays). Analyzing the photorecombination matrix element we have found that the HHG rate can efficiently
be calculated using the angular momentum basis with the states oriented in the direction of the bicircular field
components. Our numerical results show that the HHG rate for atoms having p ground state, for higher high-order
harmonic energies, is larger for circularly polarized harmonics having the helicity −1. For lower energies the
harmonics having helicity +1 prevails. The transition between these two harmonic energy regions can appear
near the Cooper minimum, which, in the case of Ar atoms, makes the selection of high-order harmonics having
the same helicity much easier. This is important for applications (for example, for generation of attosecond pulse
trains of circularly polarized harmonics).
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I. INTRODUCTION

High-order harmonic generation (HHG) is one of the highly
nonlinear processes that occurs when atoms are exposed to a
strong laser field. In this process extreme ultraviolet and soft
x-ray radiation is emitted. Being coherent and ultrashort, this
radiation found a broad range of applications. We mention
here seminal experimental papers [1,2] in which HHG was
discovered (see also a recent viewpoint article [3] and a review
article [4]) and numerous applications [5–14]. The HHG
process was explained using the three-step model [15–17]:
after ionization (first step), the laser-field-driven electron
returns to the parent ion (second step) and recombines with
it, emitting a high-order harmonic (third step).

The high-order harmonic spectrum can be calculated solv-
ing the time-dependent Schrödinger equation (TDSE). The
disadvantage of this method is that it is time consuming and
that it does not give insight into the physics of the problem.
Strong-field approximation (SFA) [17] is an approximative
quantum-mechanical theory which is in accordance with the
above-mentioned three-step model. It is assumed that the laser
field is strong and that the influence of the atomic potential can
be neglected during the propagation and recombination steps.
In the context of the present paper, it should be mentioned
that the SFA for a bichromatic elliptically polarized field
was formulated in Ref. [18], while the SFA for a bicircular
field was analyzed in detail in Ref. [19]. More recently, a
better theoretical model, the so-called quantitative rescattering

theory, was formulated [20] (see also the review article [21]),
according to which the HHG emission rate can be expressed
as a product of a returning electron wave packet and the
photorecombination differential cross section of the laser-
free continuum electron back to the initial bound state. An
analytical factorization formula for the HHG rate, which is
related to the three-step semiclassical scenario, was presented
in Ref. [22].

The above-mentioned factorization formulas are applicable
also for other strong-field processes which include rescatter-
ing. This can be shown using the so-called low-frequency
approximation (LFA). The LFA dates back to the 1973 seminal
paper by Kroll and Watson [23]. We have introduced it for
laser-assisted scattering in Refs. [24,25] (see also the review
article [26]) and for high-order above-threshold ionization in
Ref. [27] (see also the earlier paper [28] and the more recent
article [29] and references therein). In the present paper we
derive the LFA for the HHG process, show that the obtained
spectra agree with those obtained solving the TDSE, and apply
the LFA to the bicircular field configuration.

HHG by bicircular field is presently a hot topic in strong-
field physics and attoscience (see, for example, Ref. [30]).
A bicircular field is a combination of two coplanar counter-
rotating circularly polarized laser fields with different frequen-
cies. Using this field it is possible to generate very bright
harmonics in the extreme ultraviolet. This field configuration
was first considered in Refs. [31–35]. The SFA for this field was
formulated in Refs. [19,36,37]. A renewed interest in exploring
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HHG via bicircular field was stimulated by the experimental
confirmation that the harmonics generated in such a field are
circularly polarized [38], which is important for applications.
After that a series of papers was published and this continues
to be an important area of research [39–56].

In Sec. II we derive the low-frequency approximation for
high-order harmonic generation. We also confirm its validity
by comparison of the results obtained using the LFA with the
results obtained by solving the TDSE. The photorecombination
matrix element is analyzed in Sec. III. Section IV contains our
numerical results for the HHG spectra. Finally, our concluding
remarks are given in Sec. V. The atomic system of units (a.u.)
is used.

II. LOW-FREQUENCY APPROXIMATION
FOR HIGH-ORDER HARMONIC GENERATION

A. Definition of the harmonic intensity and bicircular field

The nth harmonic intensity, generated by a laser field with
the electric field vector E(t) in the xy plane, defined by the unit
vectors êx and êy , is

In = (nω)4

2πc3

(∣∣T x
n

∣∣2 + ∣∣T y
n

∣∣2)
, (1)

where

Tn = Tnên = T x
n êx + T y

n êy =
∫ T

0

dt

T

∑
m

dm(t)einωt (2)

is the Fourier component of the time-dependent dipole. The nth
harmonic is irradiated in the direction of the z axis and ên is
the nth harmonic photon unit complex polarization vector. The
laser field has period T and fundamental frequency ω = 2π/T .
Our ω−2ω bicircular field, with equal component intensities,
I = E2

1 = E2
2 , is defined by

Ex(t) = [E1 sin(ωt) + E2 sin(2ωt)]/
√

2,

Ey(t) = [−E1 cos(ωt) + E2 cos(2ωt)]/
√

2. (3)

As it is explained in Ref. [44], the sum over m in Eq. (2) is
related to the active electrons, and the index m corresponds to
the angular momentum basis. For atoms with closed electron
shells and an outer electron configuration np6 (Ne, Ar, Kr, and
Xe atoms), in the spherical harmonics basis Y1m(r̂), only the
matrix elements with ground-state magnetic quantum number
m = ±1 are different from zero. One can also use a different
angular momentum basis, defined by

f±(r̂) = [Y11(r̂) ± Y1−1(r̂)]/
√

2. (4)

The state f+ (f−) is oriented along the direction of the x (y)
axis.

B. Derivation of the LFA

The main result in Ref. [29] was a power expansion in the
laser-field frequency ω whose lowest-order term we called the
LFA. In the present context, this approximation is given by∫

dτG(t,τ )V |χk(τ )〉 LFA= GV (Ek+A(t))V |χk(t)〉, (5)

where G(t,τ ) is the time-dependent total retarded Green’s
operator, which satisfies relations [i∂/∂t − H (t)]G(t,τ ) =
δ(t − τ ) and G(t,τ ) = 0 for t < τ , with H (t) = −∇2/2 +
V (r) + r · E(t) the total Hamiltonian of the electron interacting
with the atomic potential V (r) and the laser electric field
E(t) [interaction r · E(t) is in length gauge and dipole ap-
proximation]. |χk(t)〉 = eiA(t)·r|k〉e−iSk(t) = |k + A(t)〉e−iSk(t)

are the Volkov states, where E(t) = −dA(t)/dt , dSk(t)/dt =
[k + A(t)]2/2, and |q〉 denotes a plane-wave ket vector
such that 〈r|q〉 = (2π )−3/2 exp(iq · r). The time-independent
Green’s operator GV (E) = [E + iε + ∇2/2 − V (r)]−1, ε →
0+, is calculated at the energy Ek+A(t) = [k + A(t)]2/2.

The explicit form of the mentioned power expansion in ω

can be obtained using the method described in Sec. III B in
Ref. [29]. In short, after the substitution t ′ = t − τ , ϕ = ωt ,
we get

∫
dτG(t,τ )V |χk(τ )〉

=
∫

dt ′
∫

dE

2π
e−i[(E+iε)t ′+f (r,t)]

×
∞∑

n=0

ωn

[
−i
(ϕ)

∂

∂ϕ

]n


(ϕ)V eif (r,t)|χk(t − t ′)〉, (6)

where 
(ϕ) = e−iA(t)·rGV (Ek+A(t))eiA(t)·r and f (r,t) =
Sk(t) − A(t) · r − Et . The n = 0 term of this expansion leads
to the LFA result [Eq. (5)].

Physically, approximation (5) means that the time-
dependent dynamics of the electron in the presence of both
the potential V and the laser field is such that the laser-driven
electron velocity changes only little while the electron passes
over a distance on the order of the range of the potential
V . Therefore, the total Green’s operator is replaced by the
time-independent Green’s operator in the absence of the laser
field, G(t,τ ) → GV (Ek+A(t))δ(t − τ ), calculated at the laser-
dressed energy Ek+A(t). The range of validity of the LFA
was estimated in Ref. [25] for a linearly polarized laser field.
The maximum returned electron energy is of the order Ep =
p2/2 = 3Up, where Up = A2

0/4 is the electron ponderomotive
energy. For p > A0 the small parameter of the LFA is h̄ω

Ep

2A0
p

,

while for p < A0 it is h̄ω/Up = 4ω3/I , with I the laser
intensity, so that the LFA is valid not only for low frequencies
but also for high intensities. For p = A0 and the parameters
used in the present paper this small parameter is from 0.065
for laser wavelength 800 nm and intensity 2 × 1014 W/cm2 to
0.0075 for 1300 nm and 4 × 1014 W/cm2. As in the case of
the strong-field approximation, the exact range of validity of
the LFA for highly nonlinear strong-field processes is difficult
to determine. It should also be mentioned that the LFA is
applicable to a multicolor elliptically polarized field [57].

Let us now show how the LFA affects the time-dependent
dipole which appears in the S-matrix element of high-order
harmonic generation (see Ref. [44] and references therein).
We start from Eq. (9) from Ref. [44] (omitting indices a, i,
and f ):

d(t) = 〈ψ(t)|r
∫

dt ′G(t,t ′)r · E(t ′)|ψ(t ′)〉. (7)
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Introducing the Volkov Green’s operator Gle(t,τ ) = −iθ (t −
τ )

∫
dk|χk(t)〉〈χk(τ )|, with θ (t − τ ) = 1 for t � τ and

θ (t − τ ) = 0 for t < τ and in length gauge, and using the
integral equationG(t,t ′) = Gle(t,t ′) + ∫

dτG(t,τ )V Gle(τ,t ′),
we can rewrite Eq. (7) as

d(t) = −i〈ψ(t)|r
∫

dt ′
∫

dk
[
|χk(t)〉

+
∫

dτG(t,τ )V |χk(τ )〉
]

×〈χk(t ′)|r · E(t ′)|ψ(t ′)〉. (8)

In the LFA, which is given by Eq. (5), Eq. (8) reduces to

dLFA(t) = −i〈ψ(t)|r
∫

dt ′
∫

dk[|k + A(t)〉

+GV (Ek+A(t))V |k + A(t)〉]e−iSk(t)

×〈χk(t ′)|r · E(t ′)|ψ(t ′)〉. (9)

Solutions |ψk〉 of the stationary Schrödinger equation with the
Hamiltonian −∇2/2 + V (r) satisfy the relation |ψk〉 = |k〉 +
GV (Ek)V |k〉, so that we get

dLFA(t) = −i

∫
dt ′

∫
dk〈ψ(t)|r|ψk+A(t)〉e−iSk(t)

×〈χk(t ′)|r · E(t ′)|ψ(t ′)〉. (10)

Our final result for the time-dependent dipole in the LFA
is obtained after solving the integral over the intermediate
electron momenta k using the saddle-point method. It is given
by

dLFA
m (t) = −i

(
2π

i

)3/2 ∫ ∞

0

dτ

τ 3/2
〈ψm|r|ψks+A(t)〉eiSs

×〈ks + A(t − τ )|r · E(t − τ )|ψm〉, (11)

where the index m denotes the magnetic quantum number
of the ground state, and Ss ≡ −Ipτ − ∫ t

t−τ
dt ′[ks + A(t ′)]2

/2,

with Ip the ionization potential and ks = − ∫ t

t−τ
dt ′A(t ′)/τ the

stationary momentum. This result is introduced into Eqs. (2)
and (1) to calculate the harmonic intensity.

C. Comparison of the LFA and TDSE results
for a linearly polarized laser pulse

In order to illustrate the validity of the LFA, in Fig. 1 we
compare the LFA harmonic intensity (calculated in atomic
units) and the TDSE harmonic intensity (TDSE data are
obtained in arbitrary units and scaled by a constant factor). The
total laser pulse duration is four optical cycles (upper panel)
and seven optical cycles (lower panel). The results are for a
hydrogen atom and a linearly polarized sine-squared few-cycle
laser pulse with intensity 3 × 1014 W/cm2, wavelength 800
nm, and carrier-envelope phase 105◦. The notation of Ref. [58]
is used. For an H atom in Eq. (11) we have m = 0 and the matrix
elements are calculated analytically. Agreement between the
LFA and TDSE results in Fig. 1 is good, which confirms the
validity of the LFA.
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FIG. 1. Comparison of the harmonic intensity obtained using the
LFA (red curves) and the TDSE (blue curves) for HHG by hydrogen
atom and a linearly polarized few-cycle laser pulse with a sine-squared
envelope, wavelength 800 nm, intensity 3 × 1014 W/cm2, carrier-
envelope phase 105◦, and total pulse duration of four optical cycles
(upper panel) and seven optical cycles (lower panel).

III. PHOTORECOMBINATION MATRIX ELEMENT

Based on the challenge imposed by experimental measure-
ment of the atomic photoionization cross section in 1960s,
the theory of atomic photoionization has advanced rapidly
[59,60]. More recently, in the context of HHG the calculation
of the photoionization amplitude by simple methods has
again become important. Namely, the third step of the HHG
process is the recombination of the ionized electron with the
parent ion followed by emission of a high-energy photon. The
photorecombination and photoionization cross sections are
closely related and can be calculated using the same methods.
In particular, the observation of the Cooper minimum [61] in
HHG spectra has attracted a lot of attention [20,62–65]. In
this context, it was necessary to calculate the recombination
amplitude beyond the strong-field approximation [66]. In this
section we show how the recombination amplitude in Eq. (11),
〈ψm|r|ψq〉, with q = ks + A(t), can be calculated.

We are using the single-active-electron approximation.
Both the continuum state ψ (−)

p and the bound state ψm are the
eigenstates of the Hamiltonian −∇2/2 + V (r), where V (r) =
VC(r) + Vs(r) with VC = −1/r the Coulomb potential and

013416-3
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FIG. 2. Logarithm of the differential photorecombination cross
sections for Ar, |Dj

±|2 (in a.u.), with j = x (y) for upper (lower)
panels and “−” (“+”) for left (right) panels, presented in false color
in the momentum plane.

Vs(r) the short-range potential. The explicit form of the
potential Vs(r) is given by

Vs(r) = −(a1e
−a2r + a3re

−a4r + a5e
−a6r )/r, (12)

where the coefficients aj are tabulated in Ref. [67].
The bound-state wave function ψm is the wave function of

the outer (valence) electron of the atom. We approximate it
by the Hartree-Fock-type wave function, which is given in
analytical form as a series expansion in atomic Slater-type
orbitals:

ψm(r) =
∑

a

CaNaϕnalm(r), Na = (2ζa)na+1/2

√
(2na)!

,

ϕnalm(r) = rna−1e−ζarYlm(r̂), (13)

where Ylm(r̂) are spherical harmonics, nal are the quantum
numbers of the electron, and the parameters Ca , Na , and ζa

characterize the radial distribution of the electron density.
For the inert gases Ne, Ar, Kr, and Xe, these parameters
are tabulated in Ref. [68] and it is l = 1. For these states
the ionization matrix elements 〈q′|r · E(t − τ )|ψm〉 = iE(t −
τ ) · ∂ψ̃m(q′)/∂q′, with ψ̃m(q′) the Slater-type orbitals in the
momentum space and q′ = ks + A(t − τ ), are calculated ana-
lytically [44].

It is more complicated to calculate the recombination matrix
elements, 〈ψm|r|ψ (−)

q 〉, with q = ks + A(t). The continuum
wave function ψ (−)

p can be expanded as [59]

ψ (−)
q (r) =

√
2

π

∑
l,m

ilRql(r)e−i(σl+δl )Y ∗
lm(q̂)Ylm(r̂), (14)

where Ylm(q̂) ≡ Ylm(θq,ϕq) are spherical harmonics in
momentum space, σl(q) = arg 
(l + 1 − i/q) are the
Coulomb phase shifts, while the (lth partial wave)
phase shifts δl(q) [due to the short-range part of
the potential V (r)] can be calculated numerically
[69]. The continuum radial wave functions Rql(r), q ≡ |q|,
for fixed energy Eq = q2/2, can be calculated solving the
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FIG. 3. Logarithm of the differential photorecombination cross
sections for Ar as a function of the electron energy Eq for the f− state
and ϕq = 0 (see the upper left panel of Fig. 2).

radial Schrödinger equation with the potential V (r) [69].
The normalization 〈ψ (−)

q |ψ (−)
q′ 〉 = 〈q|q′〉 = δ(q − q′) is used.

The angular part of the integral in the recombination matrix
element Dj

m(q,ϕq) ≡ 〈ψm|j |ψ (−)
q 〉, j = x,y, can be calculated

analytically. Introducing the notation

Rql = −e−i(σl+δl )

2π
√

3

∑
a

CaNa

∫ ∞

0
drrna+2e−ζarRql(r),

(15)
we obtain

Dx
m = mRq0 − m

2
Rq2(3e−i2mϕq + 1), (16)

Dy
m = −iRq0 − i

2
Rq2(3e−i2mϕq − 1). (17)

The corresponding matrix elements in the basis
√

2f± are

Dx
+ = −iD

y
− = 3iRq2 sin(2ϕq), (18)

Dx
− = 2Rq0 − Rq2[1 + 3 cos(2ϕq)], (19)

D
y
+ = −i{2Rq0 − Rq2[1 − 3 cos(2ϕq)]}. (20)

We calculated the differential photorecombination cross
sections, |Dj

±|2, j = x,y, for Ar atoms and presented them
in Fig. 2 in false colors in the momentum plane (qx,qy) =
(q cos ϕq,q sin ϕq). All results exhibit reflection symmetry
with respect to the qx and qy axes. We also have

∫ 2π

0 dϕqD
x
+ =∫ 2π

0 dϕqD
y
− = 0. The partial differential cross section along

the x axis and with the f− state (upper left panel) has the
qx axis (ϕq = 0) as a characteristic axis. The Cooper minima
appear near the energy 30 eV along this axis. This is clearly
seen in Fig. 3. Analogously, for the partial differential cross
section along the y axis and with the f+ state (lower right
panel), the qy axis (ϕq = 90◦) is important. We use this fact
to simplify our numerical calculations of the HHG spectra.
The above-mentioned symmetries are more visible if we
calculate the ratio of the differential photorecombination cross
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FIG. 4. Logarithm of the ratio of the differential photorecom-
bination cross sections for exact and plane-wave continuum states,
presented similarly as in Fig. 2.

sections obtained using the exact continuum wave functions
and the corresponding sections obtained using the plane-wave
continuum states, 〈ψm|j |q〉 (plane waves are used in the
standard SFA). This is presented in Fig. 4. The maxima which
are almost parallel to the qy (qx) axis for the upper left (lower
right) panel are related to the minima in the plane-wave cross
sections. One can also notice that for fixed energy Eq the cross
section in the upper left (lower right) panel is almost constant
in a wide range around the angle ϕq = 0◦ (ϕq = 90◦). The
importance of the angular momentum basis f± was noticed in
Refs. [70–72], which consider HHG by an elliptically polarized
laser field, and in Ref. [73] for a two-color laser field having
orthogonal linear polarizations.

IV. NUMERICAL RESULTS FOR THE HHG SPECTRA
BY BICIRCULAR FIELD

Numerical calculation of the harmonic intensity includes
calculation of the double integral over the recombination time t

and the travel time τ of highly oscillatory functions. In addition,
we have to solve the radial Schrödinger equation, find exact
radial continuum wave functions Rql(r) and phases σl and δl ,
as well as calculate numerically the integral over the radial
coordinate r in Eq. (15). The problem can be simplified if
we can withdraw the recombination matrix element in front
of the integrals over time. Since the electron velocity at the
recombination time, q = ks + A(t), depends both on time t

and time τ , this can be done only approximately. Applying
the saddle-point method to the integral over the recombination
time t in the Fourier component Tn, Eq. (2), of the time-
dependent dipole matrix element d(t), Eq. (11), we obtain the
energy-conservation condition

nω = Ip + q2/2. (21)

Therefore, the dominant contribution to the nth harmonic
intensity comes from the momenta q = √

2(nω − Ip). This
simplifies calculations since then the radial part of the recom-
bination matrix element does not depend on the times t and τ .
Furthermore, if we calculate the recombination matrix element
in the basis f± then we can also fix ϕq to ϕq = 0 for f− and to
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FIG. 5. Harmonic intensity for Ar and bicircular field with com-
ponent wavelengths 800 and 400 nm and equal component intensities
4 × 1014 W/cm2. The two upper curves are obtained using the strong-
field approximation, while the two lower curves are calculated in the
LFA.

ϕq = 90◦ for f+. The results presented in Figs. 2 and 4 justify
this approximation. Having also in mind that our bicircular
field is in the xy plane, we have θq = 90◦. Therefore, not only
the amplitude but also the orientation of the vector q can be
fixed so that the complete recombination matrix element can
be factorized out of the integrals over t and τ . The introduced
additional approximations reduce the range of applicability of
our LFA. The saddle-point approximation was also used in
Ref. [25], where it led to the so-called on-shell LFA in which
the matrix elements are calculated on the energy shell; i.e., the
energy-conservation condition like Eq. (21) is satisfied. In this
case the small parameter is estimated to be max{ω2/

√
I ,ω},

which is smaller than 0.06 in our examples.
In our numerical code we leave the strong-field ap-

proximation recombination matrix element inside the inte-
grals over t and τ , but we multiply the obtained result
by the square root of the ratio of the LFA and strong-
field-approximation photorecombination cross sections for
the corresponding matrix element in the basis f±. In this
way we avoid the influence of the phase of the LFA re-
combination matrix element which may change the phase of
the subintegral function in wrong way since we have fixed
ϕq . A proper way of taking into account this phase would
be to solve the integral over time using the saddle-point
method as in Ref. [27]. In this case the time becomes complex
and additional approximation would be to neglect the small
imaginary part of the recombination time t and of ks (this is
necessary since the code for calculation of the recombination
amplitude works only for real momenta).

In Figs. 5 and 6 we show examples of the HHG spectra for Ar
atoms, ω−2ω bicircular field, and fixed component intensities.
For Fig. 5, since the photon energy for 800 nm is ω = 1.55 eV
and minima appear for n ≈ 30 we confirm the role of the
Cooper minimum for Ar. Namely, for the Cooper minimum
energy near 30 eV the harmonic energy is Ip + q2/2 =
15.76 eV + 30 eV = 45.76 eV ≈ 30ω = 46.5 eV [74]. Anal-
ogously, for Fig. 6 we have Ip + q2/2 ≈ 48ω. Such minima
are absent for the SFA results (two upper curves in Figs. 5
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FIG. 6. Same as in Fig. 5 but for component wavelengths 1300
and 650 nm and equal component intensities 2 × 1014 W/cm2.

and 6). From Figs. 5 and 6 we see that the harmonic helicity
inversion happens after the Cooper minimum. The harmonics
having helicity −1 are stronger. This can be explained using the
SFA theory as it has been done in Ref. [44] using the m = ±1
asymmetry.

In Fig. 7 we presented focal-averaged harmonic inten-
sity as a function of the photon energy on a linear scale.
The focal-averaged spectrum is obtained by integration from
0.3I0 to 0.999I0 harmonic intensity multiplied by the factor√

I0 − I (2I + I0)/I 5/2. This factor was used before for focal
averaging of the electron spectra [75]. Our method of focal
averaging is approximate since we neglect the pulse shape and
depletion effects [67]. From Fig. 7 it is clear that after the
Cooper minimum the harmonics of helicity −1 are dominant.
This fact can be used to generate an attosecond pulse train of
circularly polarized harmonics. Let us clarify this. In Ref. [37]
it was shown that by combining a group of bicircular-field-
generated harmonics having alternating positive and negative
helicity we can generate, during one driving-field cycle, three
approximately linearly polarized pulses, which are rotated with
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FIG. 7. Focal-averaged harmonic intensity for Ar and bicircular
field with component wavelengths 1300 and 650 nm and equal
component peak intensities I0 = 2 × 1014 W/cm2.

FIG. 8. Same as in Fig. 4 but for Ne atoms.

respect to each other by 120◦ (this is experimentally confirmed
in Ref. [30]). Further, in Ref. [42] it was shown that for atoms
having the p ground state (the example of Ne atoms was used)
the polarization of the generated attosecond pulses is close
to elliptical due to the different intensities of the combined
high-order harmonics of the opposite helicity. The harmonics
having negative helicity are stronger at the end of the plateau
and in the cutoff region, while the harmonics having positive
helicity are stronger at the beginning of the plateau. If the tran-
sition between the mentioned regions in which positive or
negative helicity harmonics are dominant happens near the
Cooper minimum, this effect is enhanced as it is shown in
Fig. 7. Therefore, combining a group of harmonics after the
Cooper minimum, it is possible to generate an almost circularly
polarized attosecond pulse train.

Let us now consider HHG by Ne atoms. From Fig. 8, which
is an analog of Fig. 4, we see that in the case of Ne we do not
have a characteristic Cooper-like minimum. As a consequence,
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FIG. 9. Harmonic intensity for Ne and bicircular field with com-
ponent wavelengths 1300 and 650 nm and equal component intensities
4 × 1014 W/cm2. The two upper curves are obtained using the strong-
field approximation, while the two lower curves are calculated in the
LFA.
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HHG spectra, presented in Fig. 9, do not change qualitatively
if we use the LFA instead of the SFA.

V. CONCLUSIONS

The low-frequency approximation, formulated earlier for
laser-assisted scattering and high-order above-threshold ion-
ization, is derived for the high-order harmonic generation pro-
cess. It is a natural extension of the strong-field approximation
theory: the SFA plane-wave recombination matrix element is
replaced by the exact laser-free recombination matrix element
with the momentum of the exact continuum state equal to
ks + A(t), where ks is the stationary electron momentum, t

is the recombination time, and A(t) = − ∫ t
dt ′E(t ′), with E(t)

the electric field vector. In special cases when the rescattering
amplitude can be withdrawn in front of the integral over times
our LFA reduces to the well-known quantitative rescattering
theory. For a linearly polarized laser pulse the validity of the
LFA is confirmed by comparison with the results obtained
solving the TDSE.

We have applied our LFA to calculate the HHG spectra
generated by a bicircular laser field which is presently a hot

topic in strong-field physics. We have shown that the numerical
calculations can be simplified in the angular momentum basis
with the states oriented in the bicircular field component
directions (x and y axes).

We have found that the Cooper minimum, which appears at
the energy Eq in the photorecombination spectra of Ar atoms,
leads to a minimum in the harmonic plateau at the energy
Eq + Ip, with Ip the ionization potential of Ar. We have also
found that for higher harmonic energies the harmonics having
helicity −1 are stronger. The jump in asymmetry of left- and
right-polarized harmonics appears near the Cooper minimum.
The explanation why for higher energies the harmonics having
helicity −1 are stronger is given using semiclassical arguments
and quantum-orbit theory in Sec. V of Ref. [44]. The mentioned
asymmetry remains also in the focal-averaged spectra. This fact
can be used to generate an attosecond pulse train of circularly
polarized harmonics, as suggested in Ref. [42].

We have also presented the HHG spectra for Ne atoms
for which the Cooper minimum is absent. The mentioned
asymmetry appears also in this case. However, the asymmetry
is stronger for Ar so that HHG by Ar atoms is a better candidate
to generate circularly polarized attosecond pulse trains.
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