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Ionization of atomic hydrogen by an intense x-ray laser pulse: An ab initio study of the breakdown
of the dipole approximation
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Solving the time-dependent Schrödinger equation numerically within the framework of an ab initio model,
the breakdown of the dipole approximation in modeling the ionization and excitation dynamics of a hydrogen
atom exposed to an intense 1.36-keV x-ray laser pulse is investigated in some detail. The relative importance of
the A2 diamagnetic term in comparison with the A · p contribution to the resulting beyond-dipole (nondipole)
light-matter interaction is studied for laser pulse intensities ranging from the weak perturbative to the strong-
field regime. It is found that the diamagnetic interaction represents by far the most important correction to the
dipole approximation at higher field strengths, while nondipole corrections induced by the A · p operator are
generally small and largely independent of the laser intensity. The most profound finding of the present study
was the discovery of a forward-backward asymmetry in the underlying electron ejection dynamics: Depending
on the electron’s kinetic energy in the final state, the photoelectron tends to be emitted in the laser propagation
(forward) and/or counterpropagation (backward) directions, for energies corresponding to the low-energy and/or
high-energy side of the multiphoton resonances, respectively.
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I. INTRODUCTION

The laser is today a workhorse in natural sciences, enabling
manipulation and control of physical processes at the atomic
level. In the theoretical description of light-matter interactions
it is common to impose the so-called dipole approximation,
one of the most frequently used approximations in atomic,
molecular, and optical physics. In this approximation, the laser
field is treated as a homogeneous time-varying electric field
and the magnetic-field component and the spatial dependence
of the fields are considered unimportant and are therefore
disregarded. The dipole approximation is usually valid for
longer-wavelength fields, provided the laser intensity is not
so high that the magnetic component [1–18] and/or relativistic
effects [19–24] inevitably become important. Breakdown of
the dipole approximation in strong-field ionization has been
experimentally observed in the near- and midinfrared regime
[25,26].

In the present work we study the breakdown of the dipole
approximation in the multiphoton ionization and excitation
dynamics of a hydrogen atom, induced by an intense short-
wavelength x-ray laser pulse. The atom is assumed to be irradi-
ated by 1.36-keV photons corresponding to a laser wavelength
of 0.91 nm. At such short wavelengths the validity of the
dipole approximation is questionable per se and the spatial
dependence of the vector potential A(r,t) modeling the laser
pulse must be considered [27]. To understand the importance
of different types of effects beyond the dipole approximation, it
is common to expand the laser potential A in terms of a Taylor
series [12,23,28,29], from which the lowest-order contribution
represents the electric dipole interaction where the electric field
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is assumed to be homogeneous, and any spatial dependences
of the fields and magnetic-field effects are ascribed to the
higher-order terms in the expansion.

In this work, we go beyond the standard Taylor expansion
trick and instead consider the full spatial dependence of the
fields. It is found that the diamagnetic interaction A2 repre-
sents the most significant source of beyond-dipole-induced
dynamics, especially in the strong-field regime, while the
A · p interaction takes over as the dominating source of
nondipole effects only in the weak-field limit. It is further
found that including the leading-order contribution beyond the
electric dipole approximation, in both interactions, is sufficient
to describe the ionization and excitation dynamics initiated
by the laser pulse for all intensities considered here. An
interesting finding of the present study is that it is found that the
significance of the A · p operator, in terms of nondipole effects,
is largely independent of the laser intensity. Nonetheless, by
varying the laser intensity clear signatures of beyond-dipole
behavior of the system were detected, which could all be
attributed to the A2 operator, the most profound one being
that the diamagnetic interaction has a strong influence on the
direction in which the photoelectron is emitted depending on
the kinetic energy of the electron. This rather odd behavior
of the system is further explained in terms of a simple model
designed to capture the essential features of the underlying
ejection dynamics.

Atomic units (a.u.) are used throughout unless stated other-
wise.

II. THEORY AND METHODOLOGY

In the nonrelativistic approximation, the time evolution of
a particle of mass m and charge q, as represented by the wave
function �, moving in a (Coulomb) potential V and laser field
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A, is governed by the time-dependent Schrödinger equation
(TDSE)

ih̄
∂

∂t
� = H�, (1)

with the Hamiltonian

H = 1

2m
[ p − q A(η)]2 + V (r). (2)

The vector potential A(η) = A(ωt − κ · r) satisfies the wave
equation and depends on both space and time coordinates. Here
ω is the central angular frequency of the field, κ = ω/c κ̂ is the
wave vector, and c is the speed of light. Imposing the Coulomb
gauge restriction ∇ · A = 0 on the field, the Hamiltonian is cast
into the form

H = p2

2m
+ V − q

m
A · p + q2

2m
A2. (3)

While the A2 interaction in Eq. (3) does not contribute to
the light-matter dynamics within the dipole approximation,
it is known to play an essential role when going beyond
the dipole approximation, i.e., when describing beyond-dipole
(nondipole) ionization processes in superintense laser fields
[1–13]. For example, the main nondipole contribution due to
the magnetic field is accounted for by this operator.

In the present work, the laser pulse is modeled in terms of
the vector potential

A(η) = E0

ω
f (η) sin(η + φ)ûp, (4)

where E0 is the electric-field strength at peak intensity, φ is
the carrier-envelope phase (CEP), f (η) defines the laser pulse
profile, and ûp is a unit vector pointing in the laser polarization
direction. Inserting the vector potential (4) into Eq. (3), the
Hamiltonian takes the form

H = p2

2m
+ V − q

m

E0

ω
f (η) sin(η + φ)ûp · p

+ q2

2m

E2
0

ω2
f 2(η) sin2(η + φ). (5)

In order to study the relative importance of the two light-matter
interaction terms, we also consider the Hamiltonian

H = p2

2m
+ V − q

m

E0

ω
f (η) sin(η + φ)ûp · p, (6)

where the last diamagnetic (A2) term has been omitted. In
the dipole approximation, the spatial dependence of the vector
potential is neglected and Eq. (5) reduces to the much simpler
form

Hdip = p2

2m
+ V − q

m

E0

ω
f (t) sin(ωt + φ)ûp · p

+ q2

2m

E2
0

ω2
f 2(t) sin2(ωt + φ). (7)

Note that in this dipole limit the last interaction term, i.e.,
the diamagnetic one, becomes a purely time-dependent factor
which effectively cancels out in the TDSE when the gauge
transformation

� ′ = exp

[
i

h̄

∫ t

−∞

q2

2m

E2
0

ω2
f 2(t ′) sin2(ωt ′ + φ)dt ′

]
� (8)

is imposed. Solving the TDSE with the exact (nonrelativistic)
Hamiltonian (5) will typically result in an intractable com-
putational problem due to the coupling of space and time
coordinates and therefore instead the dipole approximation
(7) is widely used. However, in certain pulse regimes, i.e.,
in the cases of very short laser wavelengths and/or high-
intensity fields, the dipole approximation may no longer be
valid and beyond-dipole (nondipole) effects must be accounted
for. Now, in order to simplify the theoretical treatment, it is
common to assume that the space-dependent vector potential
can be expanded in powers of κ · r , where the term linear
in κ · r represents the leading-order correction beyond the
dipole approximation [1–14]. Keeping only terms up to first
order in κ · r , the nondipole Hamiltonian (5) is cast into the
approximate form

H � p2

2m
+ V − q

m

E0

ω
f (t) sin(ωt + φ)ûp · p + q

m

E0

ω
κ · r

[
f (t) cos(ωt + φ) + 1

ω
ḟ (t) sin(ωt + φ)

]
ûp · p

− q2

2m

E2
0

ω2
κ · r

[
2

ω
f (t)ḟ (t) sin2(ωt + φ) + f 2(t) sin(2ωt + 2φ)

]
. (9)

Here we will adopt a sine-squared carrier envelope for the laser
field, i.e.,

f (η) =
{

sin2
(

πη

ωT

)
for 0 < η < ωT

0 otherwise.
(10)

Then f (t) = sin2( πt
T

) and ḟ (t) = π
T

sin( 2πt
T

). In the present
work, the (total) pulse duration T is chosen sufficiently long
so that f (η) � 0 at times t = 0 and t = T , i.e., the pulse is
assumed to be on over the time interval t ∈ [0,T ].

The TDSE is discretized by expanding the three-
dimensional wave function on a product basis of hydrogenic

radial wave functions Rkl and spherical harmonics Ylm as

�(r,t) =
∑
klm

cklm(t)Rkl(|r|)Ylm(r̂), (11)

where both continuum (scattering) and bound states are in-
cluded in the expansion. The radial wave functions are obtained
by diagonalizing the field-free hydrogenic Hamiltonian in a
B-spline basis. The matrix representation of the respective
light-matter interaction Hamiltonians (5), (7), and (9) is then
computed and the resulting system of ordinary differential
equations is solved by a predictor-corrector method developed
by Gordon and Shampine [30]. For the discretization of the
Hamiltonians (7) and (9) we have followed the same approach
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as described in Ref. [12]. The corresponding scheme for
the Hamiltonian (5) is computationally much more involved
because of the coupling of spatial and temporal degrees of
freedom and therefore needs special attention.

In setting out to solve the TDSE with the full Hamiltonian
(5), the corresponding matrix elements are obtained from

〈�k′l′m′ |H |�klm〉 = 〈Rk′l′Yl′m′ | p2

2m
+ V

− q

m
A · p + q2

2m
A2|RklYlm〉. (12)

Here it is the evaluation of the last two terms that causes
difficulty when retaining the full space dependence of the
vector potential, i.e.,

〈Rk′l′Yl′m′ |A · p|RklYlm〉 (13)

and

〈Rk′l′Yl′m′ |A2|RklYlm〉. (14)

In order to perform these calculations the vector potential (4)
with the envelope (10) must be translated into a more tractable
form. By employing elementary trigonometric identities, the
vector potential may be decomposed into a finite sum of
products depending separately on space and time,

A = ûp

E0

ω

∑
α

[Cα(t) sin(Dαk · r) + Fα(t) cos(Gαk · r)],

(15)

where the time dependences are contained in the functions
Cα(t) and Fα(t) and the index α enumerates the terms in the
decomposition. Similarly, for A2,

A2 = E2
0

ω2

∑
β

[Cβ(t) sin(Dβ k · r) + Fβ(t) cos(Gβ k · r)].

(16)

Each space-dependent term in these sums may further be
separated into angular and radial parts through the spherical
wave expansion of plane waves

eik·r = cos(k · r) + i sin(k · r)

= 4π

∞∑
L=0

L∑
M=−L

iLjL(kr)Y ∗
LM (
k)YLM (
r ), (17)

where 
r and 
k denote the angular coordinates of r and k,
respectively. This expansion allows the angular parts of (13)
and (14) to be computed analytically through the relation〈

Yl3m3 (
r )
∣∣Yl1m1 (
r )

∣∣Yl2m2 (
r )
〉

=
√

(2l1 + 1)(2l2 + 1)

4π (2l3 + 1)

×C(l1,l2,l3|0,0,0)C(l1,l2,l3|m1,m2,m3), (18)

where C(l1,l2,l3|m1,m2,m3) are the Clebsch-Gordan coeffi-
cients. Due to the conditions for the nonvanishing of the
Clebsch-Gordan coefficients, the maximum value of l (lmax)
used in the construction of the basis wave functions limits the
maximum contributing value of L in the expansion (17). The

sum in (17) is thus analytically truncated after L = 2lmax + 1,
where the plus one stems from the effect of the p operator on
the basis wave function in (13). Having obtained expressions
for the angular parts, the radial integrals are then performed
by a Gauss-Legendre quadrature and the matrix elements (12)
are computed.

III. RESULTS AND DISCUSSION

We have considered a hydrogen 1s electron exposed to a
15-cycle (i.e., T = 15 × 2π/ω) x-ray laser pulse of angular
frequency ω = 50 a.u., which corresponds to 1.36-keV pho-
tons. The value of the CEP in Eq. (4) is set to ϕ = 0, but we em-
phasize that the results obtained are vastly independent of the
particular choice of phase. The system is solved numerically in
a radial box extending to Rmax = 40 a.u. The hydrogenic radial
eigenstates are expanded in terms of 530 sixth-order B-spline
functions distributed equidistantly on the interval r ∈ [0 Rmax]
and they are obtained by diagonalization of the corresponding
field-free hydrogenic Hamiltonian. In solving the TDSE, 261
of the computed eigenstates are kept in the expansion of the
system wave function (11) for each (l,m) channel. This yields
a maximum attainable electronic continuum energy of about
210 a.u. in the restricted basis set. Furthermore, the number
of angular momenta included in the basis was limited up to
l = lmax = 16 in the simulations, making the total number of
angular channels 289 when all possible values of the magnetic
quantum number m are included. The value of the basis
parameters was systematically varied in order to control the
accuracy and reliability of the computed data.

In the present work, all calculations were executed using
both the exact Hamiltonian (5) and its linear approximation
(9). As a matter of fact, all results appeared to be largely
independent of this choice, i.e., employing the Hamiltonian (5)
and/or (9) yielded the same result, simply demonstrating that
the linear approximation (9) is valid for the laser parameters
considered here.

Figure 1 shows the total ionization probability [Fig. 1(a)],
the survival probability in the initial state [Fig. 1(b)], and the to-
tal probability of excitation to excited bound states [Fig. 1(c)],
as a function of the electric-field strength E0. Data obtained
with the Hamiltonians (5) [or alternatively (9)], (6), and (7) are
shown for comparison. The highest field strength considered,
E0 = 500 a.u., corresponds to the peak laser intensity I =
8.8 × 1021 W/cm2 and an electron ponderomotive energy
Up of 25 a.u. At this high intensity the ionizing electron’s
(classical) velocity in the laser field is likely to surpass 7% of
the speed of light during the laser interaction. Nevertheless, a
nonrelativistic treatment is justified. When it comes to the total
ionization probability, as well as the probability of remaining
in the initial state, Fig. 1 reveals that nondipole effects start
to become visible for field strengths beyond E0 ∼ 100 a.u. In
contrast, the relative population in excited states turns out to
be much more influenced, as the dipole and nondipole results
deviate from each other already at E0 ∼ 1 a.u. As such, the
population in excited states seems to be a sensitive probe for
measuring beyond-dipole dynamics. Concerning the relative
importance of the two light-atom interaction terms in Eq. (5),
and comparing the results obtained by the Hamiltonians (5)
and (6), respectively, it is evident from Fig. 1 that it is the
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FIG. 1. (a) Total ionization probability vs electric-field strength
for a 15-cycle laser pulse with ω = 50 a.u. The solid black line
shows the (full) nondipole result obtained by solving the TDSE with
the Hamiltonian in Eq. (5), the solid blue line the nondipole result
obtained by solving the TDSE with only the A · p term, i.e., the
Hamiltonian in Eq. (6), and the dashed red line the dipole approx-
imation result obtained by solving the TDSE with the Hamiltonian
in Eq. (7). (b) Corresponding survival probability. (c) Corresponding
probability of excitation.

diamagnetic term in Eq. (5), i.e., the A2 interaction, that by far
contributes the most to the nondipole dynamics. As a matter of
fact, only tiny differences between the dipole results and the
results obtained with the Hamiltonian (6) are displayed in the
figure. This is in agreement with earlier findings for light in
the longer-wavelength (xuv) regime [2,3,12].
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FIG. 2. Kinetic energy spectrum of the emitted photoelectron for
a 15-cycle laser pulse with ω = 50 a.u. and for two different electric-
field strengths (a) E0 = 10 a.u. and (b) E0 = 400 a.u. The solid black
line shows the (full) nondipole result obtained by solving the TDSE
with the Hamiltonian in Eq. (5), the solid blue line the nondipole
result obtained by solving the TDSE with only the A · p term, i.e.,
the Hamiltonian in Eq. (6), and the dashed red line the dipole result
obtained by solving the TDSE with the Hamiltonian in Eq. (7).

Figure 2 shows the kinetic energy distribution of the emitted
photoelectron for two different electric-field strengths E0 = 10
a.u. [Fig. 2(a)] and E0 = 400 a.u. [Fig. 2(b)], corresponding
to a weak (Up = 0.01 a.u.) and a strong (Up = 16 a.u.) laser
field, respectively. Two (multiphoton) peaks which correspond
to the net absorption of one and two photons from the field
are depicted, as well as a low-energy structure [12] near the
ionization threshold. Again, no pronounced differences in the
distributions obtained with Hamiltonians (6) and (7) are exhib-
ited. Furthermore, the effect of the diamagnetic term in Eq. (5)
is most expressed in the low-energy part of the spectra, giving
rise to a higher ionization yield, in agreement with the findings
in Fig. 1(a). As it turns out, the relatively large nondipole yield
at low kinetic energy electrons can be attributed to the A2

interaction solely, i.e., it would still be present if the A · p
term were disregarded completely. Remarkably, even at the
lowest field strength considered, corresponding to an electron
ponderomotive energy of only 0.01 a.u., the low-energy yield is
still significant. The explanation for this surprising behavior is
twofold: First, we recognize that the nondipole component of
the field associated with the diamagnetic interaction mimics a
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FIG. 3. Total probability for the net absorption of one photon from
the laser field (i.e., differential probability integrated over the electron
energies 25 < E < 75 a.u.) vs electric-field strength for a 15-cycle
laser pulse with ω = 50 a.u. The solid black line shows the (full)
nondipole result obtained by solving the TDSE with the Hamiltonian
in Eq. (5) and the dashed red line the dipole approximation result
obtained by solving the TDSE with the Hamiltonian in Eq. (7).

so-called half-cycle nonzero displacement pulse [17] and
second, for such pulses the corresponding ionization yield
is effectively increased with respect to an ordinary zero-
displacement pulse [9]. The reason for the increase is that the
electron is pushed away from the nucleus due to the radiation
pressure.

Although the multiphoton peaks in Fig. 2 are seemingly
less affected by the nondipole field, for the highest intensity
the one- and two-photon peaks are somewhat perturbed. Then
the following natural question arises: Does the beyond-dipole
ionization dynamics alter the multiphoton ionization yields,
i.e., integrated probability of absorption of one and/or two
photons from the field? Figure 3 gives an answer to this
question. The figure shows the total probability for the net
absorption of one photon, i.e., the differential probability
integrated over the electron energies 25 < E < 75 a.u. as
a function of the electric-field strength. As the dipole and
nondipole results essentially coincide in the figure, we may
conclude that the beyond-dipole dynamics does not alter the
multiphoton ionization yields to any high degree. Now, based
on the findings in Figs. 2 and 3 and the close agreement
between the obtained results, it seems a likely possibility that
multiphoton ionization processes are less prone to nondipole
effects. However, as we will see below, this is not necessarily
the case.

In order to investigate the multiphoton ionization peaks in
more detail and the role of nondipole effects in particular,
we now aim at measuring differences in the respective final
wave functions, as obtained with the Hamiltonians (5)–(7).
This is achieved in the following way. First, the wave function
corresponding to the absorption of one photon from the field
is extracted from the total wave packet, i.e., we collect the
part of the wave function representing electron continuum
energies in the interval 25 < E < 75 a.u. Second, the extracted
wave functions are normalized to one and they are denoted by
|�Eq. (5)〉, |�Eq. (6)〉, and |�Eq. (7)〉, corresponding to solving the

0 100 200 300 400 500
0.9
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0.98

1

Electric Field Strength (a.u.)

FIG. 4. Projections corresponding to the net absorption of one
photon from the laser field as a function of the electric-field strength
(see the main text for details). The solid black line shows Eq. (19),
the solid blue line Eq. (20), and the dashed red line Eq. (21).

TDSE with the Hamiltonians (5), (6), and (7), respectively.
Finally, the projections

|〈�Eq. (7)|�Eq. (5)〉|2, (19)

|〈�Eq. (6)|�Eq. (5)〉|2, (20)

and

|〈�Eq. (7)|�Eq. (6)〉|2 (21)

are made and the results are presented in Fig. 4.
From the result obtained with Eq. (19), it is evident that the

one-photon resonance is strongly affected by beyond-dipole
dynamics and in particular for field strengths beyond E0 � 100
a.u. Furthermore, comparing the projections (19) and (20) in
Fig. 4, it is clear that it is the diamagnetic interaction, as
represented by the A2 operator in Eqs. (3) and (5), that is
responsible for the most important correction for the higher
field strengths. Nonetheless, for the lower field strengths, i.e.,
for E0 � 100 a.u., the A2 term becomes unimportant as far
as the one-photon resonance is concerned and it is the spatial
dependence in the A · p term in Eqs. (3) and (6) that takes
over as the dominating nondipole channel. [Note, however,
that the A2 interaction is still important when it comes to the
bound-state excitation dynamics, as was already demonstrated
in Fig. 1(c).] Very interestingly, the last projection (21), as
indicated with the dashed red line in Fig. 4, clearly shows
that the nondipole effect due to the A · p operator is largely
independent of the laser intensity, as the correction remains
constant all the way from the perturbative limit to the strongest
fields considered. Although these beyond-dipole corrections
turn out to be small in the present case, the results clearly
demonstrate the fact that the dipole approximation, i.e., the
long-wavelength approximation, breaks down at very high
photon energies, even in the perturbative limit.

The next question is whether the predicted nondipole
effects, as visualized in Fig. 4, can be measured in some
way. The answer is positive and is demonstrated in Figs. 5
and 6. The figures depict the angular distribution of the emitted
photoelectron for various scenarios. First, Fig. 5 shows the
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FIG. 5. Electron angular distributions, integrated over the elec-
tron energy interval 25 < E < 75 a.u. (corresponding to the net
absorption of one photon from the field), for ω = 50 a.u., a 15-
cycle laser pulse linearly polarized in the horizontal direction and
propagating in the upward direction (indicated with an arrow), and
two different electric-field strengths: E0 = 10 a.u. (left column)
and E0 = 400 a.u. (right column). The top panels show the (full)
nondipole result obtained by solving the TDSE with the Hamiltonian
in Eq. (5), the middle panels the nondipole result obtained by solving
the TDSE with only the A · p term, i.e., the Hamiltonian in Eq. (6),
and the bottom panels the corresponding dipole result obtained by
solving the TDSE with the Hamiltonian in Eq. (7).

distribution corresponding to the net absorption of one photon
from the field, (i.e., the differential probability integrated over
the electron energies 25 < E < 75 a.u.) and for two different
field strengths E0 = 10 a.u. (left panels) and E0 = 400 a.u.
(right panels). The top, middle, and bottom panels represent
the results of the Hamiltonians (5), (6), and (7), respectively.
For both the weak- and strong-field cases, Eqs. (5) and (6)
produce very similar results and the breakdown of the dipole
approximation is manifested as a (weak) bending of the angular
lobes in the laser propagation direction (upward). Nevertheless,
the measured effect is quite small and it turns out to be rather
independent of the laser intensity. As such, it is mainly the
effect of the A · p nondipole corrections that is expressed in
the figure. This finding may seem contradictory to the results in
Fig. 4, where it was clearly demonstrated that the diamagnetic
term is the most important one with respect to beyond-dipole
ionization dynamics.

Finally, Fig. 6 shows that the one-photon resonance is
indeed strongly influenced by beyond-dipole ionization dy-
namics induced by the diamagnetic interaction, in accord with
Fig. 4. Figure 6 depicts angular distributions for the three
different (strong) field strengths E0 = 400 a.u. (top panels),
E0 = 500 a.u. (middle panels), and E0 = 600 a.u. (bottom
panels). The left-side panels are the results obtained when
integrating over the electron energies 25 < E < 49.1 a.u., i.e.,
by summing over the energies corresponding to the low-energy
(left-hand) side of the one-photon resonance. Likewise, the
right-side panels represent the corresponding angular distri-
butions calculated from the high-energy (right-hand) side of
the resonance, as integrated over the electron energies 49.1 <

E < 75 a.u. Very interestingly, the left-hand side distributions
are bent in the forward (laser propagation) direction, whereas

FIG. 6. Full (nondipole) electron angular distributions for a 15-
cycle laser pulse linearly polarized in the horizontal direction and
propagating in the upward direction (indicated with an arrow) and
for three different electric-field strengths: E0 = 400 a.u. (top panels),
E0 = 500 a.u. (middle panels), and E0 = 600 a.u. (bottom panels).
The left column shows the angular distribution as obtained by
integrating over the energies corresponding to the low-energy side
of the one-photon resonance, i.e., 25 < E < 49.1 a.u., and the right
column the angular distribution as obtained by integrating over the
energies corresponding to the high-energy side of the one-photon
resonance, i.e., 49.1 < E < 75 a.u. The total (integrated) one-photon
ionization yields are 0.0013, 0.0017 and 0.0019, in the top, middle,
and bottom panels, respectively.

the right-hand side ones are bent in the backward (counter-
propagation) direction. The bending increases with increasing
laser intensity. Although not explicitly shown here, we have
also checked that the higher multiphoton ionization peaks
express a very similar behavior. Furthermore, we have found
that this left-right asymmetry of the resonances is a general
phenomenon, i.e., the same pattern is repeated for both lower
and higher photon energies in the x-ray regime as well as for
shorter and longer pulse durations.

The bending of the angular lobes in the laser propagation
and/or counterpropagation directions can be explained within
the framework of a simple model which bears a clear re-
semblance to the so-called strong-field approximation (SFA)
model, also known as the Keldysh-Faisal-Reiss theory [31–
33]. At the heart of this model is an assumption that the
Coulomb interaction can be neglected once the electron is in the
continuum. Likewise, the perturbation due to the laser field is
neglected in the initial (bound) state. Neglecting the Coulomb
potential, the Hamiltonian describing a free electron moving
in the (nondipole) laser field is given by

H = p2

2m
+ e

m
A(t) · p − e2

mc
A(t) · ∂ A(t)

∂t
κ̂ · r. (22)
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Note that here only the leading-order correction beyond the
dipole approximation is retained, i.e., the A2 term is ex-
panded to first order in κ · r , and any unimportant and purely
time-dependent factors have been omitted [cf. Eq. (8)]. The
Hamiltonian (22) is the same as (9), except that the spatial
dependence in the A · p operator and the Coulomb potential
have been omitted. The analytical solutions to the TDSE (1)
with the Hamiltonian (22) are the so-called Volkov wave
functions describing a free electron with momentum p = h̄k
moving in the electromagnetic field,

�V
k (r,t) = 1

(2π )3/2
exp

(
i

[
k + e2

2mch̄
A2(t)κ̂

]
· r

−ik · α(t) − iβ(t)

)
, (23)

where

β(t) = h̄

2m

∫ t

t0

[
k + e2

2mch̄
A2(t ′)κ̂

]2

dt ′ (24)

and

α(t) = e

m

∫ t

t0

A(t ′)dt ′ (25)

is the time-dependent displacement vector of a corre-
sponding (classical) free electron oscillating in the (dipole)
laser field. The normalization condition is chosen so that
the Volkov states are normalized to a δ function. Then,
according to first-order time-dependent perturbation the-
ory, the time-dependent transition amplitude c(k,t) from
the initial �1s(r,t) = ψ1s(r)e−iE1s t/h̄ ground state to some
final continuum state of momentum p = h̄k is simply
given by

c(k,t) = e

ih̄m

∫ t

−∞

〈
�V

k (t ′)
∣∣A(t ′) · p|�1s(t

′)〉dt ′. (26)

Aiming at keeping the model as simple as possible while
still being capable of describing the main mechanism behind
the bending of the angular lobes in Fig. 6, note at this point
that only the electric dipole interaction has been taken into
account in the coupling between the initial bound state and
the continuum states in Eq. (26). As such, perturbations due
to the beyond-dipole interactions are only included in the
final continuum states [cf. Eq. (23)]. Finally, the momentum-
resolved ionization probability at the end of the laser pulse,
i.e., at time t = T , is computed as

dP

dk
= |c(k,T )|2. (27)

Figure 7 depicts (integrated) electron angular distributions
similar to the ones shown in Fig. 6, but now instead calculated
based on the model (27), with E = 1

2k2. Except for a somewhat
higher total yield, there is a clear resemblance between the
results in Figs. 6 and 7. This means that the comparably
simple model framework actually captures the main mecha-
nism behind the ejection dynamics. Now inspecting Eqs. (23)
and (24) it is clear that the beyond-dipole correction term,
which is proportional to A2(t), gives rise to an instantaneous
(positive) momentum shift of the continuum states in the
laser propagation (forward) direction. In effect, Volkov states

FIG. 7. Same as Fig. 6, but for the corresponding results obtained
with the simple model (26). The total (integrated) one-photon ion-
ization yields are 0.0018, 0.0025 and 0.0030, in the top, middle, and
bottom panels, respectively.

with k · κ̂ < 0 are downshifted in energy due to this ac Stark
shift, while states with k · κ̂ > 0 are upshifted. As such,
the (instantaneous) resonance condition for the absorption of
one photon from the field will be met at different energies
depending on whether the electron is emitted in the forward
or backward direction, respectively. Ultimately, this explains
why the electron tends to be emitted in the laser propagation
direction for energies corresponding to the low-energy side
of the (multi)photon resonance, while it is more likely to be
emitted in the opposite direction for energies corresponding to
the high-energy side of the resonance.

Finally, inspecting the one-photon resonance in some more
detail, in Fig. 8 we present the extracted double differential
angular and energy probability ∂2P/∂
∂E for emitting a
photoelectron with energy E into the solid angle 
, as obtained
for a set of discrete electron energies evenly distributed about
the photoelectron peak, i.e., for energies in the range from
45 to 53 a.u. in steps of 1 a.u. of energy. The left column
depicts the results of the full calculations, whereas the right
column shows the corresponding results calculated based on
the simple (SFA) model (27). In both cases the electric-field
strengthE0 = 400 a.u. The figure clearly displays the evolution
of the degree of bending of the angular lobes in the laser
propagation and/or counterpropagation directions with respect
to the kinetic energy of the emitted photoelectron. Note again
the clear resemblance of the full and approximate results, at
least at the qualitative level. As a matter of fact, the small
discrepancies observed in the respective results can to a large
extent be explained by the fact that the spatial dependence in
the vector potential in the A · p operator was not taken into
account in the SFA model.
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FIG. 8. Double differential angular and energy probability
∂2P/∂
∂E extracted at the final continuum electron energies as
indicated in the figure, i.e., for energies ranging from 45 to 53 a.u.
(from top to bottom) in steps of 1 a.u. The laser pulse is the same as
before with E0 = 400 a.u. The left column shows the ab initio result
and the right column the simple model (SFA) result calculated by
means of Eq. (26).

IV. CONCLUSION

We have studied the role of the spatial dependence of a
1.36-keV x-ray laser pulse in the ionization and excitation
of ground-state hydrogenic atoms. The resulting beyond-
dipole (nondipole) dynamics of the system in response to the
laser field was analyzed in some detail, and similarities to
and differences from the widely used dipole approximation

were pointed out. Furthermore, the relative importance of the
diamagnetic interaction (A2) in comparison with the A · p
light-matter interaction was pinpointed. Although only one
particular scenario was considered in the present work, i.e.,
a 15-cycle laser field of angular frequency ω = 50 a.u., the
main findings are expected to be of some general validity, and
we have explicitly checked that very similar conclusions can
be drawn at both somewhat lower and higher laser frequencies
in the x-ray regime.

An important observation of the study is that the beyond-
dipole correction as induced by the spatial dependence in
the A · p operator was found to be largely independent of
the laser intensity, all the way from the perturbative limit
to the weakly relativistic regime. Furthermore, it was found
that the A2 operator is by far the most important one when
it comes to nondipole excitation and ionization dynamics in
strong fields, in agreement with the conclusions previously
drawn in the extreme ultraviolet (as well as vuv) regime
[2,3,12]. It was also found that the linear approximation
to the Hamiltonian (9), i.e., keeping only the leading-order
corrections beyond the dipole approximation, is sufficient to
capture essentially all the features of the nondipole light-matter
interaction.

Strictly speaking, the dipole approximation was not ex-
pected to be very accurate for the comparably high photon
energy considered in this work, merely due to the short
wavelength of the laser light. In spite of this, the beyond-
dipole corrections were found to be small in the perturba-
tive limit and any differences were manifested in the an-
gular resolved probability distributions as a characteristic
bending of the angular (dipole) lobes in the laser propaga-
tion direction (cf. Fig. 5). For stronger fields the situation
changes dramatically: The diamagnetic interaction suddenly
switches on, the magnetic-field component of the laser field
becomes important, and the ionization-excitation dynamics
is strongly perturbed. The resulting increase in the ioniza-
tion yields primarily leads to the emission of low-energy
electrons, whereas the corresponding multiphoton ioniza-
tion peaks are seemingly much less sensitive to nondipole
effects.

Taking an even closer look at the multiphoton resonances
reveals a different story, in that a characteristic and strong
forward-backward asymmetry in the respective electron an-
gular distributions is exhibited in the intense field limit. Fo-
cusing on the one-photon resonance first, for electron energies
E < h̄ω − Ip (Ip is the ionization potential), corresponding
to the low-energy side of the resonance peak, the electron
is found to be most likely emitted in the laser propaga-
tion (forward) direction, whereas for E > h̄ω − Ip, i.e., the
high-energy side of the resonance, the situation turns and
the electron tends to be emitted in the counterpropagation
(backward) direction. As it turns out, similar conclusions also
hold for the higher-order multiphoton ionization resonances.
Finally, it was found that the general mechanism behind
the observed forward-backward asymmetries in the angular
distributions could be explained in terms of a comparably
simple semianalytical model, emphasizing the importance of
the ac Stark shift of the final continuum states, due to both
the dipole and nondipole fields, as the source of the observed
features.
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