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Ab initio calculations of scattering cross sections of the three-body system ( p,e+,e−)
between the e− + H(n = 2) and e− + H(n = 3) thresholds
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The ab initio method based on the Faddeev-Merkuriev equations is used to calculate cross sections involving
the (p̄,e+,e−) three-body system, with an emphasis on antihydrogen formation (H̄) via antiproton (p̄) scattering
on positronium. This system is studied in the energy range between the e− + H̄(n = 2) and the e− + H̄(n = 3)
thresholds, where precisely calculated cross sections can be useful for future experiments (GBAR, AEGIS, etc.)
aiming to produce antihydrogen atoms. A special treatment is developed to take into account the long-range
charge-dipole interaction effect on the wave function. Emphasis is placed on the impact of Feshbach resonances
and Gailitis-Damburg oscillations appearing in the vicinity of the p̄ + Ps(n = 2) threshold.
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I. INTRODUCTION

Within the framework of classical physics, gravity is de-
scribed by the general theory of relativity (GR). The central
issue of GR is the Einstein equivalence principle. Gravity
may be considered an attractive force between massive bodies,
and the weak equivalence principle (or universality of free
fall) states that two massive test bodies fall in the same way
independently of their compositions or their internal structures.
For the standard matter this principle has been verified with the
very high accuracy of 10−13 [1].

When quantum effects are considered, theories in the field of
particle physics also include antimatter (Dirac equation, stan-
dard model, etc.). Their modern extensions do not exclude that
the gravity force between matter and antimatter may differ from
the force between similar massive bodies, thus violating the
weak equivalence principle [2]. Some theories even speculate
that antimatter has a negative mass that would consequently
be repelled by matter. This property might explain the effects
of dark energy and dark matter. So far no direct test has been
done on the weak equivalence principle with antimatter.

In order to directly observe the effect of gravitation on
antimatter, the aim of the GBAR experiment [3] is to measure
the influence of Earth’s gravitational field in the trajectory
of antihydrogen atoms (see [4] for a recent account of the
experiments on antimatter performed at CERN). In GBAR,
antihydrogen atoms will be at rest before they undergo a free
fall. This provided the name of the experiment: Gravitational
Behaviour of Antihydrogen at Rest. The conception of the
GBAR experiment is based on the original idea, proposed by
Walz and Hänsch [5], of sympathetically cooling positive ions
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of antihydrogen, H̄+. The latter process is used in order to bring
the ions almost to the resting state. Then one of the positrons
is photodetached, thus leading to the production of neutral
antihydrogen atoms, H̄. The GBAR experiment follows three
steps: (i) production of antihydrogen positive ions; (ii) their
cooling, trapping, and photodetachment; and (iii) free fall of
the neutral antihydrogen atoms.

In order to produce antihydrogen positive ions the following
sequence of reactions is considered:

p̄ + Ps → H̄ + e−,

H̄ + Ps → H̄+ + e−, (1)

where p̄ stands for antiproton, Ps for positronium (bound
positron-electron pair), either in the ground state or in the
excited state, H̄ for antihydrogen (which can also be produced
in the excited state), and e− for electron. Let us stress that
forming H̄ by charge transfer from Ps is not a novelty of GBAR.
The ATRAP experiment at CERN has already successfully
produced H̄ using this reaction [6]. Moreover, the AEGIS ex-
periment plans to use the same reaction. The second reaction is
a more complex collision process that we do not consider here.

One of the biggest challenges faced by GBAR is to find the
best experimental and physical conditions (Ps state, antiproton
energy, etc.) to enhance antihydrogen production. Along this
line, in this work we focus on the scattering reactions of the
three-body system (p̄,e+,e−) in the energy region between the
e− + H̄(n = 2) and the e− + H̄(n = 3) thresholds, with special
emphasis on the first charge exchange reaction of GBAR.
Moreover, as described below, special attention will be given
to reactions exhibiting resonant behavior.

One of the most exciting phenomena in the scattering of
charged particles with hydrogenlike atoms is the presence
of Feshbach resonances that appear just below each energy
threshold of the degenerate levels. Indeed, a charged particle
moving in the field of an excited atom generates a dipole
potential which couples the degenerate states and may lead
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to a long-range effective 1/y2 potential between the charged
particle and the atom [7]. This potential gives rise to an
infinite number of weak quasibound states whose energies
form a logarithmic sequence in relation to the threshold. These
states decay into lower-lying levels exhibiting the Feshbach
resonance phenomenon. The presence of these resonances is
well established both formally and quantitatively in a number
of three-body Coulomb systems. For instance, resonances of
this kind have already been found in antiproton-positronium
collisions [8] and their presence might turn out to be important
in boosting the antihydrogen production cross section, as
originally pointed out in [9].

For the same three-body system and for energies just
above the degenerate antihydrogen or positronium thresh-
olds, a different phenomenon takes place. It was predicted
by Gailitis and Damburg [7,10] in their calculation of the
electron-hydrogen scattering system. It is often referred to as
Gailitis-Damburg oscillations or Gailitis resonances. Gailitis
and Damburg demonstrated that the presence of an effective
1/y2 attractive potential should generate near-threshold phase
oscillations. Such oscillations are intimately related to the
presence of the aforementioned quasibound states (Feshbach
resonances) just below the degenerate thresholds in accordance
with Levinson’s theorem [11]. The latter relates the number of
bound states of a potential to the difference in phase of a scat-
tered wave at zero and infinite energies, leading to δ(E = 0)
− δ(E → ∞) = nπ , where n is the number of bound states.
Accordingly, if Feshbach resonances may be considered as
three-body bound states, near-threshold phase oscillations
should appear. Therefore, the previous may be considered a
consequence of Levinson’s theorem.

Here we explore the first reaction in Eq. (1) by an ab initio
method, which has already been widely explored within a large
variety of theoretical models (see [12] and references therein).
Concerning ab initio methods recently used, calculations
between the e− + H̄(n = 2) and the e− + H̄(n = 3) energy
thresholds have been performed using the Faddeev-Merkuriev
(FM) equations in Refs. [9] and [13–15]. In the latter, the
resonant behavior of the S-wave cross sections has been
thoroughly discussed and total cross sections have also been
presented, but only for a few energy values. Finally, partial
and total cross sections for H̄ production have also been
computed in a broader energy region within the framework
of the two-center convergent close-coupling method [16–18].

In the present work, the FM equations are solved using the
Lagrange-mesh method [19,20]. Special focus is on the role
played by Feshbach and Gailitis resonances in the three-body
reactions and, in particular, on the antihydrogen formation
cross section, which is of interest to GBAR.

The main lines of the theory are given in the next section
and the numerical techniques employed are detailed in Sec. III.
In Sec. IV the results are presented, and a conclusion is given
in Sec. V.

II. THEORETICAL FORMALISM

A. The Faddeev-Merkuriev equations

In the beginning of the 1960s Faddeev formulated a set
of equations suited for solving nonrelativistic quantum three-
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FIG. 1. The three possible configurations, where {xi ,yi} are the
three possible sets of Jacobi coordinates.

particle scattering problems for short-range potentials [21].
Later, these equations were refined by Merkuriev [22] in order
to treat three-particle Coulomb problems. The FM equations
are constructed from the standard three-particle Hamiltonian,
which, for the particular system (p̄,e+,e−), may be expressed
as

Hlab = p2
p̄

2mp̄

+ p2
e+

2me

+ p2
e−

2me

− αh̄c

|re+ − re− | − αh̄c

|rp̄ − re+| + αh̄c

|rp̄ − re− | ; (2)

here α = e2

4πε0 h̄c
is the fine-structure constant, and mp and me

are, respectively, the proton and electron masses. The two-body
interaction terms are represented by Coulomb potentials.

In order to separate the center-of-mass degrees of freedom,
it is convenient to reformulate the problem using mass-scaled
Jacobi coordinates {xi ,yi} (Fig. 1).
For a three-body system with masses mi and position vectors
ri , (i = 1,2,3), these coordinates are defined as

xi = τi(rj − rk),

yi = μi

(
ri − mj rj + mkrk

mj + mk

)
, (3)

where

τi =
√

2
mjmk

mj + mk

, μi =
√

2mi

(
1 − mi

M

)
,

M = mi + mj + mk, where (i,j,k) = cyclic(1,2,3).

(4)

There exist three equivalent sets of intrinsic coordinates {xi ,yi}
(where i = 1,2,3). Each coordinate set is associated with a
three-particle configuration and is best suited to follow its
evolution (Fig. 1). The terms μi and τi represent, respectively,
the two-body and three-body reduced masses and M is the total
mass of the system.

Two sets of Jacobi coordinates are related by the orthogonal
transformation,(

xj

yj

)
=

(
cji sji

−sji cji

)
.

(
xi

yi

)
, (5)

with

cji = −
[

mjmi

(M − mj )(M − mk)

]1/2

,

sji = (−)j−isgn(i − j )
(
1 − c2

ji

)1/2
, (6)
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where sgn(i − j ) is the sign of the subtraction (i − j ). In terms
of Jacobi coordinates the Coulomb potentials are defined as

Vi(xi) = zj zkτi

xi

, (7)

where zj and zk represent the physical charges of particles j

and k, respectively, and xi =| xi | , yi =| yi |.
The FM equations are based on the proper decomposition of

the Coulomb potentials into a short-range V
(s)
i and a long-range

V
(�)
i part [23], which leads to

V
(s)
i (xi,yi) = Vi(xi)χ

(M)(xi,yi),

V
(�)
i (xi,yi) = Vi(xi)[1 − χ (M)(xi,yi)]. (8)

Here χ (M) is a cutoff function defined by Merkuriev which
tends to 0 in the asymptotic region where xi → ∞ (with yi ∼
xi) and tends to 1 when xi → 0 or (xi ∼ x0 and yi → ∞),

χ (M)(x,y) = 2

[
1 + exp

(
(x/x0)ν

y/y0 + 1

)]−1

, (9)

where x0 and y0 are two length parameters of free choice. How-
ever, their values must be chosen according to the dimensions
of the two-body and three-body regions [23]. The value of the
parameter ν must be chosen larger than 2. This separation leads
to the FM equations,(

E − H0 − V1 − V
(�)

2 − V
(�)

3

)
F1(x1,y1)

= V
(s)

1 (F2(x2,y2) + F3(x3,y3)),(
E − H0 − V2 − V

(�)
1 − V

(�)
3

)
F2(x2,y2)

= V
(s)

2 (F1(x1,y1) + F3(x3,y3)),(
E − H0 − V3 − V

(�)
1 − V

(�)
2

)
F3(x3,y3)

= V
(s)

3 (F1(x1,y1) + F2(x2,y2)), (10)

where Fi(xi ,yi) are the FM components. Thus, the three-body
wave function may be simply expressed as the sum of these
three components:


(x,y) = F1(x1(x,y),y1(x,y)) + F2(x2(x,y),y2(x,y))

+F3(x3(x,y),y3(x,y)). (11)

Since only central potentials are considered here, the total
angular momentum L is a good quantum number of the system.
Therefore, the scattering problem can be split into a set of
solutions for a fixed angular momentum quantum number. In
order to numerically solve the FM equations we decompose
each component into a partial-wave basis of total angular
momentum LM and parity π , represented by the bipolar
harmonics,

F
LM,π
i (xi ,yi) =

∑
��xi

+��yi
=�L

f L
�xi

�yi
(xi,yi)

xiyi

{
Y�xi

(x̂i)×Y�yi
(ŷi)

}
LM

,

(12)

where x̂i and ŷi are the angular parts of the vectors xi and yi .
{�xi

,�yi
} are the orbital momenta associated with xi and yi ,

which satisfy �L = ��xi
+ ��yi

. Within the case considered in this
work we associate �x1 and �x2 with the orbital momenta of the
antihydrogen and the positronium atoms, respectively. Finally
f L

�xi
�yi

(xi,yi) is a function of the radial variables, corresponding
to the set of quantum numbers {�xi

,�yi
,L}. To simplify further

notation we define by αi a set of partial angular momentum
values {�xi

,�yi
} associated with configuration i. Therefore each

value of αi is associated with a couple of values {�xi
,�yi

}. In
the following we denote

YLM
αi

(x̂i ,ŷi) = {
Y�xi

(x̂i) × Y�yi
(ŷi)

}
LM

. (13)

The projection of Eqs. (10) onto the bipolar spherical harmon-
ics leads to a two-dimensional infinite set of integrodifferential
equations. For a fixed total angular momentum the expression
of the integrodifferential radial equations is given by

∑
α′

i

(
Hαi,α

′
i
δαi ,α

′
i
− V̄

(�)
αiα

′
i

)f L
α′

i
(xi,yi)

xiyi

= V
(s)
i (xi,yi)

⎛⎝∫ 1

−1
dui

3∑
j �=i=1

∑
α′

j

hL
αi ,α

′
j
(xi,yi,ui)

f L
α′

j
(xj ,yj )

xjyj

⎞⎠, (14)

with ui = (xi .yi)/(xiyi),

Hαi,α
′
i
=

(
E + ∂2

∂x2
i

+ ∂2

∂y2
i

− �xi

(
�xi

+ 1
)

x2
i

− �yi

(
�yi

+ 1
)

y2
i

− Vi(xi)

)
,

V̄
(�)
αiα

′
i
=

∫
dx̂idŷiY

LM∗
αi

(x̂i ,ŷi)
(
V

(�)
j + V

(�)
k

)
YLM

α′
i

(x̂i ,ŷi), (15)

and

hL
αi,α

′
j
(xi,yi,ui) =

∫
dζidϑidφiY

LM∗
αi

(x̂i ,ŷi)Y
LM
α′

j
(x̂j ,ŷj ). (16)

In the last expression integration is performed analytically over
three Euler angles (ζi,ϑi,φi) chosen among the four Euler
angles defining (x̂i ,ŷi) and where dx̂idŷi = dζidϑidφidui .

We do not provide the full expression for a functional
hL

αi,α
′
j
(xi,yi,ui), which might be found in [24] or in any

handbook on few-body physics.
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At low energy, only solutions for the smallest values of the
total angular momentum quantum numbers are relevant, since
all the physical observables converge rapidly once expanded in
L. In the same manner one cuts expansion in the partial angular
momentum values by limiting the maximally allowed value of
�xi

and �yi
in the {�xi

,�yi
} expansion. In this work maximal

values of the partial angular momenta were taken in the range
8 � �xi

� 11, 9 � �yi
� 12 and proved to be sufficient to get

converged results.

B. Degenerated-state asymptotic wave functions

In order to incorporate proper boundary conditions, radial
functions of the FM components are separated into two parts,

βj f L
αi

(xi,yi) = βj f L,core
αi

(xi,yi) + βj f L,as
αi

(xi,yi); (17)

here the index βj indicates the initial scattering channel, and
the term βj f L,core

αi
(xi,yi) represents the ’core’ part of the FM

component, which describes the system in the region with three
particles close to each other. This term vanishes in the limit
of large intercluster separation, when either xi or yi becomes
large. Therefore this term can be efficiently described by a
linear expansion into a set of square-integrable basis functions.
The term βj f L,as

αi
(xi,yi) is added to account for the relative

motion of a particle i with respect to a bound cluster of particle
jk in the asymptotic region yi → ∞. This term includes both
incoming and outgoing scattering waves, having the general
structure

βj f L,as
αi

(xi,yi) = f
reg
i (yi)

∑
βo,βm

φbs
ni ,�xi

(xi)g
βo

βm
(yi)

× δβm⊂αi
δni⊂βo,ni⊂βm

, (18)

where summation runs only over open channels (βo,βm) in the
scattering process. The index βo represents a set of three quan-
tum numbers {no,�xo

,�yo
} defining open scattering channels.

φbs
ni ,�xi

is the reduced radial function of the two-body system,

whereas g
βo

βm
is the relative radial function describing the

behavior between the two-body system and the third particle.
The latter expression is premultiplied by a function f

reg
i (yi) =

(1 − exp(−yi/yreg))n aiming to rend it regular at small yi

values. When the open channel is energy nondegenerate (no =
1, but also no = 2 case for nonnatural parity states) the term
g

βo

βm
contains a single component βo = βm and is described in a

standard way combining Riccati-Bessel and Riccati-Neumann
functions.

However, Bessel functions do not match y asymptotes of
the energy-degenerate states. This is mostly due to the presence
of charge-dipole interaction terms ∼1/y2

i , coupling different
energy-degenerate states. To solve the latter problem the term
g

βo

βm
is developed using distorted waves, based on the auxiliary

potential ¯̄Vβ ′
m,βm

(yi) at long range including the appropriate
dipole 1/y2

i and quadrupole 1/y3
i terms. At short range this

potential is forced to fade away, allowing numerical determi-
nation of the distorted-wave regular g

βo

βm,R(yi) and irregular

g
βo

βm,I (yi) solutions. In practice, one may see that the right-hand
side of Eq. (14) is effectively 0 at long range, therefore an
efficient auxiliary potential should mimic the term V̄

(�)
αiα

′
i
. Keep-

ing this in mind, independent distorted-wave solutions g
βo

βm
(yi)

are constructed by projecting the left-hand side of Eq. (14)
onto the set of antihydrogen (or positronium) bound-state
wave functions, representing an energy-degenerate channel
(ni > 1). This projection gives a finite set of one-dimension
radial equations which have to be solved,⎛⎝Hβ ′

m,βm
δβ ′

m,βm
−

∑
β ′

m

¯̄Vβ ′
m,βm

⎞⎠g
βo

βm,(I/R)(yi) = 0, (19)

where

Hβ ′
m,β ′

m
= k2

β ′
m

+ ∂2

∂y2
i

− �β ′
m

(
�β ′

m
+ 1

)
y2

i

, (20)

and

¯̄Vβ ′
m,βm

(yi) =
∫

dxiφ
bs
no,�xi

⊂βm
(xi)V �yi

⊂βm,�yj
⊂β ′

m

× (xi,yi)φ
bs
no,�xj

⊂β ′
m
(xi); (21)

here kβm
is the relative-mass-scaled momentum in channel βm,

k2
βm

= E3b − E
βm

2b , E3b is the energy of the three-body system

in the center-of-mass frame, and E
βm

2b the bound energy of the
two-body system of channel βm.

For example, the effective potential ¯̄Vβ ′
m,βm

(yi) shape be-
tween the (n = 2) degenerated channels is

¯̄Vβ ′
m,βm

(yi → ∞) = Aβ ′
m,βm

y3
i

if �′
xm

⊂ β ′
m = �xm

⊂ βm = 1,

(22)

¯̄Vβ ′
m,βm

(yi → ∞) = Bβ ′
m,βm

y2
i

if �′
xm

⊂ β ′
m �= �xm

⊂ βm,

(23)

where Aβ ′
m,βm

and Bβ ′
m,βm

are real constants. In contrast with
the work of Hu et al. [9], where only the dipole term has been
considered, our calculations take into account higher order
corrections. Between these degenerated states and the other
states the coupling is due to second-order perturbation and
effectively gives rise to polarization terms, which behave as
1/y4

i .
As a consequence, to construct g

βo

βm,(I/R)(yi) solutions used
to approximate asymptotes of FM components, we solve a set
of one-dimensional second-order differential equations (19).
Due to triangular conditions that the set of quantum num-
bers βo ≡ {no,�xo

,�yo
} should satisfy, the number of coupled

equations is 1 � N � 3 for nm � 2. In particular, for the
case nm = 2 with natural parity π = (−)L and L > 2, the
energy-degenerate open channels are βo ≡ {2,0,L},{2,1,L −
1},{2,1,L + 1}. For a system of N -coupled equations one has
to consider each channel separately as an initial free wave in
the limit yi → ∞. Solving these equations is rather easy and
is realized by integrating equations from yi = ∞ to 0 using
the Numerov method. As the plane wave is distorted by the
long-range coupling terms, one gets N independent regular
and irregular functions for all degenerated channels. Thus, a
total of N × N regular and N × N irregular functions are to
be obtained for a system of N-coupled equations.
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Finally, the FM components in asymptotic regions are
required to satisfy the boundary condition

βj f L
αi

(xi,yi → ∞)

=
∑
βo,βm

φbs
ni ,�xi

⊂βm
(xi)

[
g

βo

βm,R(yi)δβj ,βo
+ K̃βj βm

g
βo

βm,I (yi)
]

× δno⊂βo,nm⊂βm
δβm⊂αi

, (24)

where βj f L
αi

(xi,yi) is the radial function for the αi partial wave
when the entrance channel is βj . The sum over βm and βo runs
only over open channels.

III. NUMERICAL METHOD

The radial parts of the ’core’ terms of the FM components
are approximated using Lagrange-Laguerre basis functions,
implemented via the Lagrange-mesh method [19,20]. It reads

f L,core
αi

=
Nx,Ny∑
ix ,iy

Cαi ,ix ,iy hix (xi)hiy (yi). (25)

These Lagrange-Laguerre mesh functions are defined as

hix (x) = (−1)ix c1/2
ix

Lα
Nx

(x/ηx)

x/ηx − xix

x
α/2
ix

(
x/ηx

xix

)1/2

× exp(−x/2ηx); (26)

here Lα
Nx

is a Laguerre polynomial of order Nx and {xix } =
{x1,x2, . . . ,xNx

} represents the set of its roots; in this work α is
chosen equal to 1. The parameter ηx is used to adjust the range
of the basis functions. The coefficients cix are fixed to satisfy
the orthonormality condition,∫ ∞

0
hix hi ′x dx = δix i ′x . (27)

As detailed in [20] using the Gauss quadrature approximation
with Nx knots all the required integrals by the variational cal-
culation are easily estimated [20]. A similar parametrization is
used to express the functional dependence of FM components
on the variable yi ; the scaling parameter ηx and number of
mesh points may be chosen different for each grid.

To determine linear coefficients related to the expansion,
(25), we project Eq. (15) onto the basis of the Lagrange-
Laguerre functions, getting a set of linear equations,

(ĤFM − E3b)C̃βo,(I/R)
αi ,ix ,iy

= bβo,(I/R). (28)

Here (ĤFM − E3b) is a matrix, due to the projection of Eq. (15).
The last set of linear equations is solved 2No times, by con-
structing the inhomogeneous term bβo,(I/R) based on expression
(18), generated either with the regular g

βo

βm,(R)(yi) or with the

irregular distorted wave g
βo

βm,(I )(yi), where No is the number of
open channels considered at E3b energy.

To determine the K-matrix elements from the 2No indepen-
dent solutions C̃

βo,(I/R)
αi ,ix ,iy

we resort to the Wronskian relation,
involving regular and irregular distorted waves. Actually, we
dispose of two independent procedures. One is based on
validating the Wronskian relation for the separate FM

components,

Kc
βj βm

= 1√
k

βj
k

βm

(〈βj
FLM

k,R

∣∣Ĥ0

∣∣βm
FLM

i

〉
− 〈βm

FLM
i

∣∣Ĥ0

∣∣βj
FLM

k,R

〉)
δβm⊂iδβj ⊂k. (29)

The second choice is to validate the Wronskian relation for the
total wave function

Kc
βj βm

= 1√
k

βj
k

βm

(〈βj
FLM

k,R

∣∣Ĥ0|βm
LM〉

− 〈βm
LM |Ĥ0

∣∣βj
FLM

k,R

〉)
δβj ⊂k. (30)

In these equations βj FLM
k,R indicates the ’nonscattered’ three-

body wave function, based on the distorted-regular solution
βj , which belongs to particle channel k:

βj FLM
k,R,αi

(xi,yi) =
∑
βo,βm

φbs
ni ,�xi

⊂βm
(xi)g

βo

βm,R(yi)δβj ,βo

× δno⊂βo,nm⊂βm
δβm⊂αi

. (31)

In fact, the second procedure described in Eq. (30) corresponds
to the standard Kohn variational functional (see Kievsky et al.
[25] for a more thorough discussion). The first procedure,
Eq. (29), is sometimes referred to as the Faddeev form of the
Kohn variational functional [26].

The Kc matrix describes projection of the wave function
asymptotes onto the distorted waves and thus depends on the
choice of the auxiliary potentials for the degenerated states. In
order to calculate the scattering observables it is convenient
to transform this matrix into the conventional K matrix or S
matrix, describing projection of the wave function asymptotes
onto free waves. To this aim, first, the Sc matrix is determined
in terms of the Kc matrix,

Sc = (1 + iKc)

(1 − iKc)
. (32)

Second, the disturbed-wave dependence of Sc is corrected,

S = S̃1/2ScS̃1/2, (33)

where S̃ is the matrix obtained for the interaction used to con-
struct distorted waves. Thus, the K matrix is finally obtained:

K = (S − 1)

i(S + 1)
. (34)

The expression of the differential cross sections between the
incoming channel i and the outgoing channel j as a function
of the conventional K-matrix elements is given by

dσij

d�
= πa2

0

k2
i

∣∣∣∣∣∑
L

(2L + 1)

(2�i + 1)

(
2KL

1 − iKL

)
ij

PL(cos(θ ))

∣∣∣∣∣
2

,

(35)

where a0 is the Bohr radius, ki the relative momentum, �i the
orbital momentum of the two-body system in the incoming
channel i, PL is the Legendre polynomial, and θ is the relative
scattering angle. KL is the K matrix for the L partial wave. The
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partial cross sections are given by

σL
ij = πa2

0

k2
i

(2L + 1)

(2�i + 1)

∣∣∣∣∣
(

2KL

1 − iKL

)
ij

∣∣∣∣∣
2

. (36)

The total cross section is the sum of the partial cross sections,

σT
ij =

∑
L

σL
ij . (37)

To obtain all the results presented in the next section the
calculations were realized on a supercomputer. In all the
figures, circles represent the exact values obtained with our
calculations. In the present results, the sum over angular
momenta {�x,�y} is truncated according to 8 � �max

x � 11
and 9 � �max

y � 12. The numbers of points (symbols) used
in the Lagrange-Laguerre grid are 45 � Nx � 75 and 60 �
Ny � 75. With these considerations, one is led to solve the
linear algebra problem of 105 to 106 equations. The final
matrix of the linear algebra problem is almost full, however, its
matrix elements can be reproduced online from the elements
of considerably smaller matrices prestored on the computer’s
RAM. In order to avoid storage of the final linear algebra
problem matrix but also to speed up the solution, iterative
linear algebra methods like BiCGSTAB(L) are used. For the
numerical methods employed in this work one may refer
to [27]. With these adjustments execution of the code does
not require large amounts of RAM and can succeed even
on a personal computer. However, the calculations can be
time-consuming and therefore the code has been parallelized
and mostly executed at computer centers. To compute the cross
section for one energy value, the calculation can last between 2
and 18 h, depending on the energy and total orbital momentum
considered. Because of the calculation time, we were obliged
to limit the number of calculated energies. The energy values
were chosen to highlight the general behavior of the cross
sections as well as some narrow resonances. The solid lines in
the figures correspond to the fit of the calculated results, aiming
to show the general trend of the cross section. On average there
are about 30 different energies for each partial wave. Most of
the points (symbols) are chosen in the areas of resonances to
describe their behavior. In these areas there is no fit.

IV. RESULTS

The results are presented in three parts. The first part
(A) reports partial cross sections; the second (B), total cross
sections; and the third (C), differential cross sections. In all
figures, the thresholds are delimited by dotted vertical lines
and their notation is defined as follows:

e− + H̄(n = 2) ≡ H̄(2),

p̄ + Ps(n = 2) ≡ Ps(2), (38)

e− + H̄(n = 3) ≡ H̄(3).

A. Partial cross sections

1. Results between the H̄(n = 2) and the Ps(n = 2) thresholds

The closeness of Feshbach resonances to the threshold
as well as their extremely small widths, representing less
than a thousandth of the respective energy position, makes
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0.14

0.18

−0.12 −0.1 −0.08 −0.06

H̄(2) Ps(2)

σ
0

π
a

2 0

E3b

FIG. 2. S-wave partial cross section of the reaction p̄ + Ps(n =
1) → e− + H̄(n = 2). Vertical lines labeled H̄(2) and Ps(2) indicate,
respectively, the positions of the H̄(n = 2) and Ps(n = 2) thresholds.

it a challenge to find and identify them in the calculated
or, especially, the measured cross sections [28]. This phe-
nomenon is highlighted in Fig. 2; for antiproton-positronium
scattering we present the S-wave partial cross section of
H̄(2s,2p) production in p̄ + Ps(1s) collisions. Note that in
all figures, symbols always represent the calculated values,
whereas curves are added to guide the eye, representing
smoothing of the calculated values by a least-squares fit. The
antihydrogen production cross section is extremely small in
S waves, representing ∼1% of the total cross section. It is
determined from the vanishing nondiagonal S-matrix elements,
being strongly influenced by any numerical inaccuracies. This
is the reason why the calculated values in Figs. 2 and 3 deviate
from the smooth curve. The size of these deviations allows one
to estimate the accuracy of the final calculation. Notably, these
numerical inaccuracies are no longer visible in the elastic scat-
tering cross section, shown in Fig. 4, representing the dominant
process in S waves, or in the total antihydrogen production
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FIG. 3. S-wave partial cross section of the reaction p̄ + Ps(n =
1) → e− + H̄(n = 1).
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FIG. 4. S-wave partial cross section of the reaction p̄ + Ps(n =
1) → p̄ + Ps(n = 1).

cross section (Fig. 11), dominated by better-balanced higher
partial waves.

In Fig. 2 one can identify a Feshbach resonance at E3b =
−0.065 83 a.u., where E3b is the energy of the three-body
system in the center-of-mass frame. This energy position as
well as its approximate width, �/2 = 8 × 10−5 a.u., are in
good agreement with the direct calculations of the resonance
parameters based on the complex scaling method [8,29]. The
resonant behavior can also be observed in the S-wave partial
cross sections of the associated processes in the same energy
position, i.e., in H̄(1s) production in p̄ + Ps(1s) collisions
(Fig. 3) and in p̄ + Ps(1s) elastic scattering (Fig. 4).

In Fig. 5 the P -wave partial cross section of H̄(2s,2p)
production in p̄ + Ps(1s) collisions is shown. The H̄(2s,2p)
production is obtained by summing the contribution coming
from the three degenerated channels. In addition to the an-
tihydrogen production in its first excited state H̄(2s,2p), the
production of each degenerated channel—[H̄(2s), �y1 = L],
[H̄(2p), �y1 = L − 1], and [H̄(2p), �y1 = L + 1)]—is also
plotted. In this partial wave we are able to identify another Fes-
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H̄∗(2s,2p) + e−
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FIG. 5. P -wave partial cross sections of the reaction p̄ + Ps(n =
1) → e− + H̄(n = 2), separated to show the production of the differ-
ent degenerate channels.
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FIG. 6. S-wave partial cross section of the reaction p̄ + Ps(n =
2) → e− + H̄(n � 2).

hbach resonance with an energy position of E = −0.074 071 9
a.u. There is still a very good agreement between the resonance
energy position and the results of Umair et al. [29] obtained
with the complex scaling method.

2. Results between the Ps(n = 2) and the H̄(n = 3) thresholds

The presence of Gailitis-Damburg oscillations have only
recently been demonstrated in full three-body calculations
of p̄ + Ps(2s,2p) collisions [9,16–18]. Nevertheless, some
ambiguities remain if these oscillations are able to influence
antihydrogen production in the near-threshold region. In the
first work by Hu et al. [9], based on FM equations, an impor-
tant enhancement of the p̄ + Ps(2s,2p) → H̄(1s,2s,2p) + e−
cross section was observed in the S partial wave. On the
contrary, in a later work, by Kadyrov et al. [16], using the two-
center convergent closed-coupling method, this enhancement
is not confirmed and only the typical near-threshold behavior
as k−2

i [30] of the inelastic cross section is affirmed, where ki

is the incoming relative momentum between Ps and p̄ in the
incoming channel.

To clarify this issue we concentrate on p̄ + Ps(2s,2p)
collisions just above the Ps(2s,2p) threshold. In Fig. 6 the
S-wave partial cross section of H̄(1s,2s,2p) production in
p̄ + Ps(2s,2p) collisions is presented. A Gailitis-Damburg
oscillation can be observed with energy position E3b =
−0.06194 a.u. The maximum of 94πa2

0 is determined at
E3b = −0.061 90 a.u. These values are in good agreement with
those of Hu et al. [9]. The position of our maximum differs from
theirs by merely 8.0 × 10−5 a.u. On the contrary, we do not
confirm the existence of the largest resonance observed by Hu
et al. [6]. In this figure the cross section has the standard near
the threshold k−2

i behavior in accordance with [16] and [30].
In accordance with the work of Hu et al. [14], we have

observed two phase-shift jumps for the S partial wave. One of
these jumps is related to the oscillation previously discussed.
The other one is situated very close to the threshold and does
not lead to a visible resonant behavior in our S-wave partial
cross section.

In Fig. 7 the S-wave partial cross section of p̄ + Ps(2s,2p)
elastic scattering is plotted as a function of the relative energy
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FIG. 7. S-wave partial cross section of the reaction p̄ +
Ps(2s,2p) → p̄ + Ps(2s,2p).

in the e− + H̄(1s) channel, EH̄(1s),e− = E3b + EH̄(1s). In Fig. 8
the S-wave partial cross section of elastic scattering is shown
separately for the Ps(2s) and Ps(2p) states. This result seems
to be in strong disagreement with previous work [14]. In
comparison to mentioned results, the cross sections of the
separated Ps(2s) and Ps(2p) states are inverted. In addition,
the cross-sections values are substantially different even if
the energy positions of Gailitis-Damburg oscillations are in
good agreement. As the Ps(2s) and Ps(2p) states present long-
range coupling, to do a more rigorous comparison one should
compare results obtained for p̄ + Ps(2s,2p) elastic scattering.
Unfortunately this cross section is not given in Ref. [14].

In Fig. 9 the P -wave partial cross section of antihydrogen
H̄ excitation via e− scattering is given. A Gailitis-Damburg
oscillation can be observed near the Ps(2) threshold. Such
oscillation has never been observed in previous work. However,
this oscillation has a negligible influence on the total cross
section of antihydrogen H̄ excitation via e− scattering and it is
not noticeable in the antihydrogen H̄ production cross sections.
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FIG. 8. S-wave partial cross sections of the reactions p̄ +
Ps(2s) → p̄ + Ps(2s) (triangles) and p̄ + Ps(2p) → p̄ + Ps(2p)
(circles).
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FIG. 9. P -wave partial cross section of the reaction e− + H̄(n =
1) → e− + H̄(n = 2).

Figure 10 presents the D-wave partial cross section for the
H̄(1s,2s,2p) formation in p̄ + Ps(2s,2p) collisions. For the
first time two Gailitis-Damburg oscillations can be observed
at E3b = −0.062 22 a.u. and at E3b = −0.061 75 a.u. These
oscillations have not been pointed out in other works, in
particular, in Refs. [9] and [15], where some values of this
partial cross section are presented.

In Table I, the S-wave partial-cross-section values for three
energies are compared to the results obtained by Hu et al. using
the Faddeev-Merkuriev equations [32] and the results obtained
by Papp et al. [31]. A good agreement with both works is
observed. In the present work the results are obtained for a
finite proton mass, mp = 1836.1515 a.u.

B. Total cross sections

1. Results between the H̄(n = 2) and the Ps(n = 2) thresholds

In Fig. 11, the total antihydrogen production H̄(1s,2s,2p) in
p̄ + Ps(1s) collisions is plotted between the H̄(2) and the H̄(3)
thresholds. The solid line represents the results obtained by
summing the contribution of the partial cross sections for a total
angular momentum lying within 0 � L � 7. Crosses represent
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FIG. 10. D-wave partial cross section of the reaction p̄ + Ps(n =
2) → e− + H̄(n � 2).
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TABLE I. Comparison of partial cross sections (L = 0) with the
FM calculations of Hu et al. [9] and the results obtained by Papp et al.
[31]. Channel 1 corresponds to e− + H̄(1s); channel 2 to p̄ + Ps(1s);
and channel 3 to e− + H̄(2s,2p). σ11 is the elastic cross section of
channel 1; σ12 and σ13 are, respectively positronium formation and
the H̄ excitation cross sections.

Ecm Ref. No. σ11 σ13 σ12

−0.115 a.u. [9] 0.0900 0.001156 0.00572
[31] 0.0951 0.001004 0.00558

This work 0.0964 0.000891 0.00570
−0.10 a.u. [9] 0.096 0.001514 0.00585

[31] 0.1010 0.001641 0.00563
This work 0.1015 0.001675 0.00574

the results obtained by Kadyrov et al. based on the two-center
convergent close-coupling method [16]. The most important
contributions at higher energies come from the D, F , and G

partial waves, whereas the P, D, and F partial waves dominate
at low energies.

There is a very good agreement between both results, yet the
points provided by the two-center convergent close-coupling
calculations do not scan the regions of narrow Feshbach
resonances.

The K matrix allows us to determine the complete in-
formation about the scattering process, i.e., to extract the
cross sections of elastic, excitation, and transfer reactions
which can take place between the H̄(n = 2) and the H̄(n =
3) thresholds. For example, we present in Fig. 12 the total
antihydrogen excitation cross section between the H̄(2) and the
Ps(2) thresholds. The P -wave resonance makes a pronounced
contribution to this cross section. Indeed, the P, D, and F

partial waves dominate this process, whereas the contribution
of the S-wave resonance is suppressed by its low statistical
weight.

As stated previously we took into account the partial-wave
expansion up to the L = 7 partial wave. This truncation is
justified as the contribution of the L = 7 partial wave drops
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FIG. 11. Total cross section of the reaction p̄ + Ps(n = 1) →
e− + H̄(n = 1,2). Crosses represent results from Ref. [16].
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FIG. 12. Total cross section of the reaction e− + H̄(n = 1) →
e− + H̄(n = 2).

below 10−2πa0, which represents the accuracy of our calcu-
lation. Even though the contribution of Feshbach resonances
seems to be very moderate in antihydrogen production, they
demonstrate much more pronounced effects in other reactions,
as is the case for the antihydrogen excitation cross section.

2. Results between the Ps(n = 2) and the H̄(n = 3) thresholds

Figure 13 presents the total cross section of antihydro-
gen production H̄(1s,2s,2p) in p̄ + Ps(2s,2p) collisions. The
higher contributions to the total cross section come from the
D, F , and H partial waves. The Gailitis-Damburg oscillation
coming from the S partial wave is drowned out by the impor-
tance of higher partial-wave cross sections. Nevertheless, the
oscillating structures coming from the D partial wave remain
noticeable. Their contribution is masked by the presence of
other important partial waves, mostly H and F partial waves.
Crosses represent the results obtained by Kadyrov et al.
with the two-center convergent close-coupling method [16].
Triangles represent the results obtained by Hu et al. solving the
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FIG. 13. Total antihydrogen production cross section from the
p̄ + Ps(n = 2) → e− + H̄(n � 2) reaction. The blue line summa-
rizes our calculations. Crosses and triangles represent results from
Refs. [16] and [15], respectively.
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FIG. 14. Total cross section of the reaction p̄ + Ps(2p) → e− +
H̄(n � 2). The blue line represents the results in this work; crosses,
results from Ref. [16].

Faddeev-Merkuriev equations [15]. Our results are in excellent
agreement with those of Kadyrov et al.

On the contrary, a discrepancy from Ref. [15] is observed in
the D-wave oscillation area, between E3b = −0.062 a.u. and
E3b = −0.061 a.u. Comparison of the cross sections by partial
wave with those published in Table 1 of Ref. [15] points to the
discrepancy in the D wave within the oscillation area and some
disagreement in the H -wave cross section. Apart from these
two differences, there is a very good agreement with the other
partial cross sections calculated by Hu et al.

As GBAR considers the antihydrogen production from
antiproton collisions with the positronium in the 2p state.
The cross section of antihydrogen is given for this particular
reaction in Fig. 14. The presence of both Gailitis-Damburg
oscillations seems to enhance antihydrogen production. Our
results are in good agreement with those in Ref. [16] with the
exception of the two Gailitis-Damburg oscillations.

The total cross section of positronium production
Ps(1s,2s,2p) in e− + H̄(2s,2p) collisions is presented in
Fig. 15. The strongest contributions come from D, F , and H

waves. Nevertheless the Gailitis oscillations from the S wave
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FIG. 15. Total cross section of the reaction e− + H̄(n = 2) →
p̄ + Ps(n � 2).
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FIG. 16. Differential cross sections of the reaction p̄ + Ps(n =
1) → e− + H̄(n = 1) at E3b = −0.08 a.u. (squares) and E3b =
−0.115 a.u. (triangles).

remain invisible, while the second oscillation coming from the
D partial wave makes an important contribution.

C. Differential cross sections

Let us turn our attention to differential cross sections
[Eq. (35)]. In Fig. 16 the differential cross sections for
antihydrogen production H̄(1s) in p̄ + Ps(1s) collisions are
presented for two different energies, E3b = −0.08 a.u. and
E3b = −0.115 a.u. The difference between both cross sections
is rather mild. These results are in very good agreement with
the results of Hu et al. presented in Fig. 2 of Ref. [24]. Let us
remark that there is a very small difference, 2.7 × 10−4 a.u.,
between the energies presented in this paper and the energies
chosen by Hu et al. To make a fair comparison the results in
Fig. 16 were obtained by summing the partial waves for a total
orbital momentum 0 � L � 4.
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FIG. 17. Differential cross sections of the reaction p̄ + Ps(n =
1) → e− + H̄(n = 2) at E3b = −0.10 a.u., e−(�y1 = L) + H̄(2s)
(open squares), e−(�y1 = L − 1) + H̄(2p) (triangles), and e−(�y1 =
L + 1) + H̄(2p) (filled squares).

012709-10



Ab INITIO CALCULATIONS OF SCATTERING … PHYSICAL REVIEW A 97, 012709 (2018)

0.01

0.1

1

10

100

0 20 40 60 80 100 120 140 160 180

d
σ

d
Ω

a
2 0
/S

r

θ

FIG. 18. Differential cross sections of the reaction p̄ + Ps(n =
1) → e− + H̄(n = 2) at E3b = −0.08 a.u. (open squares), E3b =
−0.10 a.u. (filled squares), and E3b = −0.115 a.u. (triangles).

In Fig. 17 the differential cross section for the different an-
tihydrogen degenerated-state formations is plotted for energy
E3b = −0.10 a.u. by splitting it into three classes of partial
waves, according to the relative angular momentum of the
produced electron-antihydrogen pair. In this case we consider
again contributions of all the partial waves up to a maximum
total orbital momentum Lmax = 7. The curves in this figure can
be compared to those obtained by Hu et al. [13] and presented
in their Fig. 2. There is in general a good agreement between
the two works. The positions of the minima coincide but there
is a significant difference between their values, in particular,
for the minimum in the e−(�y1 = L + 1) + H̄ formation. The
value obtained by Hu et al. is close to 10−4, whereas ours
is close to 10−2. In the e−(�y1 = L) + H̄(2s) formation our
minimum is weaker. In the case where e−(�y1 = L − 1) + H̄
the first and the last minima (30◦ and 130◦) seem weaker than
those obtained by Hu et al., while the second minimum (80◦)
seems a bit stronger.

In Fig. 18 the antihydrogen H̄(2s,2p) production in p̄ +
Ps(1s) collisions is shown for three energies. As shown, in
contrast to the H̄(1s) production differential cross section
(Fig. 16), the H̄(2s,2p) production (Fig. 18) is much more
sensitive to an energy variation. As there is a small difference
between our energy (E3b = −0.10 a.u.) and that in Ref. [13]

(E3b = −0.099 725 a.u.), this sensitivity may explain the
difference between the minima obtained in the two works.
In addition, while the differential cross section increases with
energy, its distribution at backward angles flattens.

V. CONCLUSION

In this paper a method for solving Faddeev-Merkuriev
equations using the Lagrange-mesh method is presented and
applied to describe collisions involving the (p̄,e+,e−) three-
body system. This system is studied in detail in the energy
range between the e− + H̄(n = 2) and the e− + H̄(n = 3)
thresholds, aiming to provide antihydrogen production cross
sections for future experiments (GBAR, AEGIS, etc.) on
antimatter. Special emphasis is placed on the role played
by Feshbach resonances and Gailitis-Damburg oscillations.
We have examined two Feshbach resonances, the first in the
S partial wave and the second in the P partial wave. In
p̄ + Ps(n = 2) → e− + H̄(n = 2) scattering cross sections we
have been able to highlight four Gailitis-Damburg oscillations,
two in the S partial wave and, for the first time, two in
the D partial wave. We have also found, for the first time,
a Gailitis-Damburg oscillation in the P -wave partial cross
section of antihydrogen excitation e− + H̄(n = 1) → e− +
H̄(n = 2). The Gailitis-Damburg oscillations found in the D

partial wave can also be observed in the partial cross section
of the reaction e− + H̄(n = 2) → p̄ + Ps(n = 2), where the
contribution of one of the oscillations seems to be of greater
importance. In addition to the new oscillations observed, our
results are in very good agreement with the previous works
while giving more detailed cross sections. Nevertheless, the
observed resonances or oscillations may only play a minor
role in enhancing antihydrogen production in the GBAR
experiment. Feshbach resonances are too narrow, whereas
Gailitis-Daburg oscillations are exhibited at an energy too low
to be considered during this project.
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