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High-order-harmonic generation from solids: The contributions of the Bloch wave packets
moving at the group and phase velocities
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We study numerically the Bloch electron wave-packet dynamics in periodic potentials to simulate laser-solid
interactions. We introduce an alternative perspective in the coordinate space combined with the motion of the
Bloch electron wave packets moving at group and phase velocities under the laser fields. This model interprets the
origins of the two contributions (intra- and interband transitions) in the high-order harmonic generation (HHG)
processes by investigating the local and global behaviours of the wave packets. It also elucidates the underlying
physical picture of the HHG intensity enhancement by means of carrier-envelope phase, chirp, and inhomogeneous
fields. It provides a deep insight into the emission of high-order harmonics from solids. This model is instructive
for experimental measurements and provides an alternative avenue to distinguish mechanisms of the HHG from
solids in different laser fields.
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I. INTRODUCTION

The techniques in attosecond sciences, traditionally applied
to atoms and molecules in the gas phase [1,2], have been
extended to the bulk solids recently [3–20]. A crucial difference
between bulk solids and gas targets is the localization of the
initial electron wave packet, which is spatially confined in
isolated atoms and molecules but can be delocalized in solids.
The effect of electron distribution on wave-packet dynamics of
laser-solid interaction remains elusive. A semiclassical model
[21] is proposed, which is in analogy with the three-step
model for high-order harmonics generated from the atomic and
molecular systems in the coordinate space [22,23] by requiring
that the electron-hole pair have the same displacement, i.e.,
xc − xv = 0. Our theoretical work also introduces a quasi-
classical model [24,25] to investigate the electron dynamic
processes under the laser fields in the wave-vector k space,
based on the delocalization of the wave packet. However, the
two models cannot reveal the origins of high-order harmonic
generation (HHG) from the time-dependent evolution of the
Bloch electron wave packet between neighboring atomic sites
in the coordinate space. To understand the process of the
HHG from solids intuitively, a further picture in the coordinate
space is required. Theoretically, the contributions to HHG
in crystal solids have been divided into intra- and interband
transitions [26–28]. The intra- and interband models describe
particlelike electron and hole moving in the ε-k (energy-wave-
vector) space. However, the key role of these two contributions
remains intensively debated [28,29]. In the quantum picture,
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the dynamics of electrons are described by Bloch waves. In
this work, we explore the intra- and interband transitions by
investigating the Bloch wave-packet oscillations in the x-t
(coordinate-time) space.

Our work provides insight into the process of HHG in crystal
solids by focusing on the two underlying nonlinear currents,
which are caused by the motion of the Bloch electron wave
packets moving at group and phase velocities in the coordinate
space, respectively. This model reveals that the two nonlinear
currents (jgroup and jphase) correspond to the global and local
oscillation motion of the wave packet in the coordinate space,
respectively. Pictures in k space show a good agreement with
those in the coordinate space. Atomic units are used throughout
unless stated otherwise.

II. THEORETICAL APPROACH

During the laser fields interacting with solids, Bloch elec-
trons in the valence band have probabilities to tunnel to con-
duction bands, i.e., Zener tunneling [30–32]. But the tunneling
probabilities exponentially decay with the increase of energy
gap. Only a small portion of electrons, which are populated on
top of the valence band near the wave vector k = 0 with mini-
mal band gap, can tunnel to conduction bands with the laser pa-
rameters used in the current work. So we choose an initial wave
function in the valence band which is superposed by the �k

Bloch eigenstates near k0 = 0 [33]. We can regard the initial
Bloch wave packet as a quasiparticle. Based on the assumption,
the quasiparticle wave packet can be written as [34,35]

ψn
k (x,t) = ei[kx− εn (k)

h̄
t]un

k (x), (1)

where un
k (x) is a function with period in the lattice constant a0

and εn(k) represents eigenvalue of the energy. The Bloch wave
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packet at a given wave vector k0 in band n can be superposed
by the wave functions of �k near the k0 in the same band. It
can be represented as

�n
k0

(x,t) = 1

�k

∫ k0+ �k
2

k0− �k
2

un
k (x)ei[kx− εn (k)

h̄
t]dk. (2)

The Taylor expansion of eigenenergy εn(k) near k0 can be
expressed as

εn(k) = εn(k0) + [∇kεn(k)]k0δk + · · · , (3)

and the amplitude modulation factor un
k (x) changes slowly with

k. So the Eq. (2) can be rewritten as

�n
k0

(x,t) ≈ un
k0

(x)

�k
ei[k0x− εn (k0)

h̄
t]

×
∫ �k

2

− �k
2

ei[δk(x− [∇k εn (k)]k0
h̄

t)]d(δk), (4)

we finally come to

�n
k0

(x,t) ≈ ψn
k0

(x,t)
sin�k

2 ζ

�k
2 ζ

= ψn
k0

(x,t)�(x,t), (5)

where ζ = x − 1
h̄

( ∂εn(k)
∂k

)k0 t . The wave function can be divided
into two parts naturally. Electronic probability at atomic sites
in coordinate space is defined by

∣∣�n
k0

(x,t)
∣∣2 = ∣∣ψn

k0
(x,t)

∣∣2|�(x,t)|2. (6)

It implies that the electronic probability is the modulus square
of the periodic lattices (|ψn

k0
(x,t)|2) modulated by the envelope

(|�(x,t)|2). The envelope involves the information of the
energy bands.

We describe the light-solid interaction in one dimension,
along the polarization direction of the laser fields. In the length-
gauge treatment, the time-dependent Hamiltonian is written as

Ĥ (t) = Ĥ0 + xE(t), (7)

where Ĥ0 = p̂2

2 + V (x), and V (x) is a periodic lattice
potential. In our calculations, we choose the Mathieu-type
potential [19,33,36]. The specific form is V (x) = −V0[1 +
cos(2πx/a0)], with V0 = 0.37 a.u. and lattice constant a0 =
8 a.u., respectively. The band gap and lattice constant mimic
the structure of AlN with a 4.2 eV band gap.

The energy band structure and time-dependent Schrödinger
equation (TDSE) can be solved by using Bloch states in the k

space and B splines in the coordinate space, respectively. For
details we refer readers to Refs. [37,38]. After obtaining the
time-dependent wave function �n

k0
(x,t) at an arbitrary time,

we can calculate the laser-induced currents by dividing it into
two contributions according to Eq. (5). It can be written as

jphase(t) = i

2

N∑
s=1

∫ xs+1

xs

[
ψn∗

k0
(x,t)

∂

∂x
ψn

k0
(x,t)

−ψn
k0

(x,t)
∂

∂x
ψn∗

k0
(x,t)

]
dx (8)

FIG. 1. Scheme of the time-dependent electron wave-packet evo-
lution process for the HHG from periodic lattice crystal. The periodic
atomic site is represented by the gray circles along the black dash line.
The bottom of panel (a) depicts the initial wave packet with k0 = 0
at the top of the valence band (n = 1), while the top of the panel
(a) shows a snapshot of the time-dependent evolution of the electron
wave packet driven by the laser fields. The periodic fine structure
(|ψk0

n (x,t)|2) and the envelope (|�(x,t)|2) of the electron wave packet
are shown by the green solid line and black dash line, respectively.
Panel (b) presents a local amplification of the wave packet. Due to the
electron excitation-recombination process under the laser fields, the
oscillations of the electron wave packet between neighboring atomic
sites, as shown in the inset of the panel (b), give rise to the emission
of HHG. The two-way arrows and the wiggly lines denote the back
and forth oscillation of the wave packet and the emission of HHG,
respectively.

and

jgroup(t) = i

2

∫ [
�

∗
(x,t)

∂

∂x
�(x,t)

−�(x,t)
∂

∂x
�

∗
(x,t)

]
dx, (9)

where the N and xs are the index of the lattice site and the
coordinates of the periodic lattice, respectively. Equations (8)
and (9) imply that the two nonlinear currents correspond to
the Bloch wave packet moving at phase and group velocities
in the laser fields, respectively. The current jphase is caused
by the electron polarization between each two neighboring
lattice sites, which is shown in the inset of the top panel in the
Fig. 1(b). Based on the physical picture and the Appendix, we
combine the time-dependent electron population and energy
band dispersion of the each band, the Eq. (9) can be reduced
to [34,35]

jgroup(t) = −
∑
n=c,v

∫
ρn

∂εn

∂k

∣∣∣∣
k=k0+A(t)

dk, (10)

where ρn and ∂εn

∂k
represent the population and group velocity

of the electron (hole) in the band n, respectively. A(t) is the
vector potential of the laser fields. The HHG power spectrum
is proportional to |j(ω)|2, the modulus square of Fourier
transform of the time-dependent currents in Eqs. (8) and (10).

III. RESULTS AND DISSCUSSION

We study the time-dependent electron wave-packet evo-
lution process during the laser-solid interaction. Figure 1(a)

013403-2



HIGH-ORDER-HARMONIC GENERATION FROM SOLIDS: … PHYSICAL REVIEW A 97, 013403 (2018)

FIG. 2. Comparison of the current model and the previous models
[21,37,38]. (a) Comparison of HHG obtained by jphase + jgroup and
jinter + jintra. (b) Comparison of HHG obtained by jphase and jinter.
(c) Comparison of HHG obtained by jgroup and jintra. The intensity,
wavelength, and duration of the driving laser pulses are set to be
0.87 TW/cm2, 3.2 μm, and eight optical cycles, respectively.

shows the full view of the electron wave-packet evolution in the
fields. The wave-packet oscillations between the lattice sites
are shown in the Fig. 1(b). Time-dependent envelope function
(the black dash line) of the electron wave packet depicts the
nonlinear current in Eqs. (9) and (10). The electron wave-
packet amplitude difference between each two neighboring
atomic sites in the time-dependent periodic fine structure, as
shown in the inset of Fig. 1(b), describes the charge density
polarization under the laser fields. The time-dependent polar-
ization can be obtained by integrating the current in Eq. (8).
It gives rise to the HHG. In summary, both the oscillations of
the envelope function and periodic fine structure between each
two lattice sites give rise to the HHG emissions.

A. Validity of the model

The harmonic spectra generated by the two nonlinear
currents are shown in Fig. 2. The total harmonic spectrum is
depicted by the solid black line, which characterizes a rapid
decay and double-plateau structure. One can find that the
currents jphase and jgroup play key roles in the HHG process in
the plateau and the below gap zones, as in Figs. 2(b) and 2(c),
respectively. We also calculated jinter and jintra. The details can
be found in Ref. [38]. Their contributions are also illustrated in
Fig. 2. One may find that the roles between jinter and jphase are
quite close, which dominate the HHG in the plateau. The roles

FIG. 3. (a) The yields enhancement of the HHG under the inho-
mogeneous fields with a nonhomogeneity parameter γ = 0.0004 a.u.
(b) The key contributions of the HHG spectrum under the inhomo-
geneous fields are displayed. (c) Comparison of the currents jphase

between homogeneous and inhomogeneous fields. The top and bottom
of panel (c) show the currents (j1phase and j2phase) contributing to the
HHG spectra of the first and second plateau, respectively. The laser
parameters are the same as those in Fig. 2.

between jintra and jgroup are also closely equal, which dominate
in the lower-order harmonics.

To further compare the roles of jinter, jphase, jintra, and
jgroup, we coherently add their contributions to the HHG
shown in Fig. 2(a). One may find perfect agreements after
considering the approximations in Eq. (5). The comparison of
the current model and previous models reveals the physical
picture of the currents jgroup and jphase, which correspond
to the intraband Bloch oscillations and interband transition
dynamics, respectively. The insight into the HHG process
provides an intuitive understanding on the role of the dominant
contribution in the laser fields with the wavelength ranging
from midinfrared light to Terahertz (THz) region.

B. Contribution of wave packets on group and phase velocities

To further investigate the mechanisms of HHG, we reinter-
pret the intensity enhancement in the HHG process by regulat-
ing the laser parameters such as the spacial nonhomogeneity,
carrier-envelope phase (CEP), and chirp.

We first perform an analysis of the HHG yield enhancement
in solids under the nonhomogeneous (plasmon-enhanced)
fields, as shown in Fig. 3. It has been reported theoretically [37]
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FIG. 4. The CEP effect on HHG spectra under the alternative
picture. (a) The HHG spectra obtained with two CEPs. The inset
shows the time-dependent wave vector k(t) with different CEPs. The
intensity change and cutoff extension of the HHG spectra are marked
with Z↓ (Z↑) and �N1 (�N2), respectively. Panel (b) shows the
currents (j1phase and j2phase), which contribute to the HHG spectra of
the first and second plateaus, respectively. The intensity, wavelength,
and duration of the driving laser pulses are 0.56 TW/cm2, 3.2 μm,
and two optical cycles, respectively. The chirp parameter β is zero.

and experimentally [14–16] recently. The spatial dependence
of the enhanced laser electric field can be described approxi-
mately as (similar to Taylor expansion)

E(x,t) ≈ E(t)(1 + γ x), (11)

where γ has dimensions of inverse length (in unit of inverse of
Bohr radius in atomic units) [39]. In experiments, the spatial
nonhomogeneity factor γ can be changed by adjusting the
shape of bow-tie nanostructures and the distance between two
elements [16].

We show the harmonic spectra in the case of the homo-
geneous and nonhomogeneous fields with a nonhomogeneity
parameter γ = 0.0004 a.u. in Fig. 3(a). The double-plateau
structure of the harmonic spectra is shown in both the ho-
mogeneous and nonhomogeneous fields. However, the second
HHG plateau exhibits yield enhancement by two to three orders
under the nonhomogeneous fields. The mechanisms of the
yield enhancement had been previously interpreted with the
populations and transition probabilities enhancement of
the high-lying conduction bands [37]. Here, we turn to the
alternative insight on the picture of the currents of jphase and
jgroup. Figure 3(b) shows the distinction of the contributions
in the HHG spectrum under the nonhomogeneous fields. One
can observe that the contribution of jphase dominates the
double-plateau region. It implies that the main contribution of
the HHG plateau has no changes between nonhomogeneous
and homogeneous fields by comparing with the results in
Fig. 2(b). A further insight is required to explain the only yield

FIG. 5. Laser chirp effect on HHG spectra. (a) Comparison of the
HHG spectra with different chirp parameters. The inset shows the
laser pulses with different chirps. (b) The nonlinear currents j2phase

with different chirps, which give rise to the high-harmonic radiation
of the second plateau. The intensity and wavelength of the laser pulses
are the same as those in Fig. 2 except that the duration is two cycles.

enhancement of the second HHG plateau by focusing on the
current jphase. We divide the current jphase into j1phase and
j2phase by projection to the eigenstates of the first (C1) and
high-lying (C2 plus C3) conduction bands, respectively, as
shown in Fig. 3(c). The top of Fig. 3(c) illustrates that the
j1phase has the same magnitude in the case of homogeneous
and nonhomogeneous fields, which explains why the change
of the yield enhancement of the first plateau is not obvious.
However, in the bottom of the Fig. 3(c), one can clearly see
that the current j2phase has a dramatic increment at the center of
the laser pulses, which could give rise to two to three orders of
yield enhancement of the second HHG plateau. The increment
of the current j2phase suggests that the intensity of the electronic
polarization between each two atomic sites is enhanced in the
case of nonhomogeneous fields, which leads to the enhance-
ment of the second plateau high-order harmonic radiation.

Then, we focus on the effects of CEP and chirps [38,40] on
the HHG spectra presented in Figs. 4 and 5. The form of the
laser fields is expressed as

E(t) = E0f (t)cos[ωt + φCEP + φ(t)], (12)

where φ(t) = β( t
τ

)2, and β is a chirp parameter. τ is fixed
to 610 a.u. φCEP represents the CEP phase. ω and f (t) are
the frequency and cos2 envelope function of the laser fields
respectively.

The cutoff extensions of the two plateaus are obvious and
marked with �N1 and �N2 in Fig. 4(a). Due to the bigger wave
vector k in the laser pulses with φCEP = π /2, as shown in the
inset of Fig. 4(a), the cutoff extensions can be clarified easily
based on the previous quasiclassical analysis of the dynamics
[24]. One can also find that the intensity of double-plateau
HHG changes dramatically in the case of the laser pulses with
different CEPs. The second HHG plateau has a magnitude
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FIG. 6. HHG spectrum in the THz fields with a central frequency
of 18.7 THz and an intensity of 3.16 GW/cm2. The parameter V0 is
0.2 a.u. in the periodic potential. The inset shows the mechanisms of
the HHG in the THz fields.

enhancement of six to seven orders (Z↑), however, the yield of
the first HHG plateau decreases by one to two orders (Z↓) in the
case of the fields with φCEP = π /2. To clarify the mechanisms
of this phenomenon, we adopted the model mentioned above
by distinguishing the currents j1phase and j2phase from the
dominated contribution current jphase, as illustrated in Fig. 4(b).
The amplitude of the current j1phase shows a small decrement
in the fields with φCEP = π /2, which leads to one to two orders
intensity decrement of the first plateau. However, the j2phase is
enhanced obviously at the center of the laser pulses in the case
of φCEP = π /2, which gives rise to six to seven orders intensity
enhancement of the second plateau.

We also investigate the laser chirp effect on the high-order
harmonic emission, as shown in Fig. 5. Figure 5(a) shows
an intensity enhancement phenomenon of the second HHG
plateau, which can also be attributed to the enhancement of
the nonlinear current j2phase with a chirp parameter β = −1.8
in Fig. 5(b). One could conclude that the effects of CEP and
chirp regulate the electron polarizations between neighboring
lattice sites, which leads to the yield decrease or enhancement
of the HHG plateau.

Finally, we investigate the mechanisms of the HHG process
in the THz fields [9,29,41], as presented in Fig. 6. One can find
that the dominant contribution of the HHG spectrum originates
from the current jgroup [29], which implies that the Bloch
wave packet oscillates back and forth in the coordinate space
with a group velocity under the THz fields. The instantaneous
oscillation between two lattice sites can be neglected in the THz
fields. As a result, the current jphase caused by the electronic
polarization between two neighboring atomic sites can be
ignored. Consequently, the mechanisms of the HHG in the THz
fields differentiate from those in the midinfrared laser fields.
It is in agreement with recent experimental measurements in
Ref. [41]. The picture can be comprehended in the k space, as
shown in the inset of Fig. 6. A THz driver field induces weak
photoionization (vertical orange arrow), pumping electrons to
conduction bands, creating holes in valence band, and driving
the electron and hole wave-packet dynamics in the conduction

and valence bands. The electron and hole oscillate separately
back and forth (shown by blue and black arrows), giving rise
to the emission of the high-order harmonics. It reveals that the
dominant mode of the wave-packet oscillation determines the
mechanisms of the HHG in the laser fields, which range from
midinfrared to THz fields.

IV. SUMMARY

In summary, this work reveals an alternative model on the
HHG from solids by focusing on the dynamics of the Bloch
wave packet, which moves at group and phase velocities in
coordinate space. The physical picture of this model shows
a good correspondence to the model in momentum space
with intra- and interband dynamic processes. It is a universal
way to deal with the chirp, CEP, and nonhomogeneous laser
fields. It is valid ranging from midinfrared to THz fields. It
provides an instructive scheme for experimental measurements
to determine the mechanisms of the HHG by distinguishing the
dynamic modes of the wave packets.
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APPENDIX

In this Appendix, we show the details of the derivation of
Eq. (10) from Eq. (9) [34]. The envelope function �(x,t) is
defined by

�(x,t) =
∫ �k

2

− �k
2

ei[δk·(x− [∇k εn(k)]k0
h̄

t)]d(δk)

≈ sin�k
2 ζ

�k
2 ζ

, (A1)

where ζ = x − 1
h̄

( ∂εn(k)
∂k

)k0 t . The initial wave function is a
Bloch eigenstate when t = 0, so the �k → 0 and the envelope
|�(x,t)| = 1, as shown in the bottom panels of Fig. 1. �k is
not equal to 0 under the laser fields, so the amplitude of the
envelope function has a maximum only when the parameter
ζ = 0. If we define the central position of the time-dependent
wave packet as the coordinate of the Bloch electron, it can be
written as

x = 1

h̄

(
∂εn(k)

∂k

)
k0

t. (A2)

The group velocity of the Bloch electron can be written as

υg(k) = ẋ = 1

h̄

∂εn(k)

∂k

∣∣∣∣
k

. (A3)
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