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The paper is devoted to the Lamb shift and fine structure in a hydrogenlike muonic atom with a spinless
nucleus up to the order α5m with all the recoil corrections included. Enhanced contributions of a higher order are
also considered. We present the results on the pure QED contribution and on the finite-nuclear-size contribution,
proportional to R2

N , with the higher-order corrections included. We also consider the consistency of the pure QED
theory and the evaluation of the nuclear-structure effects. Most of the QED theory is the same as the theory for the
case of the nuclear spin 1/2. Additional nuclear-spin-dependent terms are considered in detail. The issue of the
difference for the theories with a spinor nucleus and a scalar one is discussed for the recoil contributions in the order
(Zα)4m, α(Zα)4m, and (Zα)5m. The numerical results are presented for the muonic atoms with two lightest scalar
nuclei, helium-4 and beryllium-10. We compare the theory of those muonic atoms with theory for the muonic
hydrogen. Some higher-order finite-nuclear-size corrections for the Lamb shift in muonic hydrogen are revisited.
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I. INTRODUCTION

Determination of the accurate values of the nuclear charge
radii is one of the problems of nuclear physics. Studies of
spectra of muonic atoms contribute very much in the field (see,
e.g., [1,2]). The previous generation of such studies was based
in the investigation of the emission spectra of the excited states,
appearing through muon capture. There is, however, another
possibility for muonic spectroscopy. A small, but observable
portion of highly excited states, appearing after muon capture,
decays through a cascade of fast transitions to the metastable
2s state. This state lives relatively long and can be excited
by a laser radiation, and the splitting between the states of 2s

and 2p can be determined with a high accuracy. The results,
interpreted in the terms of the nuclear radii, have unprecedented
accuracy.

Such an approach has not been realized until recently.
There have been published results on muonic hydrogen [3],
muonic deuterium [4], while ones on the muonic helium ions
are expected soon [5]. Experiments with some heavier nuclei
seem possible.

The higher experimental accuracy, actual and expected,
requires a more accurate theory. One of the most interesting
targets is the determination of the Lamb shift in such atoms,
which is the interval between the 2s1/2 and 2p1/2 states. An-
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other interval of interest is the fine-structure splitting between
the states of 2p1/2 and 2p3/2. There have been a number of
efforts to improve the related theory and to prepare the review
and compilation on the results.

In particular, there have been a number of reviews and
compilations on the Lamb shift in the muonic helium-4 ion
[6–8]. The theory is mostly the quantum electrodynamics
(QED) one, but there is an important correction which is
proportional to mean square of the nuclear charge radius R2

N .
Its contribution is relatively small in comparison to the leading
QED term, but it is sufficiently large to be determined with a
high accuracy, which in turn allows us to determine the rms
charge radius of the α particle.

Here we revisit quantum electrodynamics theory of muonic
helium-4 ion. The paper follows our consideration of muonic
hydrogen [9] and the two-body muonic atoms with the nuclear
spin 1/2 [10]. The α particle has a nuclear spin zero and that
makes a certain difference for the QED consideration. We also
discuss here a hydrogenlike muonic atom with another scalar
nuclei, namely, Be-10.

The purpose of a QED theory, which we pursue in this paper,
is to present the result for the Lamb shift as a sum of three terms
(cf. [9,10]) with sufficient accuracy.

(i) The largest contribution is a pure QED one for pointlike
particles. It should be calculated with a high accuracy. We
build a theory of such contributions up to the order α5m with
the relevant recoil effects included. Some enhanced α6m are
also considered.
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FIG. 1. Level structure for a muonic atom with a scalar nucleus.
Not to scale.

(ii) The largest finite-nuclear-structure effect is presented
with the term

�Efns:lead(nl) = 2

3

(Zα)4mrc
2

n3

(
mrRNc

h̄

)2

δl0. (1)

It is important that the term is a product of the mean square of
the charge radius R2

N and a certain coefficient, which does not
depend on the nuclear structure at all. The coefficient itself is
a result of calculations for a pointlike nucleus.

Some QED corrections to the leading finite-size term are
of a similar form. The ultimate purpose of the calculation of
this type of contribution is to find the coefficient in front of
R2

N with a sufficient accuracy. This term is the “signal” for
the determination of the nuclear charge radius. We consider all
α5(mRN )2m contributions and some enhanced α6(mRN )2m

ones to the leading finite-size term (1).
(iii) A number of nuclear-structure corrections cannot be

expressed in the terms of const × R2
N . Many of them are

not QED corrections to (1), but still some QED input is
important. It is necessary to present those contributions in the
way consistent with the QED theory.

The largest of them is the two-photon-exchange (TPE) term
and the full TPE term contains a certain pointlike physics which
should be subtracted in an appropriate way. The issue is not
trivial since the two-photon diagrams in QED were studied in
detail, but only for spinor particles (see, e.g., [11,12]). That
makes the results applicable, e.g., for ordinary and muonic
hydrogen, while the calculation for muonic helium may need
an adjustment.

The level structure of a muonic atom with a spinless nucleus
is depicted in Fig. 1. Two transitions which can be measured
are shown there. The calculations correspond to the Lamb shift
(LS) and fine-structure (FS) intervals.

Our evaluation of the QED theory follows our previous
consideration of the muonic hydrogen atom [9] and its gener-
alization for muonic atoms with other light nuclei in [10]. We
start with unperturbed QED problem which is to be solved as
the bound-state problem. We note that the theory for the case of
different nuclear spins contains terms of order (m/M)2 which
are nuclear-spin dependent. For this reason we first consider
the theory using the expressions for the nuclear-spin-1/2 and

TABLE I. Parameters of light muonic atoms: charge Z and mass
M of a nucleus [13], the reduced muon mass mr , the characteristic
atomic momentum p for the n = 2 energy levels, the values for the
rms nuclear charge radii for proton and α particle are from scattering
[14], while the result for the nucleus of 10Be is from [1]. For the
rough numerical estimation we apply the following numerical values
(see below) Rp = 0.84 fm, Rα = 1.6 fm, RBe = 2.4 fm. [We use two
similar notations: while RN stands for the (dimensional) value of the
rms charge radius, rN is its numerical value in the fermis. Both types
of values are widely applied and it is good to distinguish them.]

μH μ4He μ10Be

Z 1 2 4
M (u) 1.007 276 4.001 506 10.011 340
mr (u) 0.101 948 55 0.110 302 23 0.112 158 16
p = Zαmr/2
(MeV/c) 0.346 495 0.749 773 1.524 78
mμ/M 0.112 61 0.028 347 0.011 33
rN 0.895(18) 1.681(4) 2.43(5)

physical parameters, which are presented in Table I for two
most light scalar nuclei. We compare all the results with the
most advanced and most cross-checked theory, which is the
one for muonic hydrogen, and the parameters of the latter are
also given there.

The consideration of the unperturbed QED problem (see
Sec. II) is with the expressions for the nuclear spin 1/2,
however the terms due to the hyperfine effects are excluded
from the theory of muonic helium-4 and muonic beryllium-10
ions. The other nuclear-spin-dependent terms are considered
separately in Sec. V.

The most important corrections beyond the unperturbed
problem are due to the contributions of the diagrams with
closed electron loops. Those are muonic-atom specific terms.
They are considered in Sec. III, that contains the theory up
to the order α5m with all the recoil corrections included. The
(m/M)2 terms are taken there from the theory of the nuclear
spin 1/2. The nuclear-spin-dependent terms of the perturbed
problem as well as of the specific part of the theory are
due to the Darwin term and electronic-vacuum-polarization
correction to it. They are considered separately in Sec. V.

The other QED contributions, which do not contain the
closed electron loops, are similar to the theory of ordinary
hydrogenlike atoms. Some of such diagrams contain no closed
fermion loops at all; those are the self-energy or leading recoil
contributions. They could be easily “rescaled” by a substitution
of me in the case of ordinary atoms for mμ in muonic ones.

Some other “standard” diagrams contain the closed muon
loops. The results for the contributions of the μ loops in muonic
atoms and e loops in the case of ordinary atoms are also
different only by the substitution of the mass of the fermion.
The rescaled diagrams are considered in Sec. IV. Only one
term there contains (m/M)2 contributions and therefore may
be nuclear-spin dependent. That is the so-called Salpeter term,
the leading part of which is of order m/M , but it is known
exactly in m/M . In Sec. IV we apply the standard theory of
the two-photon-exchange contributions for the nuclear spin
1/2 and deal with the standard Salpeter term. The difference
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TABLE II. Contributions to the unperturbed energy levels for the Lamb shift interval �E(2p1/2 − 2s1/2) in the muonic hydrogen atom and
in the helium-4 and beryllium-10 ions. The corrections marked with an asterisk (∗) are exact in m/M . The order shown is the leading order in
m/M . Such a notation is used for all the tables through the paper. (Zα)4+ stands for (Zα)4 and all higher-order terms in (Zα). � Here we present
the complete BP term for muonic hydrogen [9,10] (given with the bold italic font), not only its leading term [15,16] (see the Appendix in [9]
for details). It is absent for the case of a scalar nucleus. The most important contributions are given in bold font. The notation follows [9].

No. Designation Order Refs. �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV)

0.1 Rel (Zα)4+m 0 0 0
0.2 Rel-Rec∗ (Zα)4m2/M 0 0 0
0.3 BG∗ (Zα)4(m/M)2m [17] 0.057 47 0.073 795 0.198 31
0.4 BP� (Zα)4(m/M)2m [9,10] −0.108 42 0 0

in the two-photon-exchange effects due to the nuclear spin 0
is discussed in Sec. VII.

The consideration of the mentioned above contributions
completes our consideration of “pure” QED terms. The leading
finite-nuclear-size contribution (1) is considered in Sec. V
together with the corrections which may effectively affect
the definition of the rms charge radius. Those corrections
include the hadronic vacuum polarization and nuclear-line
QED corrections. The radiative corrections to (1), results
for which maintain the form of const × R2

N , are summarized
in Sec. VI. The nuclear-structure contributions, which are
not reduced to such a simple form, are in part discussed in
Sec. VII. The concern of that section is not a discussion of
the nuclear-physics calculations, but such a definition of the
nuclear-structure correction which would be consistent with
the pointlike QED theory presented in the QED sections of the
paper.

In Sec. VIII, we summarize the results for the 2p1/2 − 2s1/2

interval (the Lamb shift) and compare them with the summary
tables of other authors. The results for the 2p3/2 − 2p1/2

interval (the fine structure) are considered in detail in the
Appendix.

II. UNPERTURBED QED TWO-BODY PROBLEM

The muonic atom is a two-body bound system and the
first step in building an accurate theory is to formulate an
“unperturbed” two-body problem, which can be solved, and
to build a systematic perturbation series, which would allow
us in principle to calculate contributions up to an arbitrary
level of accuracy. Such an unperturbed QED problem and the
related perturbative expansion are very similar to the case of
the nuclear spin 1/2. Actually, the most important part of
the unperturbed problem in the case of a two-body problem
with the orbiting particle essentially lighter than the nuclei
can be solved with the help of an effective Dirac equation
(see, e.g., [11,12]). The latter allows us to incorporate many
important recoil contributions in order m/M into the leading
approximation. As far as the recoil effects are linear in m/M

they do not depend on the nuclear spin. However, the effects
in higher order in (m/M)2 do.

There are two differences between theories with the nuclear
spin 0 and 1/2. First, for spin 0 there is no nuclear spin and
therefore no hyperfine effects. That simplifies the consideration
and we take that into account in this section immediately.
Second, the (m/M)2 terms are somewhat different. We present
here the relevant part of the theory for the nuclear spin 1/2

for the related contributions, while the difference between the
cases of I = 1/2 and I = 0 is discussed in Sec. V.

The unperturbed nuclear-spin-1/2 QED theory, presented in
Table II, includes the standard so-called Barker-Glover (BG)
term for the nuclear spin 1/2. Exclusion of the hyperfine effects
(from the 1/2 theory) leads to the absence of the Brodsky-
Parsons (BP) term for the nuclear spin 0. The theory (without
the BP term) is well covered in [11,12] (see also [9,10]).

The total results for the unperturbed problem (in this
section) include the result for the Schödinger equation with
the reduced mass, the relativistic corrections (from the Dirac
equation), all the m/M corrections to the results from the Dirac
equation, and a special consideration for the leading relativistic
contribution of order (Zα)4m exactly in m/M for the nuclear
spin 1/2.

III. SPECIFIC MUONIC-ATOM QED CONTRIBUTIONS

The QED theory has diagrams with closed fermion loops.
In the case of ordinary atoms, the lightest particle in the loop
is an electron, i.e., the particle identical to the orbiting one. In
muonic atoms, the lightest particle in the loop is essentially
lighter than the orbiting particle. The mass of the lightest
particle in the closed loop is comparable to the characteristic
atomic momentum me ∼ p (see Table I), which makes specific
a certain group of the contributions. (The units in which
h̄ = c = 1 are used through the paper.) The diagrams with
the loop particle lighter than the orbiting one are enhanced.
They are not only specific, it is more important that their
contributions larger than standard radiative contributions.

Specific muonic-atom QED contributions are those from
the Feynman diagrams with the closed electron loops. Most of
the loops are due to the electron vacuum polarization (eVP)
and some are due to the electron-loop contribution to the
light-by-light (LbL) scattering. The results obtained previously
for the isotopes of muonic hydrogen and muonic helium
are generalized here for beryllium-10. Specific muonic-atom
results are summarized in Table III.

The largest contribution is the eVP1 one (eVP of the first
order in α, related to the so-called Uehling potential) and we
need to find it together with the recoil effects. The (m/M)2 term
is to be nuclear-spin dependent and in this section we present
the result for I = 1/2 following [18–21]. The correction due
to the actual value I = 0 for muonic helium-4 and beryllium-
10 is considered in Sec. V (cf. [19]). The eVP2 contribution
(eVP of the second order, with a potential of the two-loop
eVP related to the so-called Källen-Sabry potential, and with
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TABLE III. Specific muonic-atom contributions to the Lamb shift interval �E(2p1/2 − 2s1/2) in the muonic hydrogen atom and in the
helium-4 and beryllium-10 ions due to closed e loops. � indicates that the LbL contribution is a combination of terms with a different Z

dependence (cf. Table V). We follow the notation of [9].

No. Designation Order �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV)

1.1 eVP1 (NR)∗ α(Zα)2m 205.007 37 1665.7730 9270.7116
1.2 eVP1 (Rel) α(Zα)4m 0.020 84 0.532 04 10.0291
1.3 eVP1 (Rel-Rec)∗ α(Zα)4 m2

M
−0.002 08 −0.012 61 −0.090 7

2 eVP2 (NR)∗ α2(Zα)2m 1.658 85 13.2769 78.4768
3 eVP3 (NR)∗ α3(Zα)2m 0.007 52 0.074(3) 0.576(2)
4 LbL∗� α5m −0.000 89(2) −0.0134(6) −0.17 8(13)
5 eVP+SE α2(Zα)4m −0.002 54 −0.0646 −1.4(1)
6 SE (eVP) α2(Zα)4m −0.001 52 −0.0307 −0.5166

the double iteration of the Uehling potential) is found within a
nonrelativistic approximation, since the relativistic corrections
are too small, being of order α2(Zα)4m.

The most important new results for muonic beryllium are
with eVP3 (see Fig. 2) and LbL (see Fig. 3) terms. The eVP3

e
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FIG. 2. Characteristic vacuum polarization contributions in order
α3(Zα)2m (eVP3). The first graph is for the complete irreducible eVP
of the third order without any internal eVP loops, while the second
is for the complete irreducible contribution with an internal eVP. The
other types of contributions are either due to the reducible part of three-
loop eVP or for iterations of the Uehling and Källen-Sabry potentials.
The double muon line is for the Coulomb Green function.

diagrams (see Fig. 2) contain a triple iteration of the Uehling
potential, a second combined iteration with the Uehling and
Källen-Sabry potentials, and a three-loop eVP. The results on
eVP3 contributions for various isotopes of muonic hydrogen
and muonic helium are described in detail in [10,22–24]. Here,
the results are generalized for muonic beryllium; they are
summarized in Table IV.

The situation with the LbL contributions is somewhat simi-
lar. The characteristic diagrams are depicted in Fig. 3. The LbL
results for muonic hydrogen and helium are known and can be
found in [10,25,26]. To obtain a result for beryllium we use
a somewhat different method, instead of a direct calculation.
For the 1:3 and 3:1 contributions to the Lamb shift in muonic
beryllium we apply the effective potential introduced in [27]
[see Eq. (7.31) in [12]]. To find the 2:2 contribution for the
muonic beryllium we use the expression from [25,26] [see
Eq. (17) of [26]] which introduced an effective potential for
the virtual Delbruck scattering contribution.

To find the effective potential we calculated it for a number
of different values of r and next fitted it with a Padé ap-
proximation. The fit was subsequently utilized to calculate
the correction to the Lamb shift. The results for the LbL
contributions are presented in Table V. The details will be
described elsewhere.

To check this approach we have obtained the results for
muonic hydrogen and the muonic helium with the fits and
compared them to the results of our direct calculations for the
muonic helium ion [25,26]. They are consistent within their
uncertainty.

µµ µ

eee

(1:3) (2:2) (3:1)

FIG. 3. Characteristic diagrams induced by the light-by-light
scattering.
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TABLE IV. The individual eVP3 contribution to the �E(2p1/2 −
2s1/2) interval in the muonic beryllium-10 (see Fig. 2). The notation
follows [22].

No. E(2s) E(2p) E(2p − 2s)[
α3

π3 (Zα)2mr

] [
α3

π3 (Zα)2mr

] [
α3

π3 (Zα)2mr

]
c3 −0.047 33 −0.078 75 −0.031 42
c111 −0.096 80 0.004 46 0.101 26
c2(1) 0.020(2)
c12 −0.272 55 −0.030 90 0.241 65
c1c2 −0.151 70 −0.072 79 0.078 91
c1c11 −0.110 05 −0.007 90 0.102 15
c1c1c1 −0.009 40 −0.005 01 0.004 38

IV. STANDARD QED CONTRIBUTIONS RESCALED

The standard QED theory of two-body systems is well
covered in, e.g., [11,12]. They consider diagrams without
closed fermion loops (such a fermion’s self-energy or rel-
ativistic recoil effects) or with closed fermion loops, the
fermion in which is of the same type as the orbiting particle
(i.e., a muon in muonic atoms and an electron in ordinary
ones). To rescale a standard theoretical contribution from an
electronic hydrogenlike atom to a muonic one we have to use
a substitution,

me → mμ.

The ordinary theory contains many terms and only a very
few of them are required for muonic atoms (see, e.g., [9]). That
happens because of two reasons. First, the purpose of the study
of muonic atoms is to determine the rms nuclear charge radius.
Its contribution is strongly enhanced. While the standard part
of theory scales as ∝ m, the leading finite-size contribution [see
(1)] scales as ∝ m3. Because of this enhancement, a relatively
low accuracy of experiment and theory is required to accurately
determine the radius. The other reason is that while the standard
part of QED is a dominant contribution in the ordinary case,
it is just a small correction to specific contributions (see the
previous section), which dominate in the case of muonic atoms.
Since the correction is small it does not require by itself a high
accuracy for an eventually accurate complete theory.

The rescaled contributions of the standard theory are col-
lected in Table VI. That is a theory with the nuclear spin
1/2. One of the contributions [due to the (Zα)5m2/M], the
so-called Salpeter term, is known exactly in m/M and therefore
may contain the nuclear-spin-dependent contribution in order
(m/M)2 or higher. The issue is discussed in Sec. VII.

V. DEFINITION OF THE NUCLEAR CHARGE RADIUS,
THE DARWIN TERM, AND QED IN THE NUCLEAR LINE

The vertex of the interaction of a scalar particle (with charge
Ze) with the electromagnetic field,

−iZe(pμ + p′
μ)G(q2), (2)

is a product of a pointlike vertex and the electric form factor
G(q2). That is a nuclear-structure form factor. The form factor
is a standard one which is applied for the interpretation of the
scattering results. As usual, the Fourier transform of the form
factor is approximately equal to the charge distribution density
(or, more accurately they are equal in the nonrecoil approxi-
mation, which is the most appropriate for larger distances and
smaller momentum; the approximation is essentially better for
few-nucleon nuclei than for a single proton).

The rms radius, applied in all the expressions derived from
the first principle, is defined as

∂G(q2)

∂q2

∣∣∣∣
q2=0

= −1

6
R2

N . (3)

The approximation of it is an average of the nuclear value
of r2 over the nuclear charge density. Such an average does
not appear by itself in the base formulas, but is a result of their
approximation.

There is a certain “natural” choice among the definitions
of the form factor and the rms radius. There are also some
certain “technical” problems in their practical extraction from
the experimental data. We briefly overview both of them below.

In principle, there is an interplay between the definition
of the charge radius and the so-called Darwin term (see, e.g.,
[28]). The definition of (2) and (3) means that G(0) = 1 and
RN = 0 in the case of a pointlike scalar nucleus. Such a defini-
tion means some additional (to the case of the nuclear spin 1/2)
contributions in order (Zα)4(m/M)2m and α(Zα)4(m/M)2m.
(It is possible to take another definition of the form factor which
could absorb the Darwin term.) The first of them is due to the
Darwin term itself,

�EDarw(nlj ) = 〈nlj |πZα

2M2
δ3(r)|nlj 〉,

which is present in the case of I = 1/2 [17] and absent in the
case of I = 0 [29]. The other nuclear-spin dependent (m/M)2

term mentioned is the Uehling correction to the Darwin term
(cf. [17–19]). The results are summarized in Table VII. The
“additional” corrections are supposed to cancel the Darwin-
type contributions for the QED theory for the nuclear spin 1/2.

The definition of (2) and (3) is not a complete one in a
practical sense. We have a number of corrections which we
can in principle treat in a different way, and the difference
in the treatment would effectively mean a certain shift in the

TABLE V. The individual light-by-light contributions to the �E(2p1/2 − 2s1/2) interval in the muonic hydrogen atom and in the helium-4
and beryllium-10 ions at order α5m. The notation follows [26] (see Fig. 3).

No. Designation Order �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV)

4.1 LbL (1:3) α(Zα)4m –0.001 018(4) –0.01988(6) –0.2414(7)
4.2 LbL (2:2) α2(Zα)3m 0.001 15(1) 0.0114(4) 0.0787(7)
4.3 LbL (3:1) α3(Zα)2m –0.001 02(1) –0.0050(2) –0.0150(25)
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TABLE VI. The rescaled QED terms, originating from a standard theory of ordinary hydrogen (cf. [9,12]). The results are presented for the
Lamb shift �E(2p1/2 − 2s1/2) interval in the muonic hydrogen atom and the muonic helium-4 and beryllium-10 ions. Here, the designation is
not unique, but together with order of the terms it is sufficient to distinguish the corrections. We follow the notation of [9].

No. Designation Order �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV)

7.1 QED (Rad)∗ α(Zα)4m –0.663 45 –10.926 –143.4535
7.2 QED (Rad) α(Zα)5m −0.004 43 −0.1797 −6.0448
7.3. QED (Rad-Rec) α(Zα)5m2/M 0.000 19 0.0022 0.0301
8 QED (Rec)∗ (Zα)5m2/M –0.044 97 –0.4326 –5.3989

definition of the form factor. Technically, the whole vertex
involves the whole form factor. We mention above that G(q2)
is a nuclear-structure form factor. There are also QED contribu-
tions to the form factor, i.e., the total form factor is a sum of the
QED term and the nuclear-structure term. All the effects, which
are not the nuclear-structure one, but come instead from QED,
must be subtracted from the whole form factor and treated
separately as QED corrections. If, by any reason or by chance,
some of them are not treated separately and therefore their
contribution is not subtracted, then technically that means that
we put those QED contributions into G(q2).

Following [12], we introduce the leading nuclear-line QED
correction as

�EN:QED(nl) = 4(Z2α)(Zα)4

πn3

m3
r

M2

×
{[

1

3
ln

M

(Zα)2mr

+ 11

72

]
δl0

− 1

3
ln k0(nl)

}
, (4)

where ln k0(nl) is the Bethe logarithm. Any variation in its
definition by using (for any reason) another constant instead of
11/72 would mean a slightly different definition of the form
factor G(q2) and the related change in the definition of the
charge radius RN .

The correction is due to the QED form factor of the
nuclear particle. The electric QED form factor is infrared (IR)
divergent. The IR divergence is treated differently in scattering
and bound-state problems because of different physics behind
the near-on-shell effects which make IR finite the total result.
In the cases of scattering that is a soft-photon emission and
in the case of the bound states that is a virtuality due to the
binding. Because of such a specific treatment of the IR terms,
it is important to deal with them in the both situations explicitly
(and in a consistent way). The IR terms are related to a soft
radiative photon, virtual or real, which effectively interact with
a pointlike nucleus. As for the IR finite terms, they can be freely

added and subtracted, because there is always a contribution
of hard radiative photons, which is sensitive to the nuclear
structure and cannot be found from the first principle. It is not
important which IR finite term we use, but it is important to
maintain the consistency in all the methods.

The related numerical results for the nuclear-line QED
contribution, defined in (4), are for the muonic atoms of
interest,

�EN:QED(2p1/2 − 2s1/2) =
⎧⎨
⎩
−0.010 41 meV, for μH,

−0.0530 meV, for μ4He,
−0.541 meV, for μ10Be.

(5)

Another technical problem of the “practical definition” is
due to a contribution of the hadronic vacuum polarization,
which can be presented in the terms of a substitution for the
photon propagators,

1

q2
→ [1 + �hVP(q2)]

1

q2
,

where �hVP(q2) is the hadronic contribution to the vacuum-
polarization operator.

That is a modification of the photon propagator due to
hadronic intermediate states. Experimentally, when a lepton
interacts with a compound nucleus, the form factor of the latter
and the vacuum polarization (not necessary, the hadronic one)
enter various expression always in a combination

G(q2) × [1 + �VP(q2)]. (6)

If a certain contribution to �VP(q2) is not included into
the evaluation of the scattering explicitly, that means that it
is hidden in the would-be extracted form factor. Instead of
G(q2) we use the product from (6) with some contributions to
�VP(q2).

All the vacuum-polarization contributions (be it muonic or
hadronic), which have not been accounted as QED corrections

TABLE VII. Additional Darwin corrections for system with nuclear spin equal to 0 for 2p1/2 − 2s1/2 for the Lamb shift (or for 2s) in the
muonic hydrogen atom and in the helium-4 and beryllium-10 ions.

No. Designation Order �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV)

Unperturbed quantum mechanics

0.3ad BG∗ (Zα)4(m/M)2m 0 0.221 385 0.5949

Specific QED

1.3ad eVP1 (Rel-Rec) α(Zα)4(m/M)2m 0 0.001 84 0.0068
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TABLE VIII. Some nuclear-structure contributions to �E(2p1/2 − 2s1/2) in the muonic hydrogen atom and in the helium-4 and beryllium-10
ions. Here we summarize the finite-nuclear-size contribution (FNS) and the pointlike TPE κ term [9,34] (which is present in muonic hydrogen,
but not in muonic helium-4 and beryllium-10). We present the numerical results with help of equations in the terms of rN (which is the numerical
value of RN in the fermis). The results given in italics are not used directly and are given for reference purposes only. The numerical values are
given for Rp = 0.84 fm, Rα = 1.6 fm, RBe = 2.4 fm to characterize the contributions. We follow the notation of [9].

No. Designation Order �E for H (meV) �E for 4He (meV) �E for 10Be (meV)

Value Estimation Value Estimation Value Estimation

10 FNS (NR) (Zα)4(mRN )2m −5.1974 r2
p – 3.7 −105.32 r2

α – 270 −1771.66 r2
Be – 10200

11 FNS (Rel) (Zα)6(mRN )2m −0.0016 r2
p −0.098 r2

α −5.0 r2
Be

+0.000 24(r2
p)2 −0.0001 +0.018(r2

α)2 −0.14 +0.93(r2
Be)

2 2.1
12 FNS (eVP) α(Zα)4(mRN )2m −0.0282 r2

p −0.020 −0.878 r2
α −2.2 −20.4 r2

Be −120
13 FNS (SE+μVP) α(Zα)5(mRN )2m 0.000 36 0.058 3.87
14.κ TPE (κ) (Zα)5m4/M3 −0.003 05 – –

to the scattering, are effectively included in the would-be G(q2)
and would-be RN .

The calculation of the hadronic vacuum-polarization contri-
bution, using the dispersion relations and the experimental data
for electron-positron annihilation, produces rather a marginal
contribution (cf. [9,30]),

�EhVP(2p1/2 − 2s1/2) =
⎧⎨
⎩

0.0106(10) meV, for μH,

0.22(2) meV, for μ4He,
3.6(3) meV, for μ10Be.

(7)

However, it is not clear whether we should include it into the
final result. Our purpose is to extract the value of RN from the
muonic spectroscopy. We are to compare it to the values from
spectroscopy of ordinary atoms and from the electron-nucleus
scattering.

The hadronic vacuum-polarization contribution may be
treated as either a separate contribution or an effective cor-
rection to the form factor. It is not that important how it is
treated, but that it is treated in a consistent way. In the case
of helium and beryllium there are no accurate data on an
ordinary hydrogenlike ions. There are some data on the isotopic
shift in the neutral helium-3 and helium-4 (e.g., [31]) and
in beryllium isotopes [32] (for Li-like beryllium), however,
the contribution of the hadronic VP polarization to isotopic
shift cancels out. Therefore, until the hydrogenlike helium
experiment will succeed (and such a program is on the way
at MPQ [33]), we should only care that the electron-nucleus
scattering and the muonic-atom Lamb shift have consistent
definitions of the form factor. (Technically, that is the question
which corrections are taken into account in the evaluation of the
scattering data—muonic and hadronic vacuum polarization are
not always taken in account explicitly and therefore they may
be effectively included into the data values for the scattering
form factors.)

VI. FINITE NUCLEAR SIZE CONTRIBUTIONS,
PROPORTIONAL TO R2

N

The leading finite-nuclear-size (FNS) term has the form of
a product of a coefficient, determined by a pointlike physics,
and a value of R2

N [see (1)]. There are a number of other
contributions which have the same generic form. We can

consider the related coefficients as corrections to the coefficient
in the leading FNS term (1). In this section we consider
relativistic and QED corrections to the coefficient in (1). The
results are summarized in Table VIII. The results for the
radiative corrections to the FNS effects are obtained within
the nonrecoil limit.

Mostly we follow our procedure in [9]. Still two corrections
to our original procedure in [9] are made. First, we fix an error
in our tables for μH which comes from a misprint in [12] (see
[10] for details). The relativistic correction is now presented
in the form [item no. 11, FNS (Rel)],

�Efns:rel = (Zα)2

[
1 − 2

3
(mrRN )2

]
�Efns:lead ln

1

ZαmRN

.

(8)

The uncertainty of this logarithmic expression is estimated
as 50%.

The other difference is a recalculation of the standard ra-
diative correction to the leading term (term no. 13). Previously
[9,10], we related that term to R2

N following the suggestion of
[12]. Now we present a complete result without approximating
the nuclear form factor by its first nontrivial term,

G(q2) − 1 ≈ −R2
Nq2/6.

For the muonic hydrogen we utilize a scope of realistic fits
[35–40]. (For those we consider the fits which have a good
value of χ2 for data with spacelike q2, are defined in all the
area of integration, and have there a reasonable asymptotic
behavior (in contrast to, e.g., polynomials).)

For muonic ions of helium-4 and beryllium we apply
the homogeneous-sphere distribution with actual values of
their charge radii taken from [1,14] and given above in
Table I. Because of the smallness of the correction such a
rough approximation seems appropriate. The results for this
correction are the most different from the previous treatment
for the heaviest of considered atoms. Another difference in
the treatment of those radiative corrections is in the way
of the presentation of the results. While applying [9,10] the
approximation suggested in [12], the result appeared in the
form of coefficient × R2

N . Now we use a more complicated
approach and the correlation with R2

N is not that simple.
In contrast to our previous evaluations [9,10], we treat this
contribution as independent from R2

N .
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TABLE IX. The QED summary table on the Lamb shift interval �E(2p1/2 − 2s1/2). We follow the notation in [9]. The uncertainty in the
total values is due to the estimation of the higher-order contributions.

No. �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV) Refs.

Unperturbed quantum mechanics

0 –0.050 95 0.073 79 0.1983 Table II

Specific QED

1 205.026 13 1666.2925 9280.650 Table III
2 1.658 85 13.2769 78.4768 Table III
3 0.007 52 0.074 (3) 0.576(2) Table III
4 −0.000 89(2) −0.0134(6) −0.178(12) Table III
5 −0.002 54 −0.0646 −1.4(1) Table III
6 −0.001 52 −0.0307 −0.517 Table III

Rescaled QED

7 – 0.667 69 –11.1035 –149.468 Table VI
8 – 0.044 97 –0.4326 –5.399 Table VI

Nuclear-line QED

9 −0.010 41 −0.0530 −0.541 Eq. (5)

Finite-nuclear size

10 −5.1974 r2
p −105.322 r2

α −1771.66 r2
h Table VIII

11 −0.0016 r2
p −0.098 r2

α −5.0 r2
Be

+0.000 24(r2
p)2 +0.018(r2

α)2 +0.93(r2
Be)

2 Table VIII
12 −0.0282 r2

p −0.88 r2
α −20.39 r2

Be Table VIII
13 0.00036 0.058 3.87 Table VIII
14.κ −0.003 05 0 0 Table VIII

Hadronic VP

16 0.010 6(10) 0.22(2) 3.6(3) Eq. (7)
Total 205.9215(10) − 5.2271(8) r2

p 1668.29(2) − 106.3(5) r2
α 9209.9(4) − 1797.1(30) r2

Be

+0.0003 (r2
p)2 +0.02 (r2

α)2 +0.9(4) (r2
Be)

2

Our results are in part similar to those in [41], however
we use more realistic charge distribution. The details will be
discussed elsewhere.

VII. TWO-PHOTON EXCHANGE, ITS SUBTRACTION,
AND THE (EFFECTIVE) SALPETER TERM

In Sec. IV we have already discussed the standard QED
theory. The related table of the results (see Table VI) contains
term no. 8 which is of order (Zα)5m2/M . That is the so-called
Salpeter term and it is known exactly in (m/M) (for the nuclear
spin 1/2). The “hard” part of the term comes from two-photon-
exchange (TPE) QED diagram (see Fig. 4). “Hard” means that
the momentum transfer through the loop (∼mμ) is much above
the atomic scale. (There is also a “soft” part of the contribution,
which is not our concern in this section.)

FIG. 4. The hard-photon part of the Salpeter contribution (left)
and the elastic finite-nuclear-size TPE contribution (right). The closed
circles are for the vertex of the extended nucleus. Appropriate
subtractions for both contributions are assumed.

In general, TPE diagrams play an important role, because
they are responsible for the next-to-leading finite-nuclear-size
term [that is so-called Friar term of order (Zα)5m4R3

N ] as well
as for the nuclear-polarizability contribution. Both such con-
tributions suggest a hard integration over the loop momentum.
The hard integration of straightforwardly introduced integrals
is IR divergent by itself. Therefore it is not possible to evaluate
the integrals without a certain subtraction of some pointlike
contributions, which would make them IR finite. The only
valid reason to make a subtraction is that we are to take the
subtracting terms into account elsewhere and, namely, as a
part of the pointlike QED theory.

The TPE contributions (for the nuclear spin 0) with a
subtraction are considered in [7] (cf. [42–44]). The total
expression for the finite-size TPE contribution is

�E(nl) = −16(Zα)5 m4
r

π
IeTPE

δl0

n3
,

IeTPE = I Fr
3 + IE

rec,

I Fr
3 =

∫ ∞

0

dq

q4
[(G(q2))2 − 1 − 2G′(0) q2],

IE
rec =

∫ ∞

0

dq

q4
f (m,M; q2)[(G(q2))2 − 1], (9)
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where

f (m,M; q2) = fE(m,M; q2) + fF (m,M; q2),

fE(m,M; q2) = Mγ2(τN ) − mγ2(τμ)

M − m
− 1,

fF (m,M; q2) = M + m

m
τNγ1(τμ), (10)

and

τN = q2

4M2
,

τμ = q2

4m2
,

γ1(τ ) = (1 − 2τ )(
√

1 + τ − √
τ ) + √

τ ,

γ2(τ ) = (1 + τ )3/2 − τ 3/2 − 3

2

√
τ . (11)

With such a subtraction the q integration is IR finite, which
means that all the IR divergent pointlike contributions are
subtracted. But that does not mean that IR finite pointlike con-
tributions are subtracted properly. It can be a mismatch between
the subtractions and the calculation of the pointlike terms.

The problem of consistency of the pointlike subtraction
in (9) and the pointlike QED calculations was considered in
[45]. There are two questions to clarify. The practical one
is to what “pure QED” contribution the subtracted pointlike
physics is related. In general, the related pointlike two-photon
exchange (which we refer to as an “effective Salpeter term”)
could deviate from the standard Salpeter term [46,47] (see also
[11,12]). The nuclear-structure TPE contribution to the Lamb
shift [see (9)] vanishes for all the states, but the ns ones, and
therefore only their pointlike contribution in order (Zα)5m,
may be affected by the choice of the subtraction terms. The
standard Salpeter contribution (for the nuclear spin 1/2) for an
ns state is of the form

�E(ns) =
{

2

3
ln

1

Zα
− 8

3
ln k0(ns) − 1

9
− 2 ln

m

mr

+ 14

3

(
ln

2

n
+ ψ(n + 1) − ψ(1) + 2n − 1

2n

)

+ 2m2

M2 − m2
ln

M

m

}
(Zα)5

πn3

m2

M

(mr

m

)3
, (12)

where ψ(z) is the logarithmic derivative of the � function.
The soft part of the correction comes from the area of the
atomic momenta and the nucleus acts as a spinless pointlike
charge. The hard part of the correction comes from higher
momenta. The presence of ln(M/m) is a clear manifestation
that the momenta comparable to the nuclear mass contribute.
With such a high momentum transfer the nuclear spin will
indeed affect the nuclear part of the diagrams. Possible nuclear-
spin-dependent corrections should be considered.

The second question is how the effective Salpeter term,
related to the subtraction, corresponds to a pointlike ab initio
theory for a two-body bound system with a light fermion (as
an orbiting particle) and a heavy scalar (as a nucleus). That
is in part a question of interpretation. We need to combine
a pointlike QED theory and a nuclear-structure contributions
with subtracted integrals. A pointlike theory, consistent with

the subtractions in TPE, is not necessarily a would-be ab initio
QED theory for pointlike particles (see below).

The answer to the first question is that in principle the
effective Salpeter term does depend on the spins of the orbiting
particle and the nucleus. E.g., the result for two scalar particles
differs from the result for a scalar and an 1/2-spinor [45]. The
individual contributions for the scalar-spinor (1/2) effective
Salpeter term differ from those for the standard Salpeter term
for two 1/2 fermions. However, it happens occasionally that
albeit the differences in the individual contributions for a scalar
and an 1/2 fermion [it does not matter which of them is the
(light) orbiting particle and which is the (heavy) nucleus], the
total result is the same as for the standard case of two 1/2
fermions [45].

Responding to the second question, we find that in principle,
the effective Salpeter term differs from the “true” ab initio
Salpeter-type contribution for the two-body bound system of
two pointlike particles with various spins. In particular, that
was observed for the nuclear spin 1 [48]. However, in the
case of the scalar-fermion subtraction, the subtraction exactly
corresponds to the ab initio pointlike physics [45], and the
effective Salpeter term is equal to the ab initio Salpeter-type
contribution for the two-body bound system of two pointlike
particles with spins 1/2 and 0.

Eventually, despite the fact that in general there may be
additional terms (and in some situations there are such terms)
and that there are additional partial contributions, occasionally
there is no additional correction in total for the nuclear-spin-
dependent terms in order (Zα)5m [exactly in (m/M)].

Once the expression for the nuclear-structure two-photon-
exchange elastic corrections is introduced, we have to add
there the nuclear polarizability contribution appropriately. The
elastic and inelastic terms could be calculated either directly
using experimental data on the form factor and dispersion
relations and the related experimental data on the nuclear polar-
izability, or using various nuclear models. In the case of muonic
helium-4 the former approach has not fully been realized up
to date in contrast to other light atoms (cf. [44,49]), while the
nuclear-model calculations have been done in [50,51]. Since
the purpose of our paper is a QED theory of muonic atoms, the
detailed consideration of the nuclear structure effects is beyond
the scope of this paper.

VIII. SUMMARY

Concluding, we have revisited QED theory of the 2s −
2p1/2 Lamb shift in hydrogenlike muonic atoms with scalar
nuclei. The QED theory with pure QED contributions and
with QED corrections to the leading FNS term is summarized
in Table IX. Most of the terms come from the theory for
the nuclear-spin 1/2, but terms of order (Zα)4m (term no.
0) and α(Zα)4m (term no. 1) have been corrected because
of the additional nuclear-spin-dependent recoil contributions.
We have also looked for an additional recoil nuclear-spin-
dependent contribution in order (Zα)5m. We have found that it
occasionally vanishes for the nuclear spin 0 and therefore the
term no. 8 does not need any correction.

Treatment of various QED corrections in our paper differs
somewhat from those in the earlier calculations. Nevertheless,
our results for the muonic helium-4 ion are in a reasonable
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TABLE X. Theory of the 2p fine-structure interval �E(2p3/2 − 2p1/2). The radiative correction (item no. 7) is for the fine structure
completely determined by the muon anomalous magnetic moment. The uncertainty in the total values is due to the estimation of the higher-order
contributions. We follow the notation of [9]. We use here an experimental value of aμ [13] and the related term includes higher order in α.

No. Designation Order Refs. �E(μH) (meV) �E(μ4He) (meV) �E(μ10Be) (meV)

Unperturbed quantum mechanics

0.1 Rel (Zα)4+m 8.415 64 145.6980 2371.339
0.2 Rel-Rec∗ (Zα)6m2/M 5.1 · 10−6 0.0001 0.0028
0.3 BG∗ (Zα)4(m/M)2m [17] −0.086 21 −0.1107 −0.297
0.4 BP (tot)∗ (Zα)4(m/M)2m [9] 0.162 63(2) 0 0

Specific QED

1 eVP1 Rel∗ α(Zα)4m 0.005 02 0.2753 10.116
Rescaled QED

7 (g − 2)μ α(Zα)4m 0.017 64 0.3303 5.465
Finite-nuclear size

11 FNS (Rel) (Zα)6m −0.000 05 r2
p −0.0042 r2

α −0.283 r2
Be

Total 8.514 72(6) 146.193(5) 2386.62(9)
− 0.000 05 r2

p − 0.0042 r2
α − 0.283 r2

Be

agreement with those in [6–8], while the results on the muonic
beryllium-10 ion are consistent with those in [52].

In the summary table (Table IX) the vacuum-polarization
contribution (term no. 16) and the nuclear-line QED correc-
tions (term no. 9) are included. They should be treated with
caution. As we explain in the text (see Sec. V), it is crucial that
they are taken into account consistently in various calculations
(muonic atoms–ordinary atoms–scattering).

Study of n = 2 levels involves also the fine-structure split-
ting, which is considered in the Appendix.

We focus in this paper on pure QED contributions to the
energy levels and on finite-nuclear-size contributions, propor-
tional to R2

N . The latter serve as a signal for the determination of
the nuclear charge radius and the coefficient in front of R2

N is a
value, determined by pointlike physics, and therefore it is a part
of QED consideration. The QED part of the theory has a generic
form and it is essentially the same for any low-Z hydrogenlike
muonic atoms with the nuclear spin 0. The nuclear effects,
which cannot be expressed in such a simplified form, depend on
details of the nuclear structure and requires separately studies
for each isotope (see, e.g., [50,51] for the results on muonic
helium-4). It is important however to obtain QED expressions

more accurate than a possible uncertainty for the nuclear-
structure effects. We develop the theory of the Lamb shift and
fine structure up to the order α5m including the recoil effects.
We also consider some enhanced α6m contributions. The
results on muonic helium-4 and beryllium-10 are presented
in this paper. They can be generalized for other isotopes with
scalar light nuclei.
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APPENDIX: FINE STRUCTURE AT n = 2

The consideration of the n = 2 fine structure (the splitting
between the states of 2p3/2 and 2p1/2) is similar to the
consideration of the Lamb shift (the splitting between the states
of 2p1/2 and 2s1/2), which is done in the body of the paper. The
calculations are simpler since many contributions vanishes for
non-s states. The results are summarized in Table X.

The results on muonic-helium fine structure are consistent
with those in [6] and [8].
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