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Probing Efimov discrete scaling in an atom-molecule collision
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The discrete Efimov scaling behavior, well known in the low-energy spectrum of three-body bound systems for
large scattering lengths (unitary limit), is identified in the energy dependence of an atom-molecule elastic cross
section in mass-imbalanced systems. That happens in the collision of a heavy atom with mass mH with a weakly
bound dimer formed by the heavy atom and a lighter one with mass mL � mH . Approaching the heavy-light
unitary limit, the s-wave elastic cross section σ will present a sequence of zeros or minima at collision energies
following closely the Efimov geometrical law. Our results, obtained with Faddeev calculations and supplemented
by a Born-Oppenheimer analysis, open a perspective to detecting the discrete scaling behavior from low-energy
scattering data, which is timely in view of the ongoing experiments with ultracold binary mixtures having strong
mass asymmetries, such as lithium and cesium or lithium and ytterbium.
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I. INTRODUCTION

The Efimov effect [1] refers to a discrete scaling symmetry,
which emerges in the quantum three-body system at the unitary
limit (when the two-body scattering lengths diverge). The
optimal condition to observe this discrete scaling symmetry
in cold-atomic laboratories is now found for heteronuclear
three-atom systems with large mass asymmetry and large in-
terspecies scattering lengths. In the Efimov (unitary) limit, the
shallow three-body levels are geometrically spaced, namely,
the ratio between the binding energies of the n and n + 1 levels
is given by B

(n)
3 /B

(n+1)
3 = exp (2π/s0), where s0 is a universal

constant which depends only on the mass ratio and not on the
details of the interaction. The energy ratio for three identical
bosons is exp (2π/s0) ≈ 515, decreasing for the case of two
heavy particles and a light one. When mL/mH = 0.01, for
example, the value of this energy ratio goes to exp (2π/s0) =
4.698 [2].

The Efimov geometric discrete scaling has been studied
with mass-imbalanced cold-atom mixtures with cesium and
lithium, in experimental and theoretical works [3–5]. The ratio
between the positions of two successive peaks in the three-body
recombination rate, measured by varying the large negative
scattering lengths (aHL), was found to be in close agreement
with the theory [3]. Complementary to this finding, what should
be the fingerprint of the Efimov scaling in the s-wave ultracold
atom-molecule cross section, if one varies the incident momen-
tum energy k instead of the scattering lengths? What is to be
expected? Is it beyond the trimer crossing the corresponding
continuum, which creates the resonant enhancement of the
inelastic collisions of cesium atoms with cesium dimers as
observed [6], or not?

Furthermore, there is an evident strong interest in ultra-
cold heteronuclear atom-molecule collisions by experimental

groups [7–10]. Trap setups with ultracold degenerated mix-
tures of alkali-metal–rare-earth molecules with strong mass-
imbalanced systems as ytterbium and lithium (174,173Yb − 6Li)
have also been reported in Refs. [11] and [12]. We should
mention that on the theory side [13], reactions at ultracold
temperatures with three-body systems such as 6Li + 174Yb6Li
were also investigated. Therefore, the present possibilities
to manipulate collisions with lithium (Li)-cesium (Cs) [14]
and ytterbium-lithium [11,12], as well as the molecules of
LiCs and LiYb in ultracold experimental setups [15], open up
opportunities to probe the discrete Efimov scaling with large
mass asymmetries. This can be achieved by using low-energy
collisions of a heavy atom, such as cesium or ytterbium, in
the weakly bound molecules as LiCs or LiYb, with mL/mH =
0.045 and 0.034, respectively. We should add that in the present
context it may be quite relevant to extend the experimental
technique used in Ref. [16] (for mononuclear systems) to
observe Efimov trimers close to the atom-dimer threshold to
strongly mass-imbalanced atomic mixtures.

Going back in time, what was known theoretically from
the pioneer works for the tri-nucleon systems [17–20] was
the existence of a pole in the spin-doublet s- wave neutron-
deuteron k cot δ0, which was associated with a virtual state in
the tri-nucleon system. Furthermore, such pole is also present
in the neutron-19C scattering [21–23], with a corresponding
pronounced minimum of the s- wave elastic cross section. As
it is well known that the geometrical scaling factor can decrease
considerably for systems with two heavy (H ) and one light (L)
particles, by extending the above investigation, our aim was
to reply some relevant questions related to manifestation of
Efimov physics at the scattering region, which can well be ex-
plored with the present experimental facilities. By considering
the collision of two condensates, the energy dependence of the
three-body recombination rate was investigated in Ref. [24],
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with log-periodic oscillations pointed out in the case of Cs-Cs-
Li. Within our present approach, we are further investigating
this property by considering elastic scattering observables as
cross sections and scattering lengths, going to extreme limiting
mass-imbalanced cases of H−(HL) atom-dimer collisions,
where the dimer is weakly bound and the collision energy
is also close to the threshold. By going to such limits, the
expectation is to explore the singular behavior of k cot δ, which
is associated to zeros of the corresponding cross section due
to the log-periodic oscillations of such observable.

II. EXTREME MASS-IMBALANCED ATOM-DIMER
COLLISION

As shown in the present work, considering the extreme
mass-imbalanced case for the H − (HL) collision, a sequence
of minima in the s- wave elastic cross sections (poles in the
k cot δ0) was found for large values of aHL near the unitary
limit. Further, this sequence is found to follow the same
log-periodic behavior corresponding to the Efimov bound-state
spectrum. One should go to extreme HL mass ratios in order to
confirm that the emergent scaling factor corresponds directly to
the same bound-state three-body spectrum. As we are pointing
out, one cannot verify more than one minima in the cross
section if the mass ratio mL/mH is of the order or larger
than 0.1, with a second minima emerging when this ratio is
about 0.08. Therefore, our present results are quite consistent
with the up to three log-periodic oscillations obtained for the
133Cs + 133Cs + 7Li three-body recombination [24], as in such
a case we have mL/mH ≈ 0.053. This behavior can better
be verified from the systematic study we have performed,
where the emergent scaling factor obtained for scattering
observables is confirmed to be close to the same one obtained
in the corresponding Efimov spectrum. Physically, we can
understand that from the characteristic log-periodic behavior
carried out by the wave function when the Efimov long-range
potential is dominant, being reflected in the colliding energy
ratios where we have the minima for the cross section.

We should remember that zeros or minima in scattering
cross sections, actually can be considered as manifestations of
the Ramsauer-Townsend effect [25]. This kind of effect was
discovered by the occurrence of minima in the scattering cross
section of electrons from atoms of a noble gas at some small
value of the electron energy [26]. In this regard, see Ref. [27],
as well as reported experimental observations in Refs. [28]
and [29]. However, a quite different physical system is being
explored in our approach, where the zeros (minima) in the
cross section of an atom-dimer system are associated to the
log-periodic sequence of the corresponding three-body bound-
state spectrum.

For the relation between the three-body bound-state spec-
trum with the minima in the s- wave elastic scattering cross
section, another simple physical picture could emerge as re-
lated to Levinson’s theorem [30] when considering an effective
two-body system. This theorem, derived for the nonrelativistic
quantum scattering theory, established a relation between the
total number of bound states n with the energy-dependent
scattering phase shift δ(E) (at a given partial wave), such that
for the s wave we have δ0(0) − δ0(∞) = (n + 1/2)π . Together
with the fact that δ0(∞) = 0, it is tempting to associate the

number of zeros in the corresponding elastic cross section to
the number of bound states for the given effective potential of
the atom-dimer scattering.

In our approach, we compute the s- wave phase shifts
by using the three-body Faddeev formalism with zero- and
short-ranged interactions, as well as by considering the Born-
Oppenheimer (BO) approximation [31]. The real part of the s-
wave phase shift (δ0) shows zeros, and k cot δ0 has a sequence
of poles at colliding energies which tend to follow the Efimov
geometric scaling.

The BO approximation applied to the H − (HL) system
provides a universal long-range attractive 1/R2 effective po-
tential (R is the relative H − H distance) close to the unitary
limit, which acts up to distances ∼ |aHL|, as shown in Ref. [31].
At short distances, the BO potential brings the details of
the finite-range pairwise potentials expressed as a boundary
condition at R0 << |aHL| that determines the reference energy
B3. The eigenstates of the H − H effective Hamiltonian have
the characteristic log-periodic solutions for R0 � R � |aHL|,
which leads to the geometrical ratio between the binding
energies and also to the log-periodic properties of s- wave
scattering observables. We extend the procedure used in [31]
to the scattering region, considering the collision of a heavy
particle in the weakly bound subsystem of the remaining ones.
This approach (see also [32]) was used to interpret the results
obtained with Faddeev calculations for the renormalized zero-
range model [33], as well as for the Gaussian finite-range
interactions.

To simplify our study, we assume no interaction between
the heavy particles and that the heavy-light molecule (HL)
has a weakly bound energy B2. When B2 → 0 the three-body
Efimov levels are given by B

(n)
3 → e−(2nπ/s0)B3, where B3 ≡

B
(0)
3 is the ground-state binding energy of the models we use

in our approaches to obtain the s- wave cross sections.

III. NUMERICAL APPROACHES AND RESULTS

We start our analysis by introducing a scaling function for
the dimensionless product of the s- wave cross section and
energy. With B3 and B2 as the scales of the heavy-heavy-light
(HHL) system and E the colliding energy at the three-body
center of mass, this function can be written as

σ B3 = S(E/B3 ,B2/B3 ,A), (1)

where A ≡ mL/mH . This is strictly valid at the zero-range
limit where B2 = 1/(2μHLa2

HL), with μHL being the reduced
mass for the HL subsystem. Here and in the next, the units are
such that h̄ = 1 and mL = 1.

A. Zero- and finite-range three-body approaches

The scaling function for A = 0.01 is shown in Fig. 1 for
the renormalized zero-range model [22] and for the Gaussian
potential model calculated with the method developed in
Ref. [34], which was extended to energies above the breakup
threshold in Ref. [35]. The Gaussian potential with r0 being
the interaction range is given by

V (r) = V0 e−r2/r2
0 , (2)

where we have used aHL/r0 = 50 and B2/B3 = 0.0012.
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FIG. 1. The s- wave cross section is shown as a function of the
energy collision E for zero-ranged (ZR) (blue-solid lines) and finite-
ranged Gaussian (G) (red-dashed lines) potentials, for fixed mass ratio
A = 0.01 and given two-body energies (BG

2 is a factor smaller than
BZR

2 to keep both results close to the unitary limit). Results are in
units of B3.

Noticeable are the minima of the s- wave cross section,
at energy positions where k cot δ0 has poles. We observe that
positions of such poles tend to obey the Efimov law for
(k aHL)−1 → 0. Between the zeros, there is a sequence of
maxima for the cross section where the phase shift passes
through (2n + 1)π/2, as seen in Fig. 1. It is tempting to
associate the maxima obtained for the cross section with
resonances; however, a calculation by using the complex
scaling method [36] for the Gaussian potential excludes that.
These results are also corroborating the conclusions of [21,23]
for the neutron-19C system, where no resonance is found when
changing the neutron separation energy in 19C.

By considering different mass ratios, with A = mL/mH

varying from 0.01 till 0.08, our results for the cross sections
σ (in arbitrary units) are presented in Fig. 2 for three fixed
weakly bound two-body energies B2/B3 = 0.01, 0.03, and
0.05. In the given eight panels we are presenting σ as a function
of E/B3. From these panels, one can notice a sequence of
zeros (or minima) appearing for σ as we decrease the mass
ratio A, for a fixed interval of the colliding energy, such that
E/B3 < 1. Within the intervals for A shown in Fig. 2, by
examining the case with B2/B3 = 0.01, one should noticed
that, for the less-pronounced mass-imbalance case, A = 0.08,
we have the occurrence of only one zero for σ within the given
energy range, whereas for A = 0.01 it is possible to verify the
existence of up to five zeros. (In more detail, this number goes
to seven when considering the energy interval shown in Fig. 1).
Also, as indicated by the curvature behavior, we noticed that
a second minimum should appear in A ≈ 0.08 for an energy
much closer to zero, as well as a third minimum in the case of
A close to 0.04.

Therefore, the large mass asymmetry (A << 1) is more
favorable for the occurrence of several zeros or minima in σ .
In order to verify the emergence of a possible scaling factor
between the position of successive zeros or minima in the s-
wave cross section, in correspondence with the Efimov bound-
state spectrum, one should be able to extrapolate the two-body
bound-state energies to the unitary limit (i.e., to B2 = 0).
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FIG. 2. The zero-ranged results for σ (in arbitrary units) as
functions of E/B3 are given in eight panels, with mass ratios A ≡
mL/mH as shown inside the frames. In all the panels the two-body
energies are fixed such that B2/B3 = 0.01 (solid-blue lines), 0.03
(dot-dashed-red lines), and 0.05 (dashed-black lines).

Corresponding to the upper-left panel of Fig. 2, when
B2/B3 = 0.01 and A = 0.01, we also have Fig. 1 where E/B3

was extended up to 1, which showed that it is possible to
observe another minimum in σ for collision energies much
larger than the breakup threshold. As we can observe, in
this case, the value of the minimum in σ is affected by
absorption, an expected behavior for energies above the break-
up threshold. Therefore, σ is not being reduced to zero but has
just a minimum, with the value of the energy E also being
deviated slightly to the right as B2 is increased in Fig. 2. The
ratio between the energy position of the successive zeros is
about the Efimov geometric factor as one can easily check (we
will explore such a feature in a systematic way later on), and as
one would expect it should be distorted by absorption effects,
but far away from the breakup threshold.

It is noticeable to find minima of the cross section for E >>

B2 and quite deeply immersed in the three-body continuum,
where still the s- wave inelasticity parameter is very close to
unity. This astonishing suppression of the breakup channel for
energies of about 2 orders of magnitude the two-body binding is
a manifestation of the long-range coherence between the heavy
and light particles and the associated diluteness of the target,
making it hard to destroy the system, where the light particle
binds with any one of the heavy particles and the dynamics is
dominated only by the exchange of the light particle between
the two heavy ones. The HL molecule becomes invisible to the
collision of the heavy one. Semiclassically, the possibility of
the destructive interference between the direct trajectory and
the one from the exchange process gives the zeros of the phase
shift.
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The fact that the breakup channel is suppressed is closely
related to the nonexistence of resonances. In the adiabatic
hyperspherical representation of this mass-imbalanced three-
body system, it happens that the coupling between the lowest
adiabatic channel, which asymptotically goes to the atom-
dimer channel, with the breakup channels is weak (see, e.g.,
[35]). In addition, asymptotically the lowest adiabatic hyper-
spherical potential is attractive, while the breakup channels
have a barrier around ρ ≈ |aHL|. Indeed, in the case of
Borromean systems, such a barrier makes the Efimov turn to a
continuum resonance when |aHL| is decreased [37].

We summarize the findings presented in Figs. 1 and 2 as (i)
the number of minima of the s- wave cross section decreases
significantly when A and the Efimov ratio increases, and (ii)
more minima are seen when B2/B3 decreases. Particularly,
with respect to the second point, we found that the zeros of the
cross section are coming out from the scattering threshold and
the H − (HL) scattering length passes through zero values
when B2/B3 is driven towards the more favorable condition
for the Efimov effect. That is the counterpart of the unitary
limit where virtual states come from the second energy sheet
to become bound states. In the continuum region, zeros and
maxima of the cross section come one by one as B2/B3 → 0,
which completes the final picture of the Efimov limit including
the scattering region.

The manifestation of the Efimov discrete scaling in the
atom-molecule collision can be systematically studied by the
ratio between the energies of successive zeros or minima as a
function of the mass ratio and a dimensionless ratio between
two- and three-body scales as follows. For that, a scaling
function is introduced relating the energies of two adjacent
minima obtained for the cross section σ . Within a convention
that En+1 > En, this function is given by

En+1/En = R
[
1/

(
E

1/2
n+1 aHL

)
,A

]
, (3)

where R[0,A] = e2π/s0 is the unitary limit.
The universal scaling function (3) is shown in Fig. 3

for the extreme case A = 0.01, calculated with the Gaus-
sian and zero-range potentials. The curious behavior of the
scaling function around the Efimov ratio, indicated by the
horizontal dashed line, by departing from the unitary limit
decreases, has a minimum, and then increases, namely, the
zeros are more distant. Note that we have plotted results for
the renormalized zero-range potential with different B2 and
scattering lengths ranging from 0.001 � B2/B3 � 0.05. With
the Gaussian potentials, within our numerical accuracy, we
were able to approach more closely the Efimov limit. However,
when going to smaller values of 1/(E1/2

n+1 aHL), we stand above
the breakup threshold and evidently the coupling to the breakup
channel affects the ratio, as the figure suggests.

B. Born-Oppenheimer approximation

The curious behavior of the ratio, namely, when starting
from smaller-to-larger collision energies it is first above the
Efimov geometrical factor and then it decreases and increases
again towards it, can be qualitatively understood by consider-
ing the collision within the BO approximation. In this case,
the effective H − H long-range potential is supplemented
by a boundary condition at some short distance R, with the
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FIG. 3. Ratio between the energy positions of the successive zeros
(n + 1,n) of the cross section σ plotted versus 1/(E1/2

n+1 aHL) for mass
ratio A = 0.01. The results obtained from Faddeev calculations with
the renormalized zero-range (ZR) model for given two-body energies
are indicated inside the frame. The straight dashed line indicates the
Efimov limit for A = 0.01. The solid line with dots shows the results
obtained from Faddeev calculations with the Gaussian potential (2).
The Born-Oppenheimer (BO) results (connected by a dashed-blue
line) are shown for three boundary conditions.

continuity of the logarithmic derivative of the wave function
u(R) imposed at R = aHL. In our illustration, the elastic
scattering S matrix is found from the boundary condition at
R = aHL. To make our point clear, we assume no two-body
H − H potential, we expand the effective BO potential [31],
where the leading-order term is ∼ 1/R2, and we also consider
the effect of the next-order term, implying the inclusion of a
Coulomb-like 1/R interaction. Therefore, as one can extract
from the expansion of the potential presented in [31], we have
the following effective two-body equation for the collision of
the heavy particle H with relative momentum k with respect
to the HL dimer:[

− d2

dR2
− s2

0 + 1
4

R2
g

(
R

aHL

)]
u(R) = k2u(R), (4)

where g(y) ≡ 1 + 2y + 2.07y2, such that the leading term in
the interaction, −(s2

0 + 1/4)/R2, provides the Efimov limit.
The wave number is related to the collision energy by k =√

2μH,HLE, where μH,HL ≡ mH (1 + A)/(2 + A). The ex-
pansion for g(y) is found by requiring an approximation of
the BO potential to be valid not only for R � aHL, but also
for R/aHL ≈ 1. With this approximation, the Coulomb-like
correction −2(s2

0 + 1/4)/(aHLR) is added to the Efimov term,
as well as a constant which is negligible for larger scattering
lengths. As shown by [31], in case of negative energies we can
obtain exact solutions for Eq. (4), given by Bessel functions
in case we consider the leading term 1/R2 for the interaction.
In the present extension to scattering energies, we can also
verify analytical solutions for Eq. (4), which are given by
Whittaker functions. This eigenvalue equation has no lower
bound energy, namely, the Thomas collapse is present, which
requires a short-range scale imposed by a boundary condition
at R = R0 � aHL. In what follows, a hard wall will be used,
and from the boundary condition at R = aHL the phase shift is
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finally obtained. In this way, the log-periodicity of the s- wave
phase shift with the energy is only deformed by the presence
of the 1/R contribution.

As a result, if the BO potential in Eq. (4) is given only by the
Efimov term, the ratio (not plotted in Fig. 3) would approach
the Efimov limit monotonically from above when decreasing
1/(E1/2

n+1 aHL). The minimum observed in the BO results
(dashed-blue curve in Fig. 3) comes from the Coulomb-like
correction. As shown by using different values for the position
of the hard wall at short distances, there are no significative
range corrections. Therefore, we note that the first two terms
of the BO potential are quite relevant to provide a qualitative
description of the scaling function. This approximation is
working surprisingly well, in particular for large values of
E

1/2
n+1 aHL, when approaching the Efimov limit, considering

that in this limit the coupling to the breakup channel (which
is not being taken into account) is expected to be relevant. For
smaller values of E

1/2
n+1 aHL the expansion of the BO potential

starts to break down due to its poor efficacy when decreasing
the collision energy, with the wavelength being of the order of
the scattering length.

IV. PRACTICAL IMPLICATIONS

The poles of k cot δ0, which correspond to the zeros or
minima of the s- wave cross section, are directly connected
with the Efimov spectrum of the HHL system near the unitary
limit. This is shown by considering a mass-imbalanced system
A << 1 with no interaction between the two heavy particles
and with the heavy-light subsystem bound with energy close
to zero (near unitary limit). In view of the consistency of the
results obtained in the present work with a picture based on the
Levinson’s theorem, which relates the number of zeros in the
s- wave scattering length with the number of bound states, for
a given effective two-body potential, an interesting perspective
to be worked out is to further explore this theorem analytically
in the context of atom-dimer systems. Other aspects of interest
to be more deeply investigated, which could impact in the
accuracy of the predicted minima, are related to higher partial-
wave contributions to the cross sections, as well as possible
effects due to existence of deeply molecular bound states.

With respect to actual experimental realizations in ultracold
atomic gases, to observe effects of the zeros (or minima) in
the cross sections, a possibility is to study the two-condensate

collision following a suggestion given in Ref. [24]. In the
present case, the colliding condensate is formed by the single
heavy particle, whereas the target is the heavy-light dimer
condensate.

As we have pointed out, the observation of a sequence
of zeros in the cross section can only be verified for quite
large mass ratios, such that the main focus for recent ultracold
atomic experiments are binary condensed systems combining
atomic species such as Li, Yb, or Rb. By considering the mass
ratio between Li and Yb, A = 0.034, the cross section for
the Yb + LiYb collision can in principle present a couple of
zeros. We can imagine a situation where aYb−Li is adjusted
at some large positive values with the colliding energy being
varied slowly. In this case, σ should present minima at some
specific colliding energies whose positions are approximately
geometrically spaced.

V. CONCLUSION

In conclusion, we suggest as the best possible situation
to probe the Efimov discrete scaling in the continuum to
consider the atom-molecule scattering with large mass asym-
metry through cold collisions, which are now feasible [14].
The challenge in these experiments would be to control the
scattering length towards the large values and then observe
the cross-section minima at geometrically spaced colliding
energies.
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