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Two-center convergent close-coupling approach to positron–helium-ion collisions
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We generalize the two-center convergent close-coupling approach of Kadyrov and Bray [Phys. Rev. A 66,
012710 (2002)] for positron scattering on neutral targets to charged targets, and apply it to positron scattering
on the singly charged helium ion. Where possible internal consistency checks are used to validate the two-center
method, which required a significant redevelopment of the positronium-formation matrix elements, by comparison
with a single-center approach. Only the two-center approach explicitly yields positronium formation, and so it
also provides a mechanism to calculate positronium scattering on α particles. As yet there are no experiments for
the calculated processes, but there are some previous theoretical calculations, with which comparison is mixed.
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I. INTRODUCTION

Collision systems involving positrons incident on ions have
attracted less attention than those involving neutral targets [1].
In a simple one-center approach to positron scattering, where
the total wave function is expanded in just the target states, the
transition from a neutral target to a charged one is relatively
straightforward, involving the replacement of the spherical
Bessel functions used to describe the projectile partial waves
by Coulomb functions [2]. However, one-center approaches
cannot explicitly calculate positronium (Ps) formation, or the
reverse process of (anti)hydrogen formation upon Ps scat-
tering on (anti)protons [1]. For such calculations two-center
approaches, which explicitly incorporate charge exchange to
form positronium, are necessary.

Two-center approaches to positron-atom scattering are
much more complicated than the corresponding one-center
approaches. This can be seen from the original (one-center) im-
plementation of the convergent close-coupling (CCC) method
for electron/positron-hydrogen scattering [3] and the two-
center positron-hydrogen CCC implementation [4]. The extra
center requires the usage of different coordinate systems, and
is the primary source of the extra complexity. Consequently,
the extension of two-center collision systems to ionic targets
is far from being as straightforward as for one-center systems.
The simplest ionic target, which is a natural extension from
atomic hydrogen, is the positive singly charged helium ion.
Here we present the CCC formalism for a two-center approach
to calculating e+ + He+. The explicit inclusion of Ps formation
means that we are then also able to calculate the time-reversed
collision system of Ps scattering on α particles (helium
nuclei).

Currently no experimental results are available for the
e+-He+ collision systems due to difficulties associated with
He+ production. The absence of these results means that
little interest has been paid to this problem on the theoretical
side too. Nevertheless, variational methods were used for
He+ and other hydrogenlike ions to generate phase shifts in

the region where only elastic scattering is possible [5,6]. In
addition, between 50 and 300 eV, close-coupling (CC) methods
were used to calculate cross sections for various processes
for the e+ + He+ system [7]. The most recent calculations
using 19 He+ states and 1 Ps state [CC(19,1)] and 26 He+

states and 3 Ps states [CC(26,3)] were reported in Ref. [8].
While these results provided information on more scattering
processes than previous variational calculations, there were
some clear discrepancies between the two types of calcula-
tions for the phase shifts. Most recently, Ps formation was
investigated using a two-center eikonal-final-state continuum-
initial-distorted-wave (EFS-CDW) method [9,10]. However,
when comparing total Ps formation cross sections with those
from the CC calculations, they can differ by as much as 50%.
Therefore, accurate calculations are required in order to verify
the aforementioned methods in the absence of experimental
data.

Initially, the two-center convergent close-coupling (CCC)
method was developed for positron scattering on H [4,11]. It
was also successfully applied to the calculation of low-energy
antihydrogen (H̄) formation cross sections via Ps scattering
on antiprotons [12–17]. Later it was extended to include other
neutral targets such as helium [18–20], magnesium [21], alkali
metals [22–24], and most recently, molecular hydrogen [25].
However, none of these targets have a residual long-range
Coulomb interaction in any reaction channel, meaning that the
method used in these cases is not applicable to He+, in particu-
lar when Ps formation is included. Thus, the development of an
updated two-center CCC method is required to include ionic
targets. The calculation and analysis for the first three partial
waves (J = 0–2) of this system have been reported [26].

For the CCC method, equations for Ps-formation matrix
elements involving residual long-range Coulomb interactions
are presented in this paper. On the other hand, the direct scatter-
ing matrix elements have been used in the CCC method since
its inception [2,3,27,28]. The new two-center CCC method
that includes Ps-formation channels can be validated against
the single-center CCC code via internal consistency checks.
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Internal consistency makes use of the completeness of the
Laguerre basis to compare single-center CCC calculations with
two-center CCC calculations [29]. Below the Ps-formation
threshold and above the ionization threshold of the target, both
single- and two-center methods should yield the same results
for the grand total and electron-loss cross sections. Within
these two regions a large enough single-center expansion can
be used to account for Ps formation indirectly using positive
energy states. Between the Ps(1s) formation and ionization
thresholds (the extended Ore gap), where Ps formation is
explicitly required, this idea breaks down due to electron loss
not being possible for the single-center approach in this region.
Internal consistency has been checked in e++H and e++He
calculations [29,30]. It is extremely helpful in the present case
to access the internal consistency checks as a way of validating
the new developments.

The outline of the paper is as follows. The CCC formalism
for this problem is given in Sec. II. Details of calculations
are given in Sec. III. The results of the calculations, including
convergence studies, internal consistency checks, and compar-
ison to previous calculations, are given in Sec. IV. Finally, the
main highlights, conclusions, and future directions are given
in Sec. V.

II. FORMALISM

A. Basic equations

Consider a system of three particles: positron, electron, and
He2+ ion. Index α (β) will denote a quantum state in which the
positron (He2+) is free and the other two form a bound state
and index e will be used for channels where all three particles
are free. With this notation the total scattering wave function
of the three-body system at a total energy E may be written as

(H − E)� = 0, (1)

where

H = H0 + vα + vβ + ve ≡ H0 + v, (2)

and where H0 is the free-three-particle Hamiltonian and vi

is the Coulomb interaction between particles of pair i (i =
α,β,e).

The Jacobi variable r i is the relative position of particles
in pair i, and ρi is the position of the particle i relative to
the center of mass (c.m.) of pair i (i = α,β,e). See Fig. 1.
Expanding the total wave function � in terms of the two-body
pseudostate wave functions describing the target atom (T) and
the Ps subspaces, we write

� =
NT∑
α=1

Fα(ρα)ψα(rα) +
NPs∑
β=1

Fβ(ρβ)ψβ(rβ), (3)

where NT (NPs) is the number of pseudostates for the target
(Ps) center andψγ (rγ ) are linear combinations of the complete
Laguerre basis functions:

ξ
(λ)
n,l (r) =

(
λ(n − 1)!

(2l + 1 + n)!

)1/2

× (λr)l+1 exp[−λr/2]L2l+2
n−1 (λr). (4)

r

r
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α
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FIG. 1. Jacobi coordinates for the system of three particles:
positron (α), He2+ ion (β), and electron (e).

Here L2l+2
n−1 (x) is the associated Laguerre polynomial, and for

each angular momentum l, n ranges from 1 to the basis size
Nl . These pseudostates diagonalize the two-body Hamiltonian
H for both centers:

〈ψγ ′ |Hγ |ψγ 〉 = εγ δγ ′γ . (5)

Substituting Eq. (3) into Eq. (1) and following [31], we obtain
momentum-space coupled-channel equations for transition
matrix elements:

Tγ ′,γ (qγ ′ ,qγ ) = Vγ ′,γ (qγ ′ ,qγ ) +
NT+NPs∑

γ ′′=1

∫
dqγ ′′

(2π )3

×Vγ ′,γ ′′ (qγ ′ ,qγ ′′)Gγ ′′
(
q2

γ ′′
)
Tγ ′′,γ (qγ ′′ ,qγ ),

(6)

where qγ is the momentum of free particle γ relative to the
c.m. of the bound pair in channel γ . The effective two-body
free Green’s function is defined as

Gγ ′′
(
q2

γ ′′
) = [

E + i0 − εγ ′′ − q2
γ ′′/(2Mγ ′′)

]−1
(7)

and describes the free relative motion of particle γ ′′ and bound
pair γ ′′ with the binding energy εγ ′′ .

The effective potentials are defined as

Vγ ′,γ (qγ ′ ,qγ ) = 〈qγ ′ |〈ψγ ′ |Uγ ′γ |ψγ 〉|qγ 〉, (8)

where

Uα,α = v − vα − vC, Uβ,β = v − vβ,

Uα,β = Uβ,α = H0 + v − E (9)

are the transition operators. In Uα,α , the vC term is the
long-range Coulomb interaction between the He+ ion and the
incoming positron.

Upon partial wave expansion in total orbital angular mo-
mentum J according to (the same for Tγ ′,γ )

Vγ ′γ (qγ ′ ,qγ ) =
∑

L′,M ′,L,M,J,K

YL′M ′ (̂qγ ′)CJK
L′M ′l′m′

× V L′L
γ ′γ (qγ ′ ,qγ )CJK

LMlmY ∗
LM (̂qγ ), (10)

012707-2



TWO-CENTER CONVERGENT CLOSE-COUPLING APPROACH … PHYSICAL REVIEW A 97, 012707 (2018)

Eq. (6) transforms to (for each J )

T L′L
γ ′γ (qγ ′ ,qγ ) = V L′L

γ ′γ (qγ ′ ,qγ ) +
Nα+Nβ∑
γ ′′=1

∑
L′′

∫
dqγ ′′q2

γ ′′

(2π )3
V L′L′′

γ ′γ ′′ (qγ ′ ,qγ ′′ )Gγ ′′
(
q2

γ ′′
)
T L′′L

γ ′′γ (qγ ′′ ,qγ ), (11)

where L, L′, and L′′ are the angular momenta of the free particles in channels γ , γ ′, and γ ′′, respectively. The effective potentials
in the representation of total angular momentum are given by

V L′L
γ ′γ (qγ ′ ,qγ ) =

∑
m′,m,M ′,M

∫∫
d q̂γ ′d q̂γ Y ∗

L′M ′ (̂qγ ′)CJK
L′M ′l′m′Vγ ′γ (qγ ′ ,qγ )CJK

LMlmYLM (̂qγ ), (12)

where Cab
cdef are the Clebsch-Gordan coefficients of vector addition, and YLM (̂qγ ) are the spherical harmonics of unit vector

q̂γ . The angular momenta of pair γ (γ ′) are l (l′), and M , m, K are the projections of L, l, J , respectively. Accordingly,
K = M + m = M ′ + m′.

B. Effective potentials: Direct transitions

With the exception of the charge of the nucleus being changed from Z = 1 for H to Z = 2 for He+, little change was required
for the direct transitions when changing from a neutral (H) [4] to a charged target (He+). The effective potentials for the α → α′
transitions (He+-He+) required two main changes, the first being the subtraction of long-range Coulomb potential vC . For He+

this is simply 1/ρα . The second main change is the replacement of the spherical bessel functions jL in the partial wave expansion
of the plane wave representing the relative motion in the α channel with the regular Coulomb functions. The effective potentials
for the β → β ′ transitions (Ps-Ps) remain effectively unchanged.

C. Effective potentials: Rearrangement

The effective potentials for the rearrangement transitions (He2+-Ps) have an identical starting form to neutral atom-Ps
transitions, except that the incoming plane wave of the positron is replaced by the Coulomb wave function. It is convenient
to perform the replacements ρβ → −ρβ and qβ → −qβ . Now vector ρβ is the position and qβ is the momentum of positronium
relative to the He2+ ion. With these changes the effective potentials for rearrangement read as

Vβα(qβ,qα) ≡ 〈qβ |〈ψβ |Uβα|ψα〉|qα〉 =
∫∫

dραd rαe−iqβρβ ψ∗
β (rβ)(H0 + v − E)ψα(rα)ψC

qα,η(ρα), (13)

where ψC
qα,η(ρα) is the Coulomb wave function representing the motion of the electron in the field of the He2+ ion, η = (Z − 1)/qα

in a.u., and Z is the charge of the nucleus. This will be left general for direct comparison with the e++H system where Z = 1.
In the case of He+, Z = 2. How this will differ from the neutral target case will be examined in what follows.

The Hamiltonian H0 can be taken in variables of either channel α or β

H0 = −1

2

d2

d r2
α

− 1

2

d2

dρ2
α

= − d2

d r2
β

− 1

4

d2

dρ2
β

. (14)

Split Eq. (13) into two parts according to

Vβα(qβ,qα) =
∫∫

dραd rαe−iqβρβ ψ∗
β (rβ)[E (qβ,q) + vα + vβ]ψα(rα)ψC

qα,η(ρα)

+
∫∫

dραd rαe−iqβρβ ψ∗
β (rβ)veψα(rα)ψC

qα,η(ρα)

= V
(I )
βα (qβ,qα) + V

(II )
βα (qβ,qα), (15)

where E (qβ,q) = q2
β/4 + p′

β
2 − E ≡ q2/2 + p′

α
2
/2 − E and

p′
β = qβ/2 − q and p′

α = qβ − q. (16)

Then the two parts can be written as

V
(I )
βα (qβ,qα) =

∫
dq

(2π )3
ψ̃C

q,η(q)[E (qβ,q)ψ̃∗
β ( p′

β)ψ̃α( p′
α) − Zψ̃∗

β ( p′
β )̃gα( p′

α) − g̃∗
β( p′

β)ψ̃α( p′
α)], (17)

and

V
(II )
βα (qβ,qα) =

∫
dq

(2π )3
Zg̃C

qα,η(q)ψ̃∗
β ( p′

β)ψ̃α( p′
α), (18)

where ψ̃C
q,η(q) and g̃C

qα,η(q) are the Coulomb wave function and form factor in momentum space.
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Transforming V
(I )
βα (qβ,qα) into the representation of total angular momentum J , then separating the radial parts of the

momentum-space pseudostates and pseudo-form-factors according to ψ̃α( p) = R̃nl(p)Ylm( p̂) and g̃α( p) = ũnl(p)Ylm( p̂) and
using the following expansion for the coulomb wave function,

ψ̃C
qα,η(q) = 2π

∑
L′′M ′′

Y ∗
L′′M ′′ (̂qα)YL′′M ′′ (̂q)ψ̃C

qα,η,L′′ (q), (19)

we get the following:

V L′L(I )
βα (qβ,qα) = 1

(2π )2

∑
m′,m,M ′,M

CJK
L′M ′l′m′C

JK
LMlm

∫ ∞

0
dq q2ψ̃C

qα,η,L(q)
∫

d q̂β

∫
d q̂Y ∗

L′M ′ (̂qβ)YLM (̂q)Y ∗
l′m′ ( p̂′

β)Ylm( p̂′
α)

× [E (qβ,q)R̃∗
n′l′(p

′
β)R̃nl(p

′
α) − ZR̃∗

n′l′(p
′
β )̃unl(p

′
α) − ũ∗

n′l′(p
′
β)R̃nl(p

′
α)]. (20)

Decomposing the spherical harmonics of the direction of the relative motion in pairs α and β one gets

V L′L(I )
βα (qβ,qα) = 1

π

∑
m′,m,M ′,M

CJK
L′M ′l′m′C

JK
LMlm

∫ ∞

0
dq q2ψ̃C

qα,η,L(q)
∑

l′1,m
′
1,m

′
2

Cl′m′
l′1m

′
1l

′
2m

′
2

[l′!]
[l′1!l′2!]

q
l′1
β (−q)l

′
2 2−l′1

∑
l1,m1,m2

Clm
l1m1l2m2

× [l!]

[l1!l2!]
q

l1
β (−q)l2

∫∫
d q̂β d q̂F (I )(qβ,q)Y ∗

L′M ′ (̂qβ)YLM (̂q)Yl1m1 (̂qβ)Y ∗
l′1m

′
1
(̂qβ)Yl2m2 (̂q)Y ∗

l′2m
′
2
(̂q). (21)

Here

F I (qβ,q) = E (qβ,q)
R̃∗

n′l′ (p
′
β)R̃nl(p′

α)

p′
α

l′p′
α

l
− Z

R̃∗
n′l′(p

′
β )̃unl(p′

α)

p′
β

l′
p′

α
l

− ũ∗
n′l′ (p

′
β)R̃nl(p′

α)

p′
β

l′
p′

α
l

, (22)

and [l] = √
[2l + 1], [l!] = √

[2l + 1]!. Combining two spherical harmonics of the same relative motion in channels α and β

and some rearrangement we get

V L′L(I )
βα (qβ,qα) = 1

(2π )2

∑
m′,m,M ′,M

CJK
L′M ′l′m′C

JK
LMlm

∑
l′1,m

′
1,m

′
2

Cl′m′
l′1m

′
1l

′
2m

′
2

[l′!]
[l′1!l′2!]

q
l′1
β (−1)l

′
2 2−l′1

∑
l1,m1,m2

Clm
l1m1l2m2

× [l!]

[l1!l2!]
q

l1
β (−1)l2

∑
l′′1 m′′

1

[l1][l′1]

[l′′1 ]
C

l′′1 m′′
1

l1m1l
′
1m

′
1
C

l′′1 0
l10l′10(−1)m1

∑
l′′2 m′′

2

[l2][l′2]

[l′′2 ]
C

l′′2 m′′
2

l2m2l
′
2m

′
2
C

l′′2 0
l20l′20(−1)m

′
2

×
∫ ∞

0
dq ql2+l′2+2ψ̃C

qα,η,L(q)
∫∫

d q̂β d q̂F (I )(qβ,q)Y ∗
L′M ′ (̂qβ)YLM (̂q)Y ∗

l′′1 m′′
1
(̂qβ)Yl′′2 m′′

2
(̂q). (23)

Now we expand F (I )(qβ,q) as

F (I )(qβ,q) = 2π
∑
λ,μ

F (I )
λ (qβ,q)Y ∗

λμ (̂qβ)Yλμ(̂q), (24)

where the expansion coefficients are given by

F (I )
λ (qβ,q) =

∫ 1

−1
dz F (I )(qβ,q)Pλ(z), (25)

and z = q̂β · q̂. Then integrating over the angular momenta we get

V L′L(I )
βα (qβ,qα) = 1

8π2

∑
m′,m,M ′,M

CJK
L′M ′l′m′C

JK
LMlm

∑
l′1,m

′
1,m

′
2

Cl′m′
l′1m

′
1l

′
2m

′
2

[l′!]
[l′1!l′2!]

q
l′1
β (−1)l

′
2 2−l′1

∑
l1,m1,m2

Clm
l1m1l2m2

[l!]

[l1!l2!]
q

l1
β (−1)l2

×
∑
l′′1 m′′

1

[l1][l′1]

[l′′1 ]
C

l′′1 m′′
1

l1m1l
′
1m

′
1
C

l′′1 0
l10l′10(−1)m1+m′′

1

∑
l′′2 m′′

2

[l2][l′2]

[l′′2 ]
C

l′′2 m′′
2

l2m2l
′
2m

′
2
C

l′′2 0
l20l′20(−1)m

′
2+m′′

2

∑
λ,μ

[L′][λ]

[l′′1 ]
C

l′′1 m′′
1

L′M ′λμ

× C
l′′1 0
L′0λ0

[L][λ]

[l′′2 ]
C

l′′2 m′′
2

LMλμC
l′′2 0
L0λ0

∫ ∞

0
dq ql2+l′2+2ψ̃C

qα,η,L(q)F (I )
λ (qβ,q)

=
∑
l′1

[l′!]
[l′1!l′2!]

q
l′1
β 2−l′1−1

∑
l1

[l!]

[l1!l2!]
q

l1
β

∑
l′′1

[l1][l′1]

[l′′1 ]
C

l′′1 0
l10l′10

∑
l′′2

[l2][l′2]

[l′′2 ]
C

l′′2 0
l20l′20

∑
λ

[L′][λ]

[l′′1 ]
C

l′′1 0
L′0λ0

[L][λ]

[l′′2 ]
C

l′′2 0
L0λ0

× I
λ(I )
β,α (qβ,qα)

∑
m′,m,M ′,M,m′

1,m
′
2,m1,m2m

′′
1m

′′
2 ,μ

(−1)m1+m′′
1+m′

2+m′′
2+l′2+l2CJK

L′M ′l′m′C
JK
LMlmCl′m′

l′1m
′
1l

′
2m

′
2
Clm

l1m1l2m2

× C
l′′1 m′′

1

l1m1l
′
1m

′
1
C

l′′2 m′′
2

l2m2l
′
2m

′
2
C

l′′1 m′′
1

L′M ′λμC
l′′2 m′′

2
LMλμ, (26)
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where

I
λ(I )
β,α (qβ,qα) = 1

(2π )2

∫ ∞

0
dq ql2+l′2+2ψ̃C

qα,η,L(q)F (I )
λ (qβ,q). (27)

Summing over all projections of the angular momenta leads to

V L′L(I )
βα (qβ,qα) = 1

4π2
[l′lL′Ll′!l!](−1)J+L′ ∑

l′1

[l′1l
′
2]

[l′1!l′2!]
2−l′1−1 [l1l2]

[l1!l2!]
q

l1+l′1
β

∑
l′′1

C
l′′1 0
l10l′10

∑
l′′2

C
l′′2 0
l20l′20

∑
λ

[λ]2C
l′′1 0
L′0λ0C

l′′2 0
L0λ0

×

⎧⎪⎨
⎪⎩

l1 l J l′

l2 L L′ l′1
l′2 l′′2 λ l′′1

⎫⎪⎬
⎪⎭I

λ(I )
β,α (qβ,qα). (28)

Next we transform V
(II )
βα (qβ,qα):

V L′L(II )
βα (qβ,qα) = 1

(2π )3

∑
m′,m,M ′,M

CJK
L′M ′l′m′C

JK
LMlm

∫∫
d q̂β d q̂αY ∗

L′M ′ (̂qβ)YLM (̂qα)
∫

dq Zg̃C
qα,η(q)ψ̃∗

β ( p′
β)ψ̃α( p′

α). (29)

Again, separating out the radial components of the momentum-space pseudostates and pseudoform factors and expanding the
momentum-space Coulomb form factor according to

g̃C
qα,η(q) = 2π

∑
L′′M ′′

Y ∗
L′′M ′′ (̂qα)YL′′M ′′ (̂q )̃uC

qα,η,L′′ (q), (30)

we get the following:

V L′L(II )
βα (qβ,qα) = 1

(2π )2

∑
m′,m,M ′,M

CJK
L′M ′l′m′C

JK
LMlm

∫
d q̂β

∫
d q̂ Y ∗

L′M ′ (̂qβ)YLM (̂q)Y ∗
l′m′( p̂′

β)Ylm( p̂′
α)

×
∫ ∞

0
dq q2ũC

qα,η,L(q)ZR̃∗
n′l′ (p

′
β)R̃nl(p

′
α), (31)

which has the same form as Eq. (20), the only differences being that the partial wave Coulomb wave function ψ̃C
qα,η,L(q) is

replaced by the form factor ũC
qα,η,L(q), and F (II ) is given as

F II (qβ,q) = Z
R̃∗

n′l′(p
′
β)R̃nl(p′

α)

p′l′
αp′l

α

. (32)

Combining all results together for rearrangement we have

V L′L(I )
βα (qβ,qα) = [l′lL′Ll′!l!](−1)J+L′ ∑

l′1

[l′1l
′
2]

[l′1!l′2!]
2−l′1−1

∑
l1

[l1l2]

[l1!l2!]
q

l1+l′1
β

∑
l′′1

C
l′′1 0
l10l′10

∑
l′′2

C
l′′2 0
l20l′20

∑
λ

[λ]2C
l′′1 0
L′0λ0C

l′′2 0
L0λ0

×

⎧⎪⎨
⎪⎩

l1 l J l′

l2 L L′ l′1
l′2 l′′2 λ l′′1

⎫⎪⎬
⎪⎭I λ

βα(qβ,qα), (33)

where

I λ
β,α(qβ,qα) = 1

(2π )2

∫ ∞

0
dq ql′2+l2+2[ψ̃C

qα,η,L(q)F I
λ (qβ,q) + ũC

qα,η,L(q)F II
λ (qβ,q)

]
. (34)

According to Eremenko et al. [32] the Coulomb wave function and its partial wave expansion is given by

ψ̃C
qα,η,L(q) =

∫ +1

−1
dz PL(z)ψ̃C

q,η(q) = −4πeπη/2

qqα

lim
γ→+0

d

dγ

[(
q2 − (qα + iγ )2

2qqα

)iη

(ζ 2 − 1)−iη/2Q
iη

L (ζ )

]
, (35)

where ζ = (q2 + q2
α + γ 2)/2qqα . The Coulomb form factor has a similar form; however, in this case there is no need for −d/dγ .

If we set Z = 1, and hence η = 0, the Coulomb wave function becomes

ψ̃C
qα,0,L(q) = − 42π

πδ(q ± qα)

(q ∓ qα)2
(L + 1)

[
QL+1

(
q2 + q2

α

2qqα

)
−

(
q2 + q2

α

2qqα

)
QL

(
q2 + q2

α

2qqα

)]
. (36)
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The form factor becomes

ũC
qα,0,L(q) = 4π

qqα

QL

(
q2 + q2

α

2qqα

)
. (37)

Substituting this back into Eq. (34) gives

I λ
β,α(qβ,qα) = −1

π

∫ ∞

0
dq ql′2+l2+2 4πδ(q ± qα)

(q ∓ qα)2
(L + 1)

[
QL+1

(
q2 + q2

α

2qqα

)
−

(
q2 + q2

α

2qqα

)
QL

(
q2 + q2

α

2qqα

)]
F I

λ (qβ,q)

− ql′2+l2+2

qqα

QL

(
q2 + q2

α

2qqα

)
F II

λ (qβ,q)

= q
l′2+l2
α F I

λ (qβ,qα) + 1

πqα

∫ ∞

0
dq ql′2+l2+1QL

(
q2 + q2

α

2qqα

)
F II

λ (qβ,q). (38)

Since limx→1 QL+1(x) − xQL(x) = −1/(L + 1), this reduces to the result obtained for neutral targets [4].

III. DETAILS OF CALCULATIONS

The effective potentials for the direct matrix elements require integration over two regular one-dimensional integrals. This is
performed using a fine radial mesh and can be calculated much quicker than the rearrangement matrix elements.

As shown in the preceding section, the positronium-formation matrix elements have the same coupling of 12 angular momenta as
seen in e++H scattering, leading to finite angular momentum sums and two-dimensional integrals. Compact analytical expressions
for the momentum-space pseudostates and corresponding form factors derived in Ref. [4] are used in this approach as well. The
main difference was the inclusion of the momentum-space Coulomb wave function and its corresponding form factor. Both have
compact analytical forms. For the wave function we make use of the FORTRAN code developed by Eremenko et al. [32]. However,
the code was slightly altered to suit our needs, the most notable change being the removal of the complex phase factor. As was
the case in the previous Ps-formation calculations, this integral has a singularity at q = qα . However, unlike the logarithmic
singularity from QL, this singularity is complex and arises from ψ̃C

qα,η,L and ũC
qα,η,L. Instead of having two separate integrals for

the Coulomb wave function and form factor, it is preferable to relate the two together under one function as

ψ̃C
qα,η,L(q) = − 4πeπη/2

qqα

lim
γ→+0

d

dγ

[(
q2 − (qα + iγ )2

2qqα

)iη

(ζ 2 − 1)−iη/2Q
iη

L (ζ )

]
, (39)

ũC
qα,η,L(q) = 4πeπη/2

qqα

lim
γ→+0

[(
q2 − (qα + iγ )2

2qqα

)iη

(ζ 2 − 1)−iη/2Q
iη

L (ζ )

]
. (40)

We can expand the derivative as follows

d

dγ

[(
q2 − (qα + iγ )2

2qqα

)iη

(ζ 2 − 1)−iη/2Q
iη

L (ζ )

]

=
(

q2 − (qα + iγ )2

2qqα

)iη

(ζ 2 − 1)−iη/2

[
2ηqα

q2 − (qα + iγ )2
Q

iη

L (ζ ) + γ

(
i2ηQ

iη

L (ζ )

q2 − (qα + iγ )2
+ Q

iη+1
L (ζ )

qqα(ζ 2 − 1)1/2

)]
. (41)

The first term and the remaining terms have broadly similar behaviors, so when the limit γ → 0 is taken, only the first term
survives. Therefore, we get

ψ̃C
qα,η,L(q) = − 4πeπη/2

qqα

2ηqα

q2 − q2
α

[
(qα + i0)2 − q2

2qqα

]iη

(ζ 2 − 1)−iη/2Q
iη

L (ζ ) (42)

ũC
qα,η,L(q) =4πeπη/2

qqα

[
q2 − (qα + i0)2

2qqα

]iη

(ζ 2 − 1)−iη/2Q
iη

L (ζ ) = q2
α − q2

2ηqα

ψ̃C
qα,η,L(q). (43)

Accordingly Eq. (34) reduces to

Iλ
β,α(qβ,qα) = 1

(2π )2

∫ ∞

0
dq ql′2+l2+2ψ̃C

qα,η,L(q)

[
F I

λ (qβ,q) + q2
α − q2

2ηqα

F II
λ (qβ,q)

]
, (44)

leaving the function in a more compact form with the singularity in one part and the regular functions in the other. For handling
the singularities we use a subtraction method similar to the one used by Mitroy [33]. Near the singularity the momentum-space
Coulomb wave functions have the following form:

ψ̃C
qα,η,L(q) = −8πe−πη/2

q

(
(q + qα)2

4qqα

)L

Im(D), (45)
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where

D = �(1 + iη)e−iσL
(q + qα)iη−1

(q − qα)iη+1 2F1

(
− L,−iη − L,1 − iη,

(q − qα)2

(q + qα)2

)
. (46)

The singular behavior is contained within the term

(q + qα)iη−1

(q − qα)iη+1
, (47)

with the complex exponents introducing oscillations. Since as q → qα the hypergeometric and the [(q + qα)2/4qqα]L terms tend
to 1, ignoring these terms would make for a good subtracting function, e.g.,

ψ̃Sub
qα,η,L(q) = − 8πe−πη/2

q
Im

[
�(1 + iη)e−iσL

(q + qα)iη−1

(q − qα)iη+1

]
. (48)

Using this in Eq. (44) within some range from q1 to q2, where q1 and q2 are points just below and above the singularity qα , we
have

Iλ
β,α(qβ,qα) = 1

(2π )2

∫ q2

q1

dq

[
ql′2+l2+2ψ̃C

qα,η,L(q)

(
F I

λ (qβ,q) + q2
α − q2

2ηqα

F II
λ (qβ,q)

)

− q
l′2+l2+1
α qψ̃Sub

qα,η,L(q)F I
λ (qβ,qα)

]
+ F I

λ (qβ,qα)
q

l′2+l2+1
α

(2π )2

∫ q2

q1

dq qψ̃Sub
qα,η,L(q), (49)

where we can make use of∫
dq qψ̃Sub

qα,η,L(q) = −8πe−πη/2Im

[
�(1 + iη)e−iσL

∫
dq

(q + qα)iη−1

(q − qα)iη+1

]
= −8πe−πη/2Re

[
�(1 + iη)e−iσL

1

2ηqα

(
q + qα

q − qα

)iη]
.

(50)

Due to the oscillatory nature of this function and how its phase depends on η, as the momentum of the incoming positron qα

decreases and η increases, the integrand becomes more oscillatory and harder to manage. It is also possible to further increase
the accuracy of the subtraction for lower qα values by including the second term of the Taylor expansion for F I

λ (qβ,q):

fl(q) ≈ fl(qα) + dfl(q)

dq
�q ≈ fl(qα) + fl(q2) − fl(q1)

q2 − q1
(q − qα), (51)

and making use of∫
dq q(q − qα)ψ̃Sub

qα,η,L(q) = − 8πe−πη/2Im

[
�(1 + iη)e−iσL

∫
dq

(q + qα)iη−1

(q − qα)iη

]

= − 8πe−πη/2Im

[
�(1 + iη)e−iσL

1

1 − iη

(
q + qα

q − qα

)iη−1

2F1

(
1,1 − iη,2 − iη,

q − qα

q + qα

)]
. (52)

However, even this extension starts to break down for even
lower values of qα and further expansions have the potential
to introduce more numerical errors. Fortunately, for η > 0
as η → ∞ the Coulomb wave function tends to zero at an
exponential rate, so the contribution from these calculations
becomes negligible and can therefore be ignored. Conversely,
for η < 0, the subtraction method can generate more accurate
results for higher |η| values, but these do not tend to zero like
before. So for positron scattering on a positive ion the method
above is viable for integrating over the singularity; for negative
ions more work will be required for smaller qα values, but that
is for future development.

In order for these terms to be be solved using real arithmetic
the complex phase factor eiσL = Arg[�(L + 1 + iη)] arising
from the Coulomb functions has been removed. This step is
repeated in direct transitions as well as rearrangement. This
factor is reinstated once the system of coupled equations is
solved.

The transition matrix elements are calculated by solving
a system of coupled momentum-space integral equations
(6). These are solved using real arithmetic by following the
standard technique of converting the complex T matrix to a real
K matrix as typically done in the CCC method [3]. From here
the numerical solutions of these equations are calculated using
standard quadrature rules. The complex terms eiσL arising from
the Coulomb wave functions can be trivially factored out as
described in Ref. [2].

IV. RESULTS

A. Convergence study

The foundation of the CCC method is that as the size
of the basis N is systematically increased the results should
converge to the solution of the underlying Schrödinger equa-
tion. However, since the two-center case is ill-conditioned,
increasing the basis size on both centers requires some care.
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FIG. 2. Total cross sections for e+-He+ scattering.

For convergence studies, calculations are performed with basis
sizes N = ∑lmax

l=0 Nl by increasing the size of Nl for each
angular momentum l and maximum angular momentum lmax on
both centers. To limit the number of free parameters, typically
the same number of Laguerre-based states are used on both
centers. Furthermore, we set Nl = N0 − l requiring that only
N0 and lmax need to be varied in convergence studies. The
corresponding calculations are denoted as CCC(N0

T
lmax

, N0
Ps
lmax

)
in the figures. For all the bases, the fall-off parameter λl is set
to 2.0 for He+ and 0.5 for Ps independent of l.

In what follows we do not incorporate the ionic target
Rutherford scattering term in the elastic cross section. This
ensures that the elastic, and hence total, cross sections remain
finite allowing for convergence checking for each partial wave
of total orbital angular momentum. Rather than providing
results for each partial wave J , instead we present the results
converged with respect to the partial wave sum. Presently,
Eq. (11) was solved explicitly for 0 � J � 20.

The convergence studies for the total, total breakup, and
total Ps-formation cross sections are shown in Figs. 2–4,
respectively. In each case there are sets of calculations with
N0 = 20 for lmax = 0,1,2,3 to test convergence in the orbital
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FIG. 3. Total breakup cross sections for e+-He+ scattering.
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FIG. 4. Total Ps-formation cross sections for e+-He+ scattering.

angular momentum of the included states. The inclusion of
the p states in addition to the s states has made a significant
difference to the results. Further inclusion of the d states
was less substantial, but contributed an additional 20% at the
maximum for the breakup cross section. Inclusion of the f

states appeared to have practically no effect, which is very
similar to calculations for e+ scattering on H [4] and He
[19]. Additional calculations were performed with lmax = 2
and N0 = 15 and 25 to check convergence with N0. For
the total cross section the main noticeable difference for the
various N0 calculations is that the N0 = 15 calculations seem
to underestimate the larger calculations for energies greater
than 400 eV. This could be due to the number of positive-energy
pseudostates being insufficient at these energies. For the total
breakup cross section there is some variation for the larger cross
section values but this is typically within 1%. For the total
Ps-formation cross section there in no noticeable difference
between these three sets of calculations.

It can be observed that the basis CCC(202,202) is large
enough to generate accurate e+-He+ scattering cross sections
at all energies considered.

B. Internal consistency

The results of the internal consistency checks are given in
Figs. 5 and 6 for the total and electron-loss cross sections,
respectively. In both cases the two-center CCC(202,202) are
compared with single-center CCC(309,0). The inserts high-
light the region from 40 to 60 eV to further examine the dif-
ferences around the breakup threshold of 54.4 eV. For the total
cross section, there appears to be very little difference between
the two expansions. The same can be said for the electron-loss
cross section at first glance. However, when the corresponding
insert is examined, it can be seen that the threshold for electron
loss is around 55 eV for the single-center results and around
48 eV for the two-center ones. This is to be expected since
the ionization and Ps(1s) formation thresholds are 54.4 and
47.6 eV, respectively, and since the single-center expansion
has no possibility for Ps formation, the only way for it to lose
an electron is via ionization. This is further validated by the
fact that the electron-loss (Ps-formation plus breakup) cross
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FIG. 5. Total cross sections for e+-He+ scattering. The insert
highlights the region around the ionization threshold.

section for the two-center expansion in this region is entirely
due to Ps formation.

These two checks also show that the inclusion of the new
Ps-formation matrix elements conserves the unitarity of the
close-coupling formalism. This is clear for a single-center
calculation which utilizes a complete basis, but less clear when
a two-center expansion is utilized using two independently
complete bases. The agreement between the two calculations
indicates no double counting problems. Since cross sections
are defined at infinite separations of the reacting particles the
two-center expansions do not overlap at infinity due to being
square-integrable. Hence convergence to the same result is
demonstrably achieved in one- and two-center calculations,
but the latter is much more ill conditioned (requires higher
internal numerical precision).

C. Comparison with other theories

Unlike positron scattering on hydrogen, the problem of
positron scattering on He+ has not been studied much in depth.
Currently no experimental results exist for this system and
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FIG. 6. Electron-loss cross sections for e+-He+ scattering. The
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FIG. 7. Total cross sections for e+-He+ scattering. Close-
coupling results are from Bransden et al. [8].

most other theoretical calculations focus on elastic scattering
close to the threshold. Bransden et al. [8] has produced results
above the ionization threshold for various processes using a
close-coupling approach. Using the EFS-CDW method, Zhang
et al. [10] have also produced results in this region but only for
the Ps-formation cross sections.

Figure 7 shows the total cross sections from CCC calcu-
lations compared to the CC calculations from Bransden et al.
[8]. Excellent agreement is found between the CCC results and
both CC(19,1) and CC(26,3) results up to 100 eV. Above that
the CC(19,1) results begin to overestimate the CCC results. The
CC(26,3) results underestimate the CCC results until around
200 eV where the agreement is again very good.

Figures 8(a)–8(c) show the total breakup, Ps-formation, and
(their sum) electron-loss cross sections, respectively. There
is some disagreement between the present CCC results and
the CC results of Bransden et al. [8] for the breakup cross
section. The two CC results are visibly lower than the CCC
results. Given the good agreement for Ps formation, which
is dominated by Ps in the ground state, the discrepancy for
the breakup cross section is likely to be due to insufficiently
many positive-energy target states in the CC calculations.
The EFS-CDW results of Zhang et al. [10], available only
for Ps formation, are considerably higher than the CC and
CCC results. In these calculations Ps(n = 1–4) were used
to approximate the total Ps-formation cross sections, so it is
possible that the cross sections for Ps(n > 2) are higher than
expected; however, these were not presented by Zhang et al.
[10].

Figure 9 shows the elastic-scattering, 2s and 2p excitation
cross sections. For all three processes the three sets of calcula-
tions generate consistent results up until around 100 eV when
they start to diverge. For elastic scattering the CC calculations
approach the CCC calculations as the basis size increases. The
process with the smallest cross section, 2s excitation, overall
shows excellent agreement between CC(26,3) and CCC re-
sults. The process with the largest cross section, 2p excitation,
shows a slight difference in trend between the CC and CCC
results. Both sets of CC calculations appear to generate very
similar results but seem to produce higher cross sections that
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sections for e+-He+ scattering. Close-coupling results are from
Bransden et al. [8] and Ps-formation results are from Zhang et al.
[10].

the CCC calculations for increasing energy. For each process,
single-center CCC results are also presented; the agreement
between these results and the two-center CCC results provides
further validation via internal consistency checks.

Figure 10 shows the cross sections for Ps formation in the 1s,
2s, and 2p state. The Ps(1s) formation cross section resulting
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FIG. 9. Cross sections for elastic-scattering (a), 2s (b), and 2p

(c) excitation in e+-He+ scattering. Close-coupling results are from
Bransden et al. [8].

from the CCC calculations sits between both sets of CC results.
The EPS-CDW results appear much higher than both CC and
CCC ones near the peak at 100 eV but become comparable
around 200 eV. For Ps(2s) formation, the EPS-CDW results
are more than double those of the CCC results at the peak. The
CC results appear to fluctuate between agreeing with CCC to
agreeing with EPS-CDW displaying some unusual behavior.
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For Ps(2p) formation, the CCC results are much larger than the
EPS-CDW results but significantly smaller than the CC results.
Some unphysical deviations can be seen in the CCC-calculated
Ps(2s) and Ps(2p) cross sections. These arise from numerical
instabilities in this highly ill-conditioned system, which are dif-
ficult to remove for small cross sections. The analytic treatment
of Green’s function in the CCC method [34,35] has proven to
be very successful in smoothing these points for e+-H and
e−-He+ scattering. Similar improvements would be expected
for e+-He+ scattering, but this is for further investigation.
However, due to the overall small size of the Ps(2s) and
Ps(2p) cross sections in comparison to the grand total and
electron-loss cross sections, these numerical instabilities do
not affect the internal consistency checks presented in this
work.

V. CONCLUSION

The positron-helium ion scattering problem has been stud-
ied using the full two-center CCC formalism. The approach
to solving this problem is broadly similar to that used for the
positron-hydrogen scattering problem. The main exception is
the implementation of the momentum-space Coulomb wave
function and its corresponding form factor.

Generally, there is some good agreement between the results
of previous calculations and the presented CCC calculations,
particularly for the larger cross sections. There are some
notable exceptions for the total breakup and Ps formation in
excited states. Without experimental validation it is difficult
to confirm the accuracy of the calculations, but the one- and
two-center internal consistency checks give us confidence in
the CCC results.

We intend to extend the CCC approach to positron colli-
sions with other hydrogen-like and helium-like ions, one of
particular interest being hydride (H−). The reverse of this
process is equivalent to antihydride (H̄+) formation via Ps
scattering on H̄ [36]. This is considered to be an important
step in antimatter studies since H̄+ is easier to cool and trap
than H̄, meaning that experiments studying the behavior of
antimatter in a gravitational field would be easier to perform
[37]. Note that two-center approaches to positron scattering are
necessary if the reverse process of Ps scattering on the residual
ion is of interest. Though not discussed here, the currently
developed CCC method may now be applied to Ps scattering
on α particles.
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