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Dynamics of tunneling ionization using Bohmian mechanics

Nicolas Douguet1,2 and Klaus Bartschat1
1Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA

2Department of Physics, University of Central Florida, Orlando, Florida 32816, USA

(Received 20 April 2017; published 8 January 2018)

Recent attoclock experiments and theoretical studies regarding the strong-field ionization of atoms by few-cycle
infrared pulses revealed features that have attracted much attention. Here we investigate tunneling ionization and
the dynamics of the electron probability using Bohmian mechanics. We consider a one-dimensional problem
to illustrate the underlying mechanisms of the ionization process. It is revealed that in the major part of the
below-the-barrier ionization regime, in an intense and short infrared pulse, the electron does not tunnel through
the entire barrier, but rather starts already from the classically forbidden region. Moreover, we highlight the
correspondence between the probability of locating the electron at a particular initial position and its asymptotic
momentum. Bohmian mechanics also provides a natural definition of mean tunneling time and exit position,
taking account of the time dependence of the barrier. Finally, we find that the electron can exit the barrier with
significant kinetic energy, thereby corroborating the results of a recent study [N. Camus et al., Phys. Rev. Lett.
119, 023201 (2017)].
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I. INTRODUCTION

The tunneling ionization of an electron in an ultrashort
intense optical laser pulse represents a purely quantum process
whose theoretical description remains challenging. Numer-
ous treatments, based on various approximations, have been
elaborated to model ionization in the tunneling regime, e.g.,
using the adiabatic theorem [1], the strong-field approximation
(SFA) [2–4], the closed-orbit theory [5], and the simple-man’s
model [6], as well as more recent techniques [7–10]. Although
these models can already make impressive predictions, the
ultrafast electron dynamics in a time-varying barrier remains a
process under great scrutiny that has been triggering extensive
theoretical work. Improving our understanding of tunneling
ionization is crucial for high-order-harmonic generation, co-
herent quantum control, and attosecond science in general.

The present study is devoted to a description of tunneling
ionization employing Bohmian mechanics [11–13], which has
recently attracted much attention [14–24]. It will be shown that
computing the streamlines of the wave-function probability
over time provides valuable insights and a natural route to
understanding complex ultrafast mechanisms. Despite the
fact that Bohmian mechanics leads to the same final results
as quantum mechanics, it offers an alternative route to the
complex time evolution of a wave packet by considering the
streamlines of the electron probability over time while going
beyond the SFA. Relating the wave-function dynamics to
particle trajectories, as done, for instance, in the Feynman
path-integral approach or in semiclassical models, represents
a very appealing aspect of Bohmian mechanics.

An important topic to which Bohmian mechanics can
make a unique contribution concerns the understanding of
tunneling time through a potential barrier, as recently con-
sidered in Ref. [14]. The concept of tunneling time (e.g.,
Larmor [25], Büttiker-Landauer [26], Pollack-Miller [27], or
Eisenbud-Wigner times [28]) is a fuzzy concept, as it cannot be

obtained directly from a physical observable. Since the various
definitions lead to different results [14,29], one might even
question the relevance of a tunneling time. On the other hand,
the concept plays a central role in the Keldysh theory [2],
since it provides a criterion to separate the multiphoton and
the tunneling ionization regimes.

Revisiting the concept of tunneling time has become highly
appropriate with the advent of attoclock experiments [29,30]
and debates around the claim of Torlina et al. [31] that optical
tunneling in atomic hydrogen is instantaneous. Indeed, two
recent studies [32,33] obtained results supporting a tunneling
ionization time close to zero, while others [14,29,30] reported
a nonzero tunneling time for traversing the barrier. Note that
the tunneling ionization time defined in [31,32] corresponds
to the moment at which the electron appears at the tunnel exit
with respect to the instant of maximum field strength and thus
it does not necessarily contradict the results of Refs. [14,29].
One might also suggest that part of the disagreement observed
between different studies is due to electron correlations in
multielectron systems. However, the recent work by Majety
and Scrinzi [34] on helium revealed that electron correlations
should have no effect on the asymptotic electron momentum
offset angle.

In this study we show that Bohmian mechanics provides nat-
ural definitions of tunneling ionization time, traversing time,
and exit points for each trajectory while explicitly accounting
for the barrier dynamics. Bohmian mechanics can provide a
picture of the time propagation under a barrier without invoking
imaginary tunneling time. Bohmian mechanics might thus have
the potential to reveal and rationalize the dynamics above and
below a barrier while only using familiar concepts.

In order to establish the basic ideas, we consider a one-
dimensional model problem, which contains the principal
ingredients of the tunneling process without adding nonessen-
tial complexities. The study is thus not intended as a direct
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application to a current experimental problem, but as the pre-
sentation of an alternative approach with attractive character-
istics for application in ultrafast physics, with the perspective
that a similar approach could be performed on a realistic
case. It will be shown that even for the one-dimensional
problem considered in this work, Bohmian mechanics provides
important physical results that can hopefully be transferred to
the real case.

Specifically, we demonstrate that the major part of below-
the-barrier ionization (BBI) induced by an intense ultrashort
infrared pulse originates from the electron probability initially
located inside the classically forbidden region, i.e., from the
tail of the initial ground-state wave function. Hence the picture
of the probability flow traversing the entire barrier from the
inner to the outer classically allowed regions is fundamen-
tally flawed. Furthermore, we show that an above-threshold
ionization (ATI) photoelectron spectrum can be accurately
reproduced through Bohmian mechanics, thus leading to an ap-
pealing correspondence between the total number of absorbed
photons and the initial probability distribution of the electron
position. Bohmian mechanics also provides indications on
when the quantum effects become negligible, i.e., when the
so-called quantum force [11,12] vanishes. As a result, a particle
emerging from the barrier can still exhibit quantum behavior
for a significant time.

This paper is organized as follows. In Sec. II we outline
the theoretical approach and describe the model considered.
Our results are presented and discussed in Sec. III, where
we consider Bohmian trajectories, their correspondence to
the final quantum photoelectron ionization spectrum, and how
they can be used to define tunneling time and exit position.
Section IV summarizes our conclusions.

Unless stated otherwise, atomic units are used throughout
the paper.

II. THEORETICAL APPROACH

Suppose that ϕ(x,t) = R(x,t) exp [iS(x,t)], with R and
S being real-valued functions, is the solution of the time-
dependent Schrödinger equation (TDSE). In Bohmian me-
chanics in one dimension, electron trajectories are computed
from the following set of equations [11,18]:

−∂S(x,t)

∂t
= 1

2

(
∂S(x,t)

∂x

)2

+ VC(x,t) + VQ(x,t), (1)

∂ρ(x,t)

∂t
= −∇ · [ρ(x,t)v(x,t)]. (2)

Here ρ(x,t) = R(x,t)2 is the probability density and v(x,t) =
Re{[p̂ϕ(r,t)]/ϕ(r,t)} is the velocity field, where Re{X} denotes
the real part of X and p̂ the momentum operator. Furthermore,
VC(x,t) and VQ(x,t) = −0.5�R(x,t)/R(x,t) are the classical
and quantum potentials, respectively. Equation (1) is the
Hamilton-Jacobi equation with the addition of the quantum
potential VQ(x,t) [35], while Eq. (2) is the continuity equa-
tion for a current probability density j (x,t) = ρ(x,t)v(x,t).
Equations (1) and (2) are formally equivalent to the TDSE.

After evaluating the velocity field v(x,t) from the solution
ϕ(x,t) of the TDSE, we integrate the equation dx(t)/dt =
v(x,t), starting from an initial position x(x0; 0) = x0 at t = 0,
to compute classical trajectories x(x0; t) of the probability

streamlines. [Note that we maintain the commonly used no-
tation here, even though the time-dependent position x(t) is
not the same as the spatial grid on which the various func-
tions are defined.] These Bohmian trajectories have a broader
significance than classical trajectories and can, for instance,
be used to reconstruct the wave function at any time [13,36].
Very importantly, the quantum potential allows Bohmian
trajectories to penetrate into classically forbidden regions.

We consider a one-dimensional modelx ∈ [−∞, + ∞] and
use, as our principal example, a short-range Yukawa potential
V0(x) = −Z exp(−|x|)/|x|, truncated at ε = 0.01, such that
V0(x) = V0(ε) for |x| < ε. This potential was also used in [37].
It could, for instance, model the photodetachment of an atomic
anion. We also carried out calculations for a truncated Coulomb
potential, i.e., a one-dimensional H atom, and we discuss some
of these results below.

Due to its illustrative advantages and regular behavior [37],
we consider the initial wave function ϕ0(x) to be the odd-parity
eigenstate of lowest energy. For x � 0, therefore, ϕ0(x) is the
(reduced) radial part of the 1s ground state of the corresponding
three-dimensional problem. We set Z = −1.9083 to produce
an energy of ε0 = −0.5.

The electric field E(t) = E0f (t) sin(ωt + φ) has amplitude
E0, frequency ω = 0.058 11 (λ = 784 nm), phase φ, and
a sine-squared envelope f (t) = sin2(
t), where 
 = ω/2N

with N as the number of cycles. The TDSE is solved in
the length gauge, with VC(x,t) = V0(x) + E(t)x, by a finite-
difference method.

Throughout this study, we mostly consider a half-cycle
pulse (HCP) with φ = 180◦ so that the electron is pulled
towards the positive direction. This represents the simplest
case to illustrate the essence of the BBI process. We choose
a peak intensity I0 = 4 × 1014 W/cm2 to remain relatively
far from over-the-barrier ionization (OBI) starting at IOBI =
1.2 × 1015 W/cm2. We also consider a one-cycle pulse (OCP)
carrying the same energy as the HCP, i.e., with I0 ≈ 1.68 ×
1014 W/cm2 and φ = 0◦. The Yukawa potential V0(x) and the
classical potential at the maximum field strength are plotted
for x � 0 in Fig. 1.
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FIG. 1. Representation of the ground-state probability (thick
black line), the field-free Yukawa potential (thin blue line), and the
classical potential at the maximum field strength (dashed green line)
for I0 = 4 × 1014 W/cm2. The inset shows the electric fields of our
HCP and OCP (see the text for details).
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III. RESULTS AND DISCUSSION

A. Bohmian dynamics

Having obtained the numerical solution of the TDSE,
we computed thousands of trajectories using the Runge-
Kutta method [38], starting from rest [j (x,0) = 0] at initial
positions x0. A few of these trajectories, plotted in Fig. 2(a),
exhibit a smooth variation without apparent interference be-
tween paths. This simple situation contrasts with the cases of
a few-cycle pulse [13], as well as the well-known example of
entangled trajectories in the double-slit problem with photons
[15].

A rich amount of information can be extracted from the
Bohmian trajectories. First, we found that only trajectories
starting in the ionizing region defined by x0 � xth become
asymptotically free, i.e., with a final speed v∞ > 0. As can
be seen in Fig. 1, this ionizing region is located inside the
classically forbidden region. It starts atxth = 1.65 a.u., whereas
the inner turning point for the energy ε0 is xcl = 1.17 a.u. At
the lower intensity of I0 = 2 × 1014 W/cm2, xth = 2.70 a.u.,
deep inside the forbidden region, while xth = xcl near I0 ≈
6 × 1014 W/cm2. Consequently, only for intensities close to
the OBI regime, part of the tunneling can be considered as
occurring across the barrier.

Even though the characteristics of the ionizing region
depend on the exact form of the pulse and potential, the latter
trend survives for a Coulomb potential and a OCP. Given that
OBI occurs at IOBI = 1.5 × 1014 W/cm2 in atomic hydrogen,
xth = 2.2 at I0 = 1014 W/cm2 while xcl = 2.0. For the OCP,
the ionizing region exists for |x0| above a certain threshold,
which is different for x � 0 and x < 0.

We then repeated the calculations for two- and three-cycle
pulses and confirmed these general findings. The trend is
expected to also hold in three dimensions, which would confirm
the conclusion expressed in Ref. [39]; namely, in a specific
ionization regime, tunneling only occurs from the tail of the
initial wave function.

In order to understand the tunneling dynamics, it is instruc-
tive to look at the acceleration ẍ(x0; t) of the trajectories as a
function of time. Figure 2(b) shows the acceleration of a few
asymptotically free trajectories, as well as the electric force
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FIG. 2. (a) Bohmian trajectories and (b) associated acceleration
as a function of time labeled by their initial position x0. The dashed
red curve represents the time-dependent electric force Fe(t) = −E(t).

Fe(t) created by the HCP. Not surprisingly, the acceleration
approaches Fe(t) with increasing time and the acceleration for
small initial positions x0 merges the latter onto the electric
force. The discrepancy between the acceleration and Fe(t)
is partly due to the Yukawa force F0(x) = −dV0(x)/dx, but
also to the quantum force FQ(x,t) = −∂VQ(x,t)/∂x. Initially,
FQ(x,0) = −F0(x), since the system is in equilibrium at zero
field. For trajectories starting at largex0,F0(x) becomes rapidly
negligible in comparison with FQ(x,t) due to the short-range
nature of the potential. The quantum force FQ(x,t) provides the
extra energy that, in conjunction with the field energy, allows
the particle to cross the barrier and emerge into the classically
allowed region. It is also interesting to note the counterintuitive
fact that some trajectories, while still under the barrier, can
experience an acceleration greater than that of a particle in the
electric field only.

After the acceleration curve merges onto the electric force,
the trajectory is the one of a classical particle interacting
with the field only. This can, of course, only occur after the
particle has emerged from the classically forbidden region.
We repeated the same calculations using a longer wavelength
(λ = 1568 nm) and found the same general behavior, although
trajectories merge more smoothly onto the electric force due
to the slower variations of the barrier. For the Coulomb
case, the particle starts behaving classically as soon as the
acceleration merges onto the force FC(x,t) = −∂VC(x,t)/∂x,
which includes the long-range Coulomb force.

We also performed calculations using the OCP. The dy-
namics is slightly more complicated (not shown) and the
quantum effects more pronounced, as the electron experiences
a force oriented alternatively in each direction. The overall
conclusions, however, remain the same. The ionization oc-
curs predominantly along the positive direction, as several
trajectories driven by the first maximum of the OCP towards
x < 0 rescatter towards the origin. Many of these rescattering
trajectories are thrown back at the end of the pulse towards the
negative direction by the quantum force, while other trajecto-
ries recombine in the attractive region, perturbing bound orbits
and inducing an ionization burst towards x > 0. This effect is
due in part to the fact that Bohmian trajectories cannot cross.

The photoelectron spectrum represents a very important
measurable quantity in SFI. One additional advantage of
Bohmian mechanics is that the distribution of asymptotic
speeds v∞ of ionized trajectories has the same density dis-
tribution |ϕ̂(p)|2 as in standard quantum mechanics [12]. Here
p = v∞ and ϕ̂ is the Fourier transform of the wave function at
t → ∞. Hence, we computed the differential ionization prob-
ability �P/�ε = �x0|ϕ(x0,0)|2/�ε, with ε = v2

∞/2 being
the asymptotic energy of a trajectory starting at x0 and �ε the
energy difference between nearby trajectories starting at x0 and
x0 + �x0, respectively.

To illustrate the ideas, we present the ionization probability
associated with positive asymptotic momenta. The results
obtained in both Bohmian and quantum approaches are plotted
for both pulses in Fig. 3 and show nearly perfect agreement.
One can thus establish a correspondence between the initial
electron position, the region of space to where the electron
has probabilistically evolved at any time, and the region of the
ionization spectrum that its asymptotic energy will cover.
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FIG. 3. Ionization spectra for the (a) HCP and (b) OCP pulses
calculated using quantum (solid black line) and Bohmian (dashed red
line) mechanics. The insets show the wave-function probability at the
end of each pulse. The shaded regions give the corresponding interval
of initial positions (see the text for details).

The correspondence is illustrated in Fig. 3, where we
partitioned the ionization spectrum with the associated range
of initial positions and with the electron probability density
at the end of the pulse. The areas labeled by the initial
positions x1 � x0 � x2 in the spectrum equal the probability∫ x(x2;t)
x(x1;t) |ϕ(x,t)|2dx to find the particle at any given time in

this interval and in particular the total ionization probability
P = ∫ ∞

xth
|ϕ0(x)|2dx. Note, however, that a final momentum

can in general be reached through more than one initial position
for more complex pulses. For the OCP, the convergence
of asymptotic velocities is slower, because there exist more
interactions between paths. Each peak of the ATI spectrum
can be associated with a range of initial electron positions and
the number of absorbed photons. Note that an ATI spectrum
presented as histograms with wide energy steps was obtained
for a one-dimensional model using Bohmian mechanics in
[40]. The agreement with the TDSE spectrum, however, was
not nearly as good as the one presented here.

B. Tunneling time and exit position

Computing the main electron ejection angle in a single-
cycle circularly polarized infrared pulse, Torlina et al. [31]
claimed a zero tunneling ionization time τion for an elec-
tron bound in a Yukawa or Coulomb potential. The latter
time τion = τex − τmax is defined with respect to the instant
τmax of maximum field and with the exit time τex from the
barrier. Ni et al. [32] confirmed a near-zero ionization time
using classical backpropagation in a two-dimensional model
starting with a local momentum [41,42] obtained from the

solution of the TDSE. They defined the detachment time,
when p + A has no component along the field direction, as
the criterion to exit the barrier. While their study allowed
one to compute the time at which the electron trajectories
tunnel out of the barrier, it provides limited information on the
dynamics preceding the tunneling. In addition, a recent study
[30] showed that the electron escapes the barrier with nonzero
longitudinal momentum, thereby contradicting the detachment
criterion employed in [32]. Zimmermann et al. [14] computed
the tunneling or traversing time, i.e., the time spent by the
electron under the barrier, using standard definitions [25–28].
Additionally, a Bohmian tunneling time to cross the barrier
was computed in the adiabatic approximation using a time-
independent outgoing solution of the Schrödinger equation in
a static electric field. However, ignoring important aspects,
such as the time variation of the barrier and the fact that most
of the ionization does not cross the entire barrier, leads to a
drastic overestimation of the Bohmian tunneling time. Below
we show that Bohmian mechanics provides natural answers to
the aspects mentioned above.

The Bohmian approach is well suited to define a tunneling
time [43]. In the length gauge, the tunneling condition, which
includes nonadiabatic effects, is given by ε(t) = VC(x,t), with
ε(t) denoting the time-dependent energy of a trajectory. In the
classical case, it would correspond to a zero instantaneous
speed v(x) of the particle at the exit of the barrier. Note,
however, that this represents only an approximate condition,
since the semiclassical description breaks down at v(x) ≈ 0.
Tunneling occurs when ε(t) < VC(x,t). This is forbidden in
classical mechanics, but allowed for Bohmian trajectories, as
long as ε(t) � VC(x,t) + VQ(x,t). The tunneling condition is
equivalent to T = −VQ(x,t) (T being the kinetic energy) and
tends towards the classical limit for VQ(x,t) � 1. In stark
contrast to the classical case, the Bohmian particle emerges
from the barrier with a nonzero velocity.

The time-dependent energy ε(t) and the classical potential
VC(x,t) of a few asymptotically free trajectories are presented
in Fig. 4(a) for the HCP at 4 × 1014 W/cm2. All energy curves
start at ε0, have a classical asymptotic energy v2

∞/2 whose
distribution reproduces the quantum spectrum [see Fig. 4(a)],
and their energy averaged over all trajectories equals the total
energy of the quantum system at any time [19]. Each energy
curve crosses VC(x,t) at τex and deviations of ε(t) from ε0

at a crossing point are the signature of nonadiabatic effects.
Trajectories traveling the furthest out experience the maximum
decrease in VC(x,t), followed by the largest increase in ε(t). At
I0 � 6 × 1014 W/cm2, trajectories with xth � x0 � xcl cross
VC(x,t) twice (not shown), as they enter and exit the classically
forbidden region at τen and τex, respectively. Fitting τex and τen

as a function of the initial position, we found, approximately,
that τex ∝ (x0 − xth)−0.2 and τen ∝ (xcl − x0)0.3 for xth � x0 �
xcl at all intensities studied. As expected, τex 	 1 when x0 ≈
xth, while τen increases suddenly when x0 enters the classically
allowed region. Thus, trajectories with x0 < xcl spend a long
time inside the allowed region before entering the barrier.

Comparing the results of Figs. 2(a) and 4, we see that
some trajectories become classical only a significant time after
tunneling. For example, the trajectory with initial position
x0 = 6.0 exits the barrier at τex ≈ 20 a.u. while it becomes
classical only after 30 a.u. Moreover, in Bohmian mechanics,

013402-4



DYNAMICS OF TUNNELING IONIZATION USING … PHYSICAL REVIEW A 97, 013402 (2018)

0 10 20 30 40 50
time (a.u.)

-2

-1

0

1

2

3

4

en
er

gy
 (

a.
u.

)

10
-4

10
-3

10
-2

10
-1

dP
/d

τ

20 30 40
τ   (a.u.)

4

6

8

10
x 

  (
a.

u.
)

4.0

6.0

5.0

3.0

2.0

2.0

3.0

4.05.0

6.0

(a) (b)

(c)

 4   10
14

W/cm
2

 6  10
14

10
15

 10
14

 2  10
14

 4  10
14

10
15

 10
14

 2  10
14

 4  10
14

 6  10
14

ex

ex
ex

×

×
×

×

×

×
×

FIG. 4. (a) Energy (solid lines) and VC(x,t) (dashed lines) as a
function of time for trajectories labeled by their initial positions (the
exit times τex are marked by red dots), (b) probability density dP/dτex,
and (c) exit point xex as a function of τex, for several peak intensities
(in W/cm2). The vertical dotted line indicates τmax (see the text for
details).

the particle naturally emerges from the barrier with a nonzero
kinetic energy Tex. In the three-dimensional case, Bohmian
trajectories would exit the barrier with a nonvanishing longi-
tudinal momentum. This is in agreement with recent findings
[30], but departs from the common assumption used in both
the SFA and Ref. [32]. Table I summarizes the characteristics
of Bohmian trajectories for different initial positions.

The differential ionization probability dP/dτex for trajec-
tories exiting at τex is presented in Fig. 4(b) for several peak
intensities. The maximum exit time increases with intensity
and dP/dτex drops sharply at large τex. The most probable
exit time is larger than the instant of maximum field strength
(τmax ≈ 27 a.u.) at all intensities, but tends towards τmax with
increasing intensity (the difference is less than or equal to 0.2
a.u. at 1.1 × 1015 W/cm2). The fact that dP/dτex exhibits a
broad maximum and flat regions is due to the sin2 envelope.
The maximum would appear sharper and better defined for a
narrower envelope.

Figure 4(c) shows the exit position xex from the barrier,
as a function of the exit time τex, for different intensities.
The trajectories escaping the barrier the fastest have the
largest exit position, since the barrier remains broad far from

TABLE I. Exit time τex, position xex, and kinetic energy Tex of
Bohmian trajectories with different initial positions for I0 = 4 ×
1014 W/cm2. All values are given in a.u.

x0 τex xex Tex

1.7 35.86 5.18 0.050
2.0 29.40 4.78 0.073
3.0 23.23 5.55 0.096
4.0 20.79 6.63 0.126
5.0 19.59 7.79 0.159
6.0 18.87 9.00 0.191
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FIG. 5. Mean tunneling ionization time τ̄ion (top panel) and
traversing time τ̄tra (bottom panel).

τmax. All curves, except for 1014 W/cm2, exhibit a minimum
corresponding to escape when the barrier is the thinnest. Its
position is slightly shifted from the most probable exit time and
also tends towards τmax with increasing intensity. The absence
of a minimum at 1014 W/cm2 is due to strong nonadiabatic
effects, which allow trajectories to leave with ε(t) significantly
larger than ε0 and hence with an exit position smaller than the
adiabatic instantaneous turning point at the maximum field
strength (approximately equal to 9.4 a.u.). In fact, the energy
ε(t) of trajectories escaping with the minimum value of xex

tends to decrease with intensity such that xex becomes larger
than the adiabatic value for I0 � 6 × 1014 W/cm2.

The mean values τ̄ion and τ̄tra are presented in Fig. 5, where
τtra = τex − τen is the traversing time through the barrier. At
the intensities studied, τ̄ion is relatively small and decreases
towards zero as the intensity gets closer to the OBI regime. The
variation of τ̄ion resembles the experimental tunneling time in
[29]. In contrast to the results of Zimmermann et al. [14], who
used time-independent functions, τ̄ex does not become orders
of magnitude larger at low intensities.

It turns out that the traversing time shown in Fig. 5 is a shift
of τ̄ion by τmax (note the different scales in the panels of Fig. 5)
until the peak intensity reaches 6 × 1014 W/cm2. The observed
inflection point is due to contributions from probability located
in the inner classical region. These take a long time to reach the
barrier, but they enter it with a non-negligible kinetic energy,
thereby causing the traversing time to decrease faster.

IV. CONCLUSION

Bohmian mechanics possesses many desirable features
for the interpretation of complex ATI spectra and angular
distributions with ultrashort pulses. Determining where the
electron probability comes from may also provide new routes
to controlling and understanding the ultrafast electron dynam-
ics in molecules, for instance, for core-hole localization [44]
or frustrated ionization [45]. Using a one-dimensional model,
we showed the potential of Bohmian mechanics regarding the
dynamics of the electron probability over time and revealed
many important features that are expected to hold in the
three-dimensional case. Once applied to a more realistic case, it
might explain momentum distributions measured in attoclock
experiments by relating their different parts to tunneling time
and exit position.
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