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Accurate intercombination transition rates (A), arising from the 2s22pnl (n = 3, 4, 5; l = s,p,d) and
2s2p3 configurations of N+, are reported. Wavefunctions for the studied states in N+ are determined using
the multiconfiguration Dirac-Hartree-Fock (MCDHF) method and account for the effects of valence, core-
valence (CV), and core-core (CC) correlations. It is found that the combined CV and CC correlation effects
are important for accurate predictions of intercombination rates of N+. A strong spin-orbit mixing between
the states 3P o

1 and 1P o
1 of 2s22p3s causes that the intercombination rates on its states 1,3P o

1 are exceedingly
sensitive to electron correlations and other corrections. The strong visible intercombination lines of N+ arise
from the 2s22p3s−2s22p3p and 2s22p3p−2s22p3d transitions. There are also strong infrared and ultraviolet
intercombination lines that have important applications in plasma diagnosis of radiative cooling coefficient and
abundance. Different systematic methods are used to evaluate the intercombination rates and their uncertainties.
For relatively strong lines (gf > 0.01) of 2s22p3l(l = s,p,d), 2s22p4l(l = s,p,d) and 2s22p5s the uncertainties
are separately estimated to be within 7%, 12%, and 20%. The rates of extremely weak lines, gf < 10−6, are of
interests in the temperature and density diagnostic in nebulae, but are remarkably difficult to accurately calculate.
The present calculations have included appropriate electron correlations to deal with them and provide guidance
for further studies.
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I. INTRODUCTIONS

Nitrogen is one of the most abundant elements in the
universe. The rates (A) of the intercombination transitions in
singly ionized nitrogen (N+) are of interests in plasma diag-
nostics of electron temperature (T e), electron density (Ne), ra-
diative cooling coefficient, etc. [1–8]. For example, Tripp et al.
reported that the intercombination line λ74.84 nm is anoma-
lously strong [1], and that the rate is important for the diagnos-
tics of radiative cooling coefficient and T e in the upper atmo-
spheres of Earth and Titan [1,9]. The determination of T e and
Ne in the Orion Nebula was independently done by Rubin et al.
[2] and Keenan et al. [3] using the 2s22p2 3P1,2−2s2p3 5So

2
intercombination lines. Ahmed and Sigut pointed out that
intercombination rates of N+ can be used for abundance
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calculation and analysis [8]. Many intercombination
lines of 2s22p3s−2s22p3p and 2s22p3p−2s22p3d, excited
by fluorescence light in the Orion Nebula, were observed by
Escalante and Morisset [4]. In all, accurate intercombination
data are desired for reliable plasma diagnostics.

The experimental methods for determining intercombi-
nation rates of N+ depend on the type of transition. The
2s22p3s−2s22p3p and 2s22p3p−2s22p3d transitions fall in
the visible region with relatively strong intensities [10,11],
and their rates have been determined by Musielok [10] and
Mar [11] based on measurements in discharge plasmas. Many
strong intercombination lines fall in the infrared and ultra-
violet regions. They have valuable applications in plasma
diagnosis [1,12], but the experimental rates were seldom re-
ported, e.g., that of λ51.452 nm, λ63.065 nm, λ1332.797 nm,

λ1386.647 nm, etc. Measurements of transition rates from the
metastable state 2s2p3 5So

2 require other methods, as its rates
are tiny and the corresponding lifetime in this case is of the
order of milliseconds [13–17]. Under these cases theoretical
calculations can be given more attention.
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TABLE I. The number of CSFs (NCSFs) for different angular momenta (J) and parities in different computational models. AS denotes
the highest principal quantum number n in the active set of orbitals. DHF stands for the calculations based on the CSFs of the reference
configurations. nSDV, nSDVC, nSDVCB, and nSDVCBQ denote the computational models as described in the text.

NCSFs

Reference configurations AS Models J = 0 J = 1 J = 2 J = 3 J = 4 J = 5

Even
{2s22p2; 2s22p3p; 2s22p4p; 2s2p23s; 2s22p4f ; DHF 41 89 106 77 42 13
2s23d2; 2s2p23d; 2s2p3p3d; 2s3s3d2; 2p4; 2p33p; 2p23s3d}
{2s22p2; 2s22p3p; 2s22p4p; 2s2p23s; 2s22p4f } 4 4SDV 906 2297 3020 2841 2193 1371

5 5SDV 3064 8167 11 296 11 736 10 251 7625
6 6SDV 7172 19 603 28 028 30 878 29 098 23 950
7 7SDV 13 808 38 369 56 239 64 626 64 425 57 154

{1s22s22p2; 1s22s22p3p; 1s22s22p4p; 7 7SDVC 71 635 200 660 294 281 339 943 339 811 303 282
1s22s2p23s; 1s22s22p4f } 7 7SDVCB 71 635 200 660 294 281 339 943 339 811 303 282

{1s22s22p2; 1s22s22p3p; 1s22s22p4p; 7 7SDVCBQ 75 556 211 321 309 751 357 244 356 620 317 640
1s22s2p23s; 1s22s22p4f ; 1s22p4}

Odd
{2s2p3; 2s22p3s; 2s22p3d; 2s22p4s; 2s22p4d; 2s22p5s} DHF 6 16 15 7 2

4 4SDV 1033 2727 3463 3230 2406
5 5SDV 3035 8255 11 231 11 606 9917
6 6SDV 7109 19 682 27 856 30 598 28 473
7 7SDV 13 609 38 147 55 462 63 516 62 654

{1s22s2p3; 1s22s22p3s; 1s22s22p3d; 7 7SDVC 68 459 192 172 280 405 322 427 319 636
1s22s22p4s; 1s22s22p4d; 1s22s22p5s} 7 7SDVCB 68 459 192 172 280 405 322 427 319 636

7 7SDVCBQ 68 459 192 172 280 405 322 427 319 636

Accurate calculations of intercombination transitions of N+
remain a challenge due to the strong influence of electron corre-
lation effects on the transition matrix elements. Two CIV3 cal-
culations of 2s22p3s−2s22pnp (n=3,4) by Bell et al. [18] and
Vaeck et al. [19] show that the correlation of {6s,6p} orbitals
can affect the intercombination rates roughly by a factor of two.
Importance of correlation of {7s,7p,6d-7d,6f -7f,6h-7h,7i}
orbitals for intercombination rates has been also confirmed
[13,20]. In addition, the effects of core-valence (CV) and
core-core (CC) correlations were seldom included in the past,
especially not for calculations of the intercombination rates
from 2s22pnl (n � 3) [18,21–28]. Tayal found the influence
of CV correlation effects for the intercombination rates of N+
is insignificant [28]. But the studies on the influences of com-
bined CV and CC correlations for these rates are considerable
scarce. Tayal reported strong interactions between 2s2p3 1,3P o

1
and 2s22p3s 1,3P o

1 [28], just as Ellis did [12]. However, they
restricted their reference configurations to {2s2p3, 2s22p3s,
2s22p3d} [12,26,28], which neglected some important cor-
relation effects. Accurately calculating the intercombination
rates involving two-electron-one-photon processes is not easy.
For example, those of 2s2p3 3P o−2s22p4p [13], higher-order
correlation effects [29] are enhanced as the rates are identically
zero in the single configuration approximation. The effects of
the Breit interaction are also very important for calculations of
intercombination rates [30]. Illustrative examples are given by
the calculations of the small rates arising from 2s2p3 5So

2 [13].
In all, solving these issues is valuable, even urgent, considering
the fact that accurate experimental intercombination rates are
scarce [10,11,14–17].

II. THEORETICAL METHOD AND
COMPUTATIONAL MODELS

A. Theoretical method

The atomic state wavefunctions (ASFs) can be generated
by using the MCDHF method [31,32]. The ASFs are linear
combinations of configuration state functions (CSFs) with
same parity P , angular momentum J , and its z component MJ :

�(PJMJ ) =
N∑

j=1

cj�(γjPJMJ ). (1)

Here, cj and γj are, respectively, the mixing coefficient and
other appropriate labeling of the CSFs built from products of
one-electron Dirac orbitals. The self-consistent field (SCF)
method was employed to optimize the radial parts of the
Dirac orbitals and the expansion coefficients, and an extended
optimal level (EOL) scheme was further applied to obtain
balanced energies for the studied states. The Breit interaction,

Bij = − 1

2rij

[
�αi · �αj + (�αi · �rij )(�αi · �rij )

r2
ij

]
, (2)

as well as the quantum electrodynamics (QED) effects,
including self-energy and vacuum polarization, were included
in subsequent relativistic configuration interaction (RCI)
calculations [31].

The electric dipole transition rate from an upper state u to
a lower one l can be written [33]

A = 4

3
α

(Eu − El)3

h̄3c2

S

2Ju + 1
, (3)
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TABLE II. The excitation energies (E) with J = 1 in N+, δE , and the energy difference in different correlation models (�E). �ECV&CC

and �EBreit are corresponding to the energy difference of (E7SDVC − E7SDV) and (E7SDVCB − E7SDVC), respectively.

E(cm−1) 100δE �E(cm−1)

Levels Present MCHFa NISTb Present MCHFa �ECV&CC �EBreit

2s22p2 3P1 49 41 49 0.06 16.63 0 −7

2s2p3 3Do
1 92 335 92 655 92 252 0.09 0.44 −544 −25

2s2p3 3P o
1 109 425 109 982 109 217 0.19 0.70 −454 −30

2s22p3s 3P o
1 148 804 149 081 148 940 0.09 0.09 212 −21

2s22p3s 1P o
1 149 101 149 254 149 188 0.06 0.04 152 −43

2s2p3 3So
1 155 685 156 112 155 127 0.36 0.64 −1187 −35

2s22p3p 1P1 164 532 164 649 164 611 0.05 0.02 399 −34

2s22p3p 3D1 166 438 166 586 166 522 0.05 0.04 399 −19

2s2p3 1P o
1 167 621 168 686 166 766 0.51 1.15 −720 −34

2s22p3p 3S1 168 771 169 024 168 892 0.07 0.08 404 −34

2s22p3p 3P1 170 458 170 701 170 608 0.09 0.05 378 −30

2s22p3d 3Do
1 187 197 187 499 187 438 0.13 0.03 209 −34

2s22p3d 3P o
1 188 683 188 977 188 909 0.12 0.04 213 −45

2s22p3d 1P o
1 189 982 190 259 190 120 0.07 0.07 209 −41

2s22p4s 3P o
1 196 364 196 592 0.12 214 −27

2s22p4s 1P o
1 197 651 197 859 0.10 178 −41

2s22p4p 1P1 202 050 202 171 0.06 423 −34

2s22p4p 3D1 202 561 202 714 0.08 420 −22

2s22p4p 3P1 202 969 203 189 0.11 360 −29

2s22p4p 3S1 203 356 203 538 0.09 418 −41

2s2p23s 5P1 205 069 205 598 0.26 −227 −19

2s22p4d 3Do
1 209 969 210 240 0.13 207 −32

2s22p4d 3P o
1 210 479 210 751 0.13 210 −47

2s22p4d 1P o
1 211 129 211 336 0.10 283 −43

2s22p4f D(3/2)1 211 267 211 487 0.10 360 −48

2s22p5s 3P o
1 213 990 214 258 0.13 209 −26

2s22p5s 1P o
1 214 566 214 829 0.12 198 −44

aTayal [28].
bCiting from Ref. [38].

where α, Eu − El (or �E), and S are, respectively, the fine
structure constant, the transition energy, and the line strength.
The line strength can be given in the Babushkin and Coulomb
gauges [34], which in the nonrelativistic limit correspond to the
length and velocity gauges [33,35]. The line strengths in the
Babushkin gauge are to first order independent of the transition
energies �E. More accurate transition rates, which we refer to
as adjusted transition rates Aadj, can be obtained by scaling the
calculated transition rates Acalc with the ratio of the observed
�Eobs and calculated �Ecalc transition energies to compensate
for some of the neglected correlation effects. A similar scaling
can be also done for the weighted oscillator strengths gf .
Denoting the energy ratio by r = �Eobs/�Ecalc=λcalc/λobs we
have A(adj) = r3A(calc) and gf(adj) = rgf(calc) [26]. The above
scaling is only valid in the Babushkin gauge. The impact for A

affected by this scaling correction obviously appear in the case
of extremely small �E (or very large λ) [20]. A biorthogonal
transformation technique is needed so that standard Racah
algebra can be used for evaluating transition matrix elements
between states with different orthonormal orbital sets [36]. The

latest version of the GRASP2K package was used for all the
calculations [37].

B. Computational models

The computational procedures are summarized in Table I.
The multireference configurations (MR) for the odd and
even parity states were taken as {2s2p3, 2s22p3s, 2s22p3d,
2s22p4s, 2s22p4d, 2s22p5s} and {2s22p2, 2s22p3p,
2s22p4p, 2s2p23s, 2s22p4f }, respectively. The orbitals of
these 11 configurations were treated as occupied orbitals.
The CSFs were formed from all configurations that could be
obtained by single (S) and double (D) substitutions of the
occupied orbitals in the MR with orbitals in an active set. The
active sets for the odd and even parity states were extended
layer by layer so as to be able to monitor the convergence,
and systematically enlarged to include orbitals with principal
quantum numbers n = 2 ∼ 7, and orbital quantum numbers
l = 0 ∼ 6 (i.e., angular symmetries s,p,d,f,g,h,i). Here,
except for occupied orbitals others are treated as correlation
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TABLE III. Wavelengths (λ), line strengths (S), weighted oscillator strengths (gf ), and transition rates (A) of some 2s22pnl(n � 3)
intercombination lines of N+. Calc. and Obs. represent the calculated and observed results, respectively. Exp. is experiment. The number in
square bracket represents the power of 10.

A(s−1)

λ(nm) Present CIV3 MCHF Exp.

Lower Upper Calc. Obs.a S gf Bellb Vaeckc Fischerd Ellise Tayalf Musielokg Marh

2s22p2 3P0 2s22p3s 1P o
1 67.069 67.030 1.20[−2] 5.45[−3] 2.69[7] 1.85[7] 3.80[7] 3.50[7]

3P1
1P o

1 67.091 67.051 9.61[−3] 4.36[−3] 2.15[7] 1.51[7] 3.02[7] 2.50[7]
3P2

1P o
1 67.127 67.088 1.13[−2] 5.10[−3] 2.52[7] 1.60[7] 3.68[7] 4.40[7]

1D2
3P o

1 74.997 74.837 1.68[−1] 6.83[−2] 2.71[8] 1.92[8] 3.81[8] 3.74[8]

2s22p3s 3P o
1 2s22p3p 1S0 337.869 340.911 2.67[−1] 2.38[−2] 1.36[7] 9.38[6] 1.85[7] 1.91[7] 2.21[7] 2.36 ± 0.33[7]

3P o
1

1D2 393.989 395.697 1.35[0] 1.04[−1] 8.86[6] 6.02[6] 1.19[7] 1.21[7] 1.50[7] 1.33 ± 0.11[7] 1.29[7]
1P o

1
3P2 466.955 465.583 3.52[−1] 2.30[−2] 1.41[6] 9.58[5] 1.95[6] 1.92[6] 2.40[6] 2.72 ± 0.25[6] 2.2[6]

1P o
1

3P1 468.224 466.851 2.64[−1] 1.72[−2] 1.75[6] 1.25[6] 2.33[6] 2.31[6] 2.84[6] 3.48 ± 0.32[6]
1P o

1
3P0 468.991 467.622 3.21[−1] 2.09[−2] 6.36[6] 4.40[6] 8.64[6] 8.53[6] 1.06[7] 1.16 ± 0.10[7]

1P o
1

3S1 508.394 507.501 3.43[−1] 2.05[−2] 1.77[6] 1.25[6] 2.29[6] 2.43[6] 2.76[6] 2.67 ± 0.21[6] 2.9[6]
1P o

1
3D2 574.718 574.889 1.12[0] 5.90[−2] 2.38[6] 1.65[6] 3.47[6] 3.27[6] 3.59[6] 3.32 ± 0.32[6]

1P o
1

3D1 576.816 576.905 5.29[−1] 2.78[−2] 1.86[6] 1.33[6] 2.53[6] 2.39[6] 2.62[6] 2.29 ± 0.21[6]
3P o

1
1P1 635.801 638.138 1.06[0] 5.05[−2] 2.75[6] 1.95[6] 3.48[6] 3.52[6] 4.45[6] 6.11 ± 0.7[6] 4.9[6]

2s22p2 3P1 2s22p3d 1Do
2 53.518 53.464 1.05[−2] 5.98[−3] 2.79[7] 2.18[7] 2.62[7]

1D2
3Do

2 58.221 58.090 7.13[−3] 3.73[−3] 1.47[7] 1.24[7] 1.38[7]
1D2

3Fo
2 58.527 58.413 1.44[−2] 7.47[−3] 2.92[7] 2.06[7] 2.35[7]

2s22p3p 1P1
3Fo

2 458.821 456.604 4.57[−1] 3.04[−2] 1.94[6] 1.41[6] 1.65[6] 1.9[6]
3D1

1Do
2 488.656 486.152 6.22[−1] 3.88[−2] 2.19[6] 1.61[6] 1.87[6] 1.7[6]

2s2p3 5So
2 2s22p4p 1D2 62.968 63.065 6.38[−1] 3.07[−1] 1.03[9]

2s22p3d 3Fo
2

1P1 636.030 638.608 3.98[−1] 1.89[−2] 1.03[6] 7.86[5]
1Do

2
3D1 638.595 640.092 4.88[−1] 2.31[−2] 1.26[6] 9.48[5]

2s22p4s 3P o
1

1P1 1758.653 1792.577 1.85[0] 3.13[−2] 2.17[5] 1.79[5]
1P o

1
3P1 1880.399 1876.053 6.48[−1] 1.05[−2] 6.62[4] 4.22[4]

1P o
1

3D1 2036.627 2059.550 1.15[0] 1.70[−2] 8.93[4] 8.43[4]

2s22p2 3P0 2s22p4d 1P o
1 47.364 47.318 1.76[−3] 1.13[−3] 1.12[7]

3P1
1Do

2 47.699 47.647 1.17[−2] 7.46[−3] 4.38[7]
1D2

3Do
2 51.405 51.295 4.77[−3] 2.83[−3] 1.43[7]

1D2
3Fo

2 51.548 51.452 2.26[−2] 1.33[−2] 6.73[7]

2s22p4p 3D1
1P o

1 1167.104 1159.818 5.96[−1] 1.56[−2] 2.58[5]
1P1

3Do
2 1258.039 1235.268 9.55[−1] 2.35[−2] 2.05[5]

1P1
3Do

1 1262.703 1239.280 9.91[−1] 2.43[−2] 3.52[5]
1P1

3Fo
2 1349.713 1332.797 1.37[1] 3.12[−1] 2.34[6]

3D1
1Do

2 1401.033 1386.647 1.67[1] 3.65[−1] 2.53[6]

2s22p4p 3D1 2s22p5s 1P o
1 832.971 825.419 6.05[−1] 2.23[−2] 7.27[5]

1P1
3P o

1 837.535 827.331 1.39[0] 5.10[−2] 1.66[6]
3D2

1P o
1 836.337 828.918 4.82[−1] 1.77[−2] 5.71[5]

3P1
1P o

1 862.271 859.095 4.98[−1] 1.76[−2] 5.30[5]

aReference [38].
bReference [18].
cReference [19].
dReference [26].
eReference [12].
fReference [28].
gReference [10].
hReference [11].
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TABLE IV. (a) λ and A of some 2s22p2−2s2p3 intercombination lines. (b) The Branching Ratio (BR) of 2s2p3 5So
2 .

A and BR

λ(nm) MCHF

Tab 2s22p2 2s2p3 Calc. Obs.a Present MCDHFb Fischerc Tayald Exp.

(a) A (s−1)

1 1D2
5So

2 324.181 317.779 9.83[−3] 1.40[−3] 8.95[−4]

2 3P1
5So

2 216.153 213.968 4.02[1] 4.47[1] 5.16[1] 4.70[1]

3 1D2
3Do

1 130.090 129.979 3.21[2] 4.84[2] 5.93[2]

4 3P2
5So

2 216.533 214.345 9.90[1] 1.10[2] 1.27[2] 1.16[2]

5 1S0
3Do

1 168.148 167.889 6.00[2] 3.78[2] 3.62[2]

6 3P2
1P o

1 59.705 60.011 5.34[3] 3.15[4]

7 1D2
3Do

2 130.090 129.981 8.77[2] 7.86[2] 7.33[2]

8 1S0
3P o

1 130.613 130.671 2.36[3] 2.01[3] 2.06[3]

9 3P0
1P o

1 59.658 59.964 1.71[4] 1.02[4]

10 1D2
3P o

1 106.428 106.496 5.68[3] 5.41[3] 5.16[3]

11 1D2
3P o

2 106.432 106.495 3.41[3] 1.93[3] 2.30[3]

12 1S0
3So

1 81.419 81.674 1.23[4] 1.85[4]

13 1D2
3Do

3 130.108 130.004 4.42[3] 4.09[3] 4.14[3]

14 3P2
1Do

2 69.013 69.417 3.10[4] 1.18[5] 4.14[4]

15 3P1
1P o

1 59.676 59.982 1.33[5] 1.70[5]

16 1D2
3So

1 71.317 71.525 1.16[5] 1.06[5]

(b) The BR of Aλ214.345
Aλ213.968

2.462 2.461 2.456 2.462 2.45 ± 0.07e

2.24 ± 0.06f

aReference [38].
bJönsson and Bieroń [39].
cReference [26].
dReference [28].
eBridges et al. [40].
fMusielok et al. [10].

orbitals. For the SCF calculations the 1s2 core is kept closed
and the generated CSF expansions account for valence (V)
correlation. We denoted the computational model above by
nSDV.

The CV and CC correlation effects were accounted for
in RCI calculations [37] by allowing, respectively, S and
D substitutions also from the 1s2 core. The corresponding
computational model applied to the largest orbital set is
denoted 7SDVC. It is known that the Breit interaction is
important for intercombination transitions and this interaction
along with QED effects were also included in RCI for the
largest orbital sets. When including Breit and QED we refer to
the models as 7SDVCB and 7SDVCBQ, respectively. Note
that for the even states in Table I, adding {2p4} into the
MR in the nSDV(n = 4 ∼ 7) models does not increase the
number of CSFs; all CSFs obtained by SD substitutions from
{2p4} are also obtained by SD substitutions from {2s22p2}.
Things differ when opening 1s2. Adding {1s22p4} to the
MR for the 7SDVCBQ model increases the number of CSFs
compared to the 7SDVCB model. Thus, the 7SDVCB and
7SDVCBQ models differ in both the MR and the interactions
included. Since the QED effects are minor we may think of
the differences in computed properties, to be discussed in the

coming sections, mainly in terms of the extended MR for the
latter model. Once the ASFs have been obtained, the atomic
parameters such as S and A can be calculated.

III. RESULTS

Some excitation energies (E) with the J = 1 in N+ as
well as their relative differences with the experimental work
(δE=|EThis−ENIST|

ENIST
) [38] are listed in Table II. The δE are

controlled within 0.13% except for 2s2p3 3P o
1 (0.19%), 3So

1

(0.36%), 1P o
1 (0.51%), and 2s2p23s 5P1 (0.26%). This signifies

that our excitation energies are highly accurate and represent
an improvement compared to Tayal’s results [28]. The uncer-
tainties of the rest of the states, i.e., the odd states of the {2s2p3,
2s22p3s, 2s22p3d, 2s22p4s, 2s22p4d, 2s22p5s} configura-
tions and the even states of the {2s22p2, 2s22p3p, 2s22p4p,
2s2p23s, 2s22p4f } configurations, are further estimated
within 0.13%, except for three states in 2s22p2 [3P2 (0.67%),
1D2 (0.97%), 1S0 (0.53%)]; four states in 2s2p3 [5So

2 (1.01%),
3P o

2,0 (0.19%), 1Do
2 (0.58%)]; one state in 2s2p23s [5P3(0.26%)]

and two states in 2s22p4p [1D3(0.26%),1S0(0.29%)].
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Accurate wavelengths (λ), line strengths(S), weighted
oscillator strengths (gf ) and A in Babushkin (length) gauge
of some relatively strong intercombination lines, arising from
2s22pnl (n � 3), are listed in Table III. Some other theoretical
and experimental results are also listed using for comparison.
Researchers often focus on that of 2s22p3s−2s22p3p and
2s22p3p−2s22p3d [10,11] as they are in visible region.
Strong ultraviolet and infrared lines can be as character-
istic lines, e.g., an exceptionally strong λ74.84 nm [12],
λ1386.647 nm, etc. In diagnosing emission spectra of the earth
and Titan, Tripp predicted the basic collision and radiative
properties of N+, and gave radiative cooling coefficient [1].
However, their adopted data differ markedly from ours, e.g.,
the rate of λ74.837 nm 4.8 × 108 s−1 is nearly two times
larger than our 2.71 × 108 s−1. Ahmed and Sigut performed
abundance studies using the Opacity Project data that are from
non-relativistic calculations [8,41], and their diagnose would
benefit from improved fully relativistic data.

The intercombination rates of 2s22p2−2s2p3 as well as the
Branching Ratio (BR) Aλ214.345

Aλ213.968
are listed in Table IV, along with

other theoretical and experimental results. The intercombina-
tion data of 2s22p2−2s2p3, especially for that of the extremely
weak lines of 2s2p3 5So

2 [λ213.968 nm, λ214.345 nm, and
λ317.779 nm are also illustrated in Figs. 2(a)–2(c) below],
have interesting applications in diagnosing T e and Ne of
the Orion Nebula [1–3,7,8,13]. Musielok’s experimental BR
Aλ214.345
Aλ213.968

of 2s2p3 5So
2 disagrees with others by about 9% [10]. It

would be better if the experiment is improved. For a detailed
discussion about the lines of 5So

2 , their A, lifetimes, BR,
applications, etc.; see Ref. [13].

IV. DISCUSSIONS

A. Electron correlation

Tayal examined the importance of CV correlation by ex-
citing one core 1s electron and one valence electron to other
spectroscopic and correlation orbitals and found the effect to
be small [28]. But things differ when CV is combined with
CC correlations. Their effects can be reflected by the energy
difference of E7SDVC-E7SDV (�ECV&CC). Table II shows that
these correlations change most energies by 200 cm−1 [13],
except for 2s2p3 whose energies are changed from −450 cm−1

to −1187 cm−1. Tayal has also examined the importance
of CV correlation effects for the intercombination rates and
found these to be insignificant [28]. However, important effects
emerge if CV is included along with CC correlation. These
effects and Breit interaction can be reflected using the changing
tendency of rates in different models, i.e., |AX−A(X−1)|

A(X−1)
, where X

is 7SDV, 7SDVC, 7SDVCB, 7SDVCBQ; (X − 1) corresponds
to 6SDV, 7SDV, 7SDVC, 7SDVCB. We illustrated them in
Fig. 1, where three lines of 2s22pns 3P o

1 (n = 3,4,5) are
selected. It is seen from the |A7SDVC−A7SDV|

A7SDV
that CV and CC

correlation effects change the A of a transition of lower
excited states 2s22p2 1D2−2s22p3s 3P o

1 by 48.93%. These
effects will gradually weaken for the A of the transitions of
some highly excited states, 2s22p3p 1P1−2s22p4s 3P o

1 and
2s22p4p 1P1−2s22p5s 3P o

1 , and become insignificant for the
latter A.

FIG. 1. The effects of combined CV and CC correlations as well
as the Breit interaction on the intercombination rates. Y axis is the
changing tendency of transition rates in different correlation models,
i.e., |AX−A(X−1)|

A(X−1)
, where X is 7SDV, 7SDVC, 7SDVCB, 7SDVCBQ;

(X − 1) corresponds to 6SDV, 7SDV, 7SDVC, 7SDVCB.

There is a strong interaction between 2s2p3 1,3P o
1 and

2s22p3s 1,3P o
1 along with a strong spin-orbit mixing between

the states 3P o
1 and 1P o

1 of 2s22p3s [12,28]; see Table II. These
make the levels sensitive to some remaining correlation effects
[12,26,28]. In our calculation these are included through an
extended MR {2s2p3, 2s22p3s, 2s22p3d, 2s22p4s, 2s22p4d,
2s22p5s}. This should be compared to the smaller MR
{2s22p3s, 2s2p3} and {2s22p3s, 2s2p3, 2s22p3d} of Ellis
[12] and Tayal [28], respectively. A careful inspection shows
that the extended MR gives rise to several CSFs with compar-
atively large mixing coefficients.

B. Breit interaction

The effect of Breit interaction is small for excitation
energies, see the �EBreit (or E7SDVCB-E7SDVC) in Table II.
Intercombination rate is exception. It can be shown from the
|A7SDVCB−A7SDVC|

A7SDVC
in Fig. 1 that Breit interaction affects the A of

2s22p2 1D2−2s22p3s 3P o
1 by about 18%. For the transitions

of some highly excited states the change is even larger. These
large changes are in accordance with results for other near
neutral systems. The underlying reason is the large cancellation
effects for the transition matrix elements. Even small changes
in the mixing coefficients for the CSFs due to the inclusion
of the Breit interaction may have large effect. The situation is
analyzed in detail by Ref. [30].

C. Intercombination transition rates

For the intercombination rates of 2s22pnl(n � 3), Vaeck
pointed out [10,19] large discrepancies arise from intercom-
bination rates of 2s22p3s−2s22p3p both in calculations and
experiments. Table V(a) presents a obvious example by the
rates of 2s22p3s 3P o

1 −2s22p3p 1P o
1 . It is even more interest-

ing to compare the calculated rates in intercombination and
allowed cases. Both using CIV3, Vaeck mentioned that their
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TABLE V. (a) The A of some 2s22p3s−2s22p3p E1 lines as well as (b) their Branching Ratio (BR). (c) The uncertainties of intercombination
rates (100δA) of 2s22pns−2s22pnp (n = 3, 4). All the data of part (c) are listed according to the order from small gf to large one.

λ and gf CIV3 MCHF

Lower Upper λObs.
a (nm) This-gf Present Bellb Vaeckc Tayald Fischere Exp.

2s22p3s 2s22p3p (a) A (s−1)
3P o

1
1P1 638.138 5.05[−2] 2.75[6] 1.95[6] 3.48[6] 4.45[6] 3.52[6] 4.9[6]f

6.11 ± 0.7[6]g;
1P o

1
1P1 648.384 5.23[−1] 2.76[7] 2.86[7] 2.69[7] 2.58[7] 3.33[7]f

(b) the BR of Aintercombination
Aallowed

(or Aλ638.138
Aλ648.384

)

0.10 0.07 0.13 0.14 0.15f

2s22p3s 2s22p3p (c) Uncertainties (100δA)
3P o

0
1P1 636.855 1.65[−4] 5.06 0.20

1P o
1

3P1 466.851 1.72[−2] 5.61 3.93 2.02 14.73
1P o

1
3S1 507.501 2.05[−2] 2.06 9.66 8.77 6.20

1P o
1

3P0 467.622 2.09[−2] 5.74 4.39 2.34 16.32
1P o

1
3P2 465.583 2.30[−2] 6.35 6.82 4.15 17.42

3P o
1

1S0 340.911 2.38[−2] 3.77 3.29 1.24 1.40
1P o

1
3D1 576.905 2.78[−2] 4.52 4.74 11.64 4.20

3P o
1

1P1 638.138 5.05[−2] 5.19 6.58 8.81 6.54
1P o

1
3D2 574.889 5.90[−2] 4.30 5.28 10.74 4.30

3P o
1

1D2 395.697 1.04[−1] 4.13 13.26 14.84 0.33

2s22p4s 2s22p4p

3P o
2

1P1 1831.807 3.10[−4] 25.12
1P o

1
3P0 1885.444 7.42[−4] 23.31 43.10

3P o
1

1S0 969.164 9.32[−4] 18.66 16.30
3P o

0
1P1 1776.073 1.32[−3] 2.49 6.68

1P o
1

3D2 2038.084 2.20[−3] 7.98 43.66
1P o

1
3S1 1760.883 4.00[−3] 6.92 15.38

1P o
1

3P1 1876.053 1.05[−2] 0.14 15.68
1P o

1
3D1 2059.550 1.70[−2] 3.63 9.45

3P o
1

1P1 1792.577 3.13[−2] 3.90 14.77

aReference [38].
bReference [18].
cReference [19].
dTayal [28].
eFischer and Tachiev [26].
fMar et al. [11].
gMusielok et al. [10].

allowed rates of 2s22p3s−2s22pnp (n = 3, 4) agree well with
the ones of Bell’s [18,19]. However, Vaeck’s intercombination
rates become about a factor two larger than that of Bell [18],
only due to Vaeck’s addition of {6s,6p} orbitals to the original
{1s-5s,2p-5p,3d-5d,4f } orbital set of Bell. These can be also
reflected by the BR of intercombination and allowed rates in
Table V(b); e.g., Vaeck’s Aλ638.138

Aλ648.384
is nearly two times larger

than that of Bell. As mentioned in Sec. IV A, there is a strong
spin-orbit mixing between the states 3P o

1 and 1P o
1 of 2s22p3s

[12,28]. It causes the intercombination rates on its states 1,3P o
1

are exceedingly sensitive to electron correlations and other
corrections. Under this case large discrepancies are produced in

calculations [12,18,19,26,28], e.g., the intercombination rates
of 2s22p2−2s22p3s 1,3P o

1 and 2s22p3s 1,3P o
1 −2s22p3p in

Table V(a) and III. To estimate these theoretical uncertainties of
the rates δA, we use the differences δS in line strength in length
and velocity gauge and transition energy δE as suggested by
Refs. [33,42],

δA = δE + δS, (4)

where

δE = |Ecalc − Eexp|
max(Ecalc,Eexp)

, δS = |Slen − Svel|
max(Slen,Svel)

. (5)
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FIG. 2. (a) The uncertainties (100δA) of intercombination A of
2s22p2−2s2p3 of N+. (b) The rate ratio Aother

Athis
. (c) The assessments of

the influences of some higher-order correlations. The tab “1,2, …,16”
from left to right in (a, b, c) indicates 16 lines of 2s22p2−2s2p3 listed
in Table IV(a).

Table V(c) indicates our δA of 2s22pns−2s22pnp(n = 3,4) in
gf > 0.01 case are better than others within 6.35% [18,19,28].
The rest δA of 2s22p3l (l = s,p,d), 2s22p4l (l = s,p,d)
and 2s22p5s in gf > 0.01 case are estimated by 7%, 12%,
and 20%, respectively. The main reason of discrepancies is
that cancellation effects in the transition matrix element make
results very sensitive to both electron correlation and the Breit
interaction [30]. In addition, other reasons are due to neglect
of terms in the transition operator for the velocity gauge in
non-relativistic calculations with Breit-Pauli corrections [26]
and the neglect of contributions from the negative energy
continuum for fully relativistic relativistic calculations using
MCDHF [43,44]. Considering the stability and convergence
in the Babushkin (length) gauge, this is the recommended
gauge for transition data. Reseeing Table V(a), since two
experimental results have large discrepancies to each other
[10,11], even obviously are larger than other calculations, it
would be better if they are improved.

The δA of intercombination rates of 2s22p2−2s2p3 are
illustrated in Figs. 2(a) and 2(b). Jönsson and Bieroń have
performed the rate calculations of 2s22p2−2s2p3, in which
SD electrons were separately excited from {2s22p2, 2p4}
and {2s2p3} to {n = 3,..., 8; l = s,p,d,f,g,h}. Some other
correlation effects were further added in RCI calculations,
where the MR for the terms of 2s22p2 and 2s2p3 were sepa-

rately enlarged to include {2s22p2, 2p4, 2s2p23d, 2s23d2}
and {2s2p3, 2p33d, 2s22p3d, 2s2p3d2} [39]. The figure
shows that the results of Jönsson [39], Fischer [26], and ours
are in good agreement in cases 10−6 < gf < 0.01, e.g., in
Fig. 2(a) mostly δA < 40%, and most rate ratios in Fig. 2(b)
are within 1 ± 0.5. However, discrepancies become large for
the extremely weak cases gf < 10−6, e.g., in Fig. 2(a) the δA of
λ317.779 nm. This signifies that present models capture more
correlation effects that are important for the rates. Because the
rates are tiny at 102 s−1, some higher-order correlation effects
become significant [13,29]. To estimate them we compute
100(A4SDTQV−A4SDV)

A4SDV
% where A4SDV are the rates of the 4SDV

model and A4SDVTQ are the rates of a model where also
triple (T) and quadruple (Q) substitutions are allowed to the
{2s-4s,2p-4p,3d-4d,4f } active set. Figure 2(c) displays that
these higher-order correlation effects are controlled to within
15%, except for that of λ71.525 nm (Tab-16) by about 20%
for both S and A.

V. CONCLUSIONS

We show that CV and CC correlation effects are important
for accurate predictions of energy levels and intercombination
rates of N+. A strong spin-orbit mixing appears between
the states 3P o

1 and 1P o
1 of 2s22p3s. It causes the intercom-

bination rates on its states 1,3P o
1 to be exceedingly sensitive

to electron correlations and other corrections, e.g., that of
2s22p2−2s22p3s 1,3P o

1 and 2s22p3s 1,3P o
1 −2s22p3p. It is

also found that the present models give rise to several CSFs
with comparatively large mixing coefficients for the energy cal-
culations of 2s22p3s by extending the MR. Using a systematic
procedure with increasing active orbital spaces, comparisons
of the rates in length and velocity gauges and estimations of
remaining correlation effects, it is possible to estimate the
uncertainties. The uncertainties of intercombination rates of
relatively strong lines (gf > 0.01) of 2s22p3l(l = s,p,d),
2s22p4l(l = s,p,d), and 2s22p5s are separately estimated
within 7%, 12%, and 20%. The strong intercombination
lines in the visible region arise from 2s22p3s−2s22p3p and
2s22p3p−2s22p3d. The present data, including that of strong
infrared and ultraviolet intercombination lines, have potential
applications in the diagnosis of radiative cooling coefficient,
abundance, etc. The extremely weak transitions (gf < 10−6)
are difficult to accurately calculate, but are of interests in the
temperature and density diagnostic in nebulae. The present
model have included appropriate electron correlations to deal
with them and provide guidance for future studies.
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