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Structure of LiPs ground and excited states
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The lithium atom in its ground state can bind positronium (Ps) forming LiPs, an electronically stable system. In
this study we use the fixed node diffusion Monte Carlo method to perform a detailed investigation of the internal
structure of LiPs, establishing to what extent it could be described by smaller interacting subsystems. To study the
internal structure of positronic systems we propose a way to analyze the particle distribution functions: We first
order the particle-nucleus distances, from the closest to the farthest. We then bin the ordered distances obtaining,
for LiPs, five distribution functions that we call sorted distribution functions. We used them to show that Ps is a
quite well-defined entity inside LiPs: The positron is forming positronium not only when it is far away from the
nucleus, but also when it is in the same region of space occupied by the 2s electrons. Hence, it is not correct to
describe LiPs as positronium “orbiting” around a lithium atom, as sometimes has been done, since the positron
penetrates the electronic distribution and can be found close to the nucleus.

DOI: 10.1103/PhysRevA.97.012508

I. INTRODUCTION

With the recent development of positron sources, there
has been a renewed interest in the theoretical description of
the interaction between positrons and atomic and molecular
systems to form bound states, a field where theory is still ahead
of the experiments [1–5].

The ability of positronium (Ps), a system composed of an
electron and a positron, to attach to atoms has been known
for a long time, starting with the pioneering calculation by
Ore [6] which showed that Ps can attach to a hydrogen atom
forming an electronically stable system: positronium hydride
(PsH). Starting from the 1970s many researchers explored,
with contrasting results, the possibility that a positron or
positronium could attach to various atoms and molecules.
Helium in its ground state is not able to bind either a positron or
positronium. It took almost half a century after the theoretical
prediction of the existence of PsH, to show that lithium can bind
a positron, to form e+Li [7], and even Ps to form LiPs, although
neither of them has been so far experimentally detected.

Various theoretical calculations showed that at least 11 neu-
tral atoms are capable of binding positronium in their ground
state [2,8], although an experimental confirmation is still
lacking for almost all of them. In contrast very little is known on
the excited states of these complexes [8,9]. This is unfortunate
since the existence of excited states of positronic compounds
could provide a path to the experimental observation of these
systems, similarly to what happened with the experimental
observation of the dipositronium molecule [10] that exploited
the existence of an excited state. Furthermore most theoretical
investigations were aimed at computing energetic properties as
accurately as possible, while the description of their internal
structure, and in particular the detailed behavior of the positron
in the electronic environment, has been only superficially
explored, with the possible exception of PsH [11–13]. There is
no consensus yet on the nomenclature of positronic compounds
and this is a reflection of the fact that more studies are needed
to better understand the internal structure of these systems.

For example, positronic lithium, e+Li, could well be named
PsLi+: The name should reflect, if possible, the real electronic
and positronic distribution, which in this case seems to be
better described as a Li+ core interacting with a Ps system.
Analogously the system formed by attaching Ps to lithium is
generally described as LiPs, but a priori alternatives could be
e+Li− and even Ps−Li+. Although choosing an appropriate
descriptive name, representing the real physical nature of the
system, is to some extent only a matter of convention, we
need to understand more deeply to what degree (and how) a
positronic system can be considered “composed” by different
interacting subsystems. This is of practical importance since
in some cases it seems possible to describe Ps as an effective
particle and develop effective potentials to model its interaction
with the rest of the system [14–16]. This approach could then
be used to model the interaction of Ps in cases where a full
many-body calculation is not feasible.

In this work, we studied the interaction between Ps and
the ground and a few excited states of lithium atom. We also
performed a detailed investigation of the internal structure
of these systems, establishing to what extent they could be
described by smaller interacting subsystems.

The first dissociation channel for LiPs is the breakup into
Li and Ps, with threshold energy of −7.728 04 hartrees. The
dissociation into Li− and e+ is higher in energy, with a
threshold of −7.500 76 hartrees. The possibility that lithium
could bind Ps was explored by Saito [17] using second-
order variational perturbation theory but he was unable to see
any binding. Subsequently two studies were published, both
employing the fixed node diffusion Monte Carlo (FN-DMC)
method, further investigating the possible binding. Harju and
co-workers [18] predicted LiPs to be unbound. On the contrary,
Yoshida and Miyako [19] reported a rather large binding energy
of 0.028(5) hartree. These conflicting early results using the
same computational method can probably be explained by a
lack of convergence of those early Monte Carlo simulations,
since both would be considered too short by today’s standards.
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The first to resolve the matter and rigorously prove that the
lithium atom in its ground state can bind positronium were
Ryzhikh and Mitroy in 1998 [20]. They performed the first
large variational calculation of the LiPs system using explicitly
correlated Gaussians (ECGs) within the stochastic variational
method (SVM) as implemented by Varga and Suzuki [21,22].
They reported a total energy of −7.738 55 hartrees with a
binding energy (B.E.) of 0.010 51 hartree. Of course, the LiPs
system is stable only from the chemical point of view, since
its total energy is below the sum of the fragments, but it is not
stable against electron-positron annihilation. Later in the same
year Bressanini and co-workers [23] published a statistically
reliable FN-DMC simulation of that system, confirming the
results of Ryzhikh and Mitroy, with a similar binding energy
of 0.0096(8) hartree, showing that the FN-DMC method was
indeed able to accurately describe the system, despite the early
failures.

Ryzhikh et al. [24] made a first attempt to elucidate the
structure of LiPs by plotting the probability of finding an
electron or a positron as a function of the distance from
the nucleus. They observed that the electronic and positronic
probability densities have a similar decay, tending to merge
at large distances from the nucleus. The authors suggested
that it was a reflection of the fact that dissociation into Li+Ps
(and not Li− + e+) is the breakup process requiring the least
energy. In other words, this was a strong suggestion, although
not a rigorous proof, that in LiPs the positron could form a
Ps system far from the nucleus. The preferred dissociation
channel, however, does not necessarily dictate what happens
to the positron when it is closer to the nucleus. As an example,
consider the LiH molecule: It dissociates into Li+H but at
the equilibrium distance the system is better described as H−
interacting with Li+.

In 2001, using a larger basis, Mitroy and Ryzhikh [25]
improved the energy (−7.740 208 hartrees) and the binding
energy (0.012 148 hartree) but no further attempts to elucidate
the structure were made. In the largest, to date, published
calculation on LiPs [26], Mitroy using 2200 ECGs slightly
improved the total energy (−7.740 431 6 hartrees) and the
binding energy (0.012 371 hartree) but no new insight was
gained on the structure of this system. In particular, the
possible existence of a well-defined Ps subsystem, far from
the dissociation region, has not been investigated.

Since LiPs can be formally built by adding a positron to
Li−, in this work we investigate the possibility of Li− excited
states to form LiPs in an excited state, analogously to what has
been done for the lithium atom [9].

We also study the only LiPs excited state known: the
2,4So state, found by Bromley and co-workers [27]. Bromley
and co-workers, using the ECG-SVM method, obtained a
total energy of −7.472 871 hartrees, proving that the system
is bound with a binding energy of 0.000 215 hartree. They
recognized, however, that the employed basis set was not
large enough, and to give an estimate of the binding energy
they resorted to the Configuration Interaction (CI) method
with a frozen core approximation. The slow convergence of
the CI method when applied to positronic systems is well
known, and it was necessary to use a very large basis set to
see the system bound, with a B.E. of 0.000 072 78 hartree.
Extrapolating to a complete basis set they estimated the B.E.

to be 0.000 441 hartree which, however, being the result of
a frozen core approximation followed by an extrapolation,
needs to be independently confirmed by a fully variational
calculation. Furthermore a detailed analysis of the structure
of this state has never been performed.

II. COMPUTATIONAL METHODS

The aim of this study was to elucidate the internal structure
of these systems. We used the explicitly correlated functional
form used by Bressanini and Morosi [13,28,29] for its com-
pactness and flexibility to describe the wave function of Li, Li−,
and LiPs in their ground and various excited states. This type of
wave function has been successfully employed in establishing
that a positron can attach to an excited state of lithium [9].

The wave functions employed in this work include all
particle-particle correlations:

� = Â

⎡
⎣Ô

∏
i=1

ϕi(Ri)
∏
i<j

gij (rij )

⎤
⎦, (1)

where Â is the antisymmetrizer operator and Ô is an operator
used to fix the rotational symmetry, when needed. Ri are
the space coordinates of particle i while rij is the distance
between particles i and j . Each particle occupies its own orbital
ϕi centered on the nucleus and the correlation between each
pair of particles is described by a different function gij . This
functional form has already been used with success in the past
to describe PsH in a very compact form [13].

Since the purpose of this study was to perform an explo-
ration of the possible Ps-lithium binding we described the
ϕi(Ri) orbitals in a very compact way with no attempt to get
the best possible form:

1s = e
−Z r+br2

1+r 2s = (r − c)e
ar+br2

1+r 2pz = z e
ar+br2

1+r . (2)

We employed a Jastrow factor to describe the correlation
functions gij . Previous studies [28,29] showed that using this
kind of functions it is possible to develop very compact, but
nevertheless accurate wave functions for few-electron systems.
The variational parameters are allowed to be different in the
three orbitals.

We used the variational Monte Carlo (VMC) technique [30]
to estimate the variational energy. The parameters were first
roughly optimized by minimizing the mean absolute deviation
of the local energy [31], a robust variant of the more common
variance optimization, and then fine-tuned with an energy
optimization procedure. The resulting wave functions have
been employed in FN-DMC simulations to obtain an upper
bound to the exact energy. The FN-DMC energies have been
estimated using 5000 walkers. The time step bias has been
eliminated by extrapolating to zero time step.

The estimation of the various average distances and prob-
ability distributions has been done using the second-order
estimator (SOE) whose error is second order with respect to
the error in the trial wave function. There are more advanced
algorithms available in the literature to estimate the exact
expectation values of a generic operator, but we found this
simple estimate to be accurate enough for the purposes of
investigating structural properties.
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TABLE I. VMC, FN-DMC, and estimated NRL energies (in
hartrees) of the various states of Li− considered in this work.

Li− states VMC energy FN-DMC NRL

1s2 2s2 1S –7.49802(3) –7.5006(1) –7.500776a

1s 2s 2p2 5Se –5.38221(3) –5.3851(1) –5.386603b

1s 2p3 5So –5.25490(1) –5.2559(1) –5.256107b

aReference [39].
bReference [40].

The lithium atom can form only three stable anions:
1s2 2s2 1S,1s 2s 2p2 5P e and 1s 2p3 5So. Since LiPs is formally
composed by Li− and e+, and the 1s2 2s2 1S state is known to
form the ground state of LiPs, we investigated if the two stable
excited states of Li− could form an excited state of LiPs.

In the calculations discussed here, the spin of the positron
and its coupling with the electrons is irrelevant.

III. RESULTS AND DISCUSSION

A. Energetics

Table I shows the VMC and FN-DMC energies obtained
for the ground and excited states of the lithium negative ion,
along with the best available estimate of the nonrelativistic
limit (NRL) truncated to six decimal digits. The error bars of
the VMC and FN-DMC energies are shown in parentheses.

The quality of the nodal structure of the wave function
is crucial when computing the FN-DMC energy. Since the
attached positron does not exchange with the electrons we
expect the nodal structure of the positronic system to give
roughly equally accurate results, which should guarantee an
accurate estimation of the binding energy. Table II shows the
FN-DMC results for a positron attached to the three stable
lithium anions, together with the 2,4So state of LiPs.

With our simple wave function the estimate of the LiPs
binding energy is 0.011 87(6) hartree, that compares well with
the almost exact 0.012 37 estimated by Mitroy [26].

To form the 2,4So state of LiPs the positron can be considered
in a 2p+ orbital and two electrons of like spin in two 2p

orbitals. Taking into account only the electronic configuration,
the system corresponds to Li− (3P e) with an attached positron.
However, the Li− (3P e) state is unbound. For this reason Brom-
ley and co-workers [27] described the 2,4So state as Borromean,

since considered as a four-body system (Li+,e−, e−,e+) it has
no stable three-body state of the correct symmetry that can
act as a parent. Considered as a many-body system, however,
it is not truly Borromean since it can be formed by binding
Li (1s2 2p2P o) and Ps(2p), with a dissociation threshold of
−7.472 656 hartree.

Our FN-DMC simulation succeeded in finding the system
bound with a binding energy of 0.000 46(2) hartree. Since our
calculation is variational, and the binding energy was computed
against the exact threshold energy, this is a rigorous lower
bound to the binding energy, within the level of statistical
accuracy. The Configuration Interaction – Frozen Core (CI-FC)
extrapolated estimate of Bromley and co-workers [27] agrees
quite well with our result.

We extensively optimized the wave functions for the 4,6So

and 4,6P e states, but the variational energies were always
above the dissociation threshold. When we used these wave
functions in subsequent FN-DMC simulations, we observed a
dissociation of the systems, with Ps going away, and the energy
converging to the dissociation limit.

The energy computed with the FN-DMC method is an upper
bound to the exact energy, and it depends on the quality of the
node of the trial wave function that can be different from the
exact nodes [29,32–37]. For this reason, we cannot completely
rule out the possibility that a more sophisticated wave function,
with different nodes, would give a bound state. However, we
consider this possibility very unlikely since the employed wave
function seems capable of describing the lithium atom, its
anion, and two states of LiPs with high accuracy, and the
presence of the positron should not significantly modify the
nodal structure.

B. Structure

It is commonly believed that a positronic compound of the
kind [e+,A−] can be qualitatively understood as lying some-
where between two limiting cases: e+A−, where a positron is
attached to an unperturbed A negative ion, and APs (or PsA,
there is no consensus yet on the nomenclature), where the wave
function describes Ps orbiting around the A neutral atom. In
order to give firm ground to this intuitive idea, and describe in a
semiquantitative nonarbitrary way the relationship between the
real system and the two limiting cases, we must resort to some
sort of mathematical description of the different fragments.

TABLE II. LiPs ground and excited states FN-DMC total energies and binding energies (B.E.). We report also the corresponding lowest
dissociation channel, with its threshold energy. All energies are in hartrees.

LiPs state Lowest dissociation channel Threshold energy FN-DMC energy B.E.

1s2 2s2 1s+ 2S Li (2S) + Ps (1s) –7.728060 –7.73994(6) 0.01187(6)
–7.7404316a 0.01237a

–7.73898b 0.011011b

1s 2p3 1s+ 4,6So Li (4P e) + Ps (1s) –5.495409 Dissociate
1s 2s 2p2 1s+ 4,6P e Li (4P o) + Ps (1s) –5.618010 Dissociate
1s2 2p2 2p+ 2,4So Li (2P o) + Ps (2p) –7.472871 –7.47312(2) 0.00046(2)

0.000441c

aReference [26].
bReference [14].
cReference [27].
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TABLE III. VMC energies of LiPs trial wave functions built using
different fragments.

LiPs ground-state fragment Energy (hartrees)

�(Li−)�(e+)f (Li−,e+) VMC −7.7226(1)
�(Li)�(Ps)f (Li,Ps) VMC −7.73429(3)
Threshold Li+Ps −7.728060

There are at least two conceptually simple ways to compare
the real physical system with the two limiting cases. The first is
to analyze the wave function to see if it somehow “contains” the
fragments, and to which extent they are perturbed. The second
is to analyze the electronic and positronic densities. These two
approaches are, obviously, intertwined in a nontrivial way, and
give two different but complementary pictures of the system
under study.

To give an illustrative example consider a generic 1s ns1S

state of the helium atom. When n = 1 we have the ground
state, whose wave function cannot be accurately approximated
by a simple product of two He+ 1s wave functions, and
the ground state of helium must be considered an entity of
its own. However, as n is increased, the exact wave func-
tion can be well approximated by the symmetrized product
Â�(He+(1s))�(He+(ns)) multiplied by a function f describ-
ing the interaction between the two electrons. The simple
product must be properly symmetrized since the electrons are
indistinguishable.

The second way to study the structure of the 1s ns1S of the
helium atom is to examine the electronic density which, again,
can be related and compared to the electronic densities of the
1s and ns orbitals. Of course, with more particles involved
it becomes more difficult, in practice, to analyze the wave
functions and the densities.

Let us now analyze the structure of the ground state of
LiPs. Following the above discussion, we constructed two
different wave functions using, as building blocks, the wave
functions of the possible fragments. We used the forms
�(Li−)�(e+)f (Li−,e+) and �(Li)�(Ps)f (Li, Ps), properly
antisymmetrized, to describe LiPs. The wave functions of
the lithium atom, its anion, and Ps have been kept fixed,
while the function �(e+) and the two f functions describing
the interaction between fragments have been optimized using
VMC. These functions have been, again, constructed using
products of the basis functions in Eq. (2). Table III shows the
corresponding variational energies estimated using VMC. The
first wave function, where we “forced” the structure of Li−
into the wave function, gives a quite poor description of the
LiPs system. The energy is so poor, despite all the variational
freedom given by the interaction function f , that it is even
considerably higher than the dissociation threshold, suggesting
that the contribution of this limit structure is negligible. On the
other hand, the wave function of the form �(Li)�(Ps)f (Li,Ps)
is not only able to bind Ps to Li, but, remarkably, when we
relaxed the variational parameters in the wave functions of the
fragments, we could not improve the variational energy despite
the additional variational freedom. This means that this wave
function is the best functional form where all two-body correla-
tions are taken into account, and this is a strong sign of the fact

FIG. 1. Electron-nucleus (solid blue) and positron-nucleus
(dashed red) distribution functions, in arbitrary units, for the ground
state of LiPs. The dotted blue line is the electronic distribution of Li−.

that describing LiPs as being composed of interacting Li and
Ps is correct and not arbitrary. Since this was the best possible
variational wave function we could construct, without includ-
ing three- and higher-body effects, we used it in the FN-DMC
simulations. We already saw that the FN-DMC energy of this
wave function, shown in Table II, is very close to the estimated
exact energy. In summary, the structure of the wave function
strongly suggests that the LiPs picture is the correct one.

We now analyze the electronic and positronic density. The
positron, on average, is at 6.5 bohrs from the nucleus while the
average electron-nucleus distance is 2.9 bohrs and the aver-
age electron-positron distance is 5.7 bohrs. The average dis-
tances, however, are not very useful to get a clear insight of
the structure since the particle-particle probability distribution
functions are rather broad. For this reason we also computed
the radial probability distribution functions of all the particles.

Figure 1 shows the electron-nucleus and positron-nucleus
distribution functions for the ground state of LiPs, i.e., the
probability to find the particle at a given distance from the nu-
cleus. We also plot the electronic distribution of Li−.
The electronic and positronic curves are normalized, respec-
tively, to 4 and 1. The size of the bins is 0.1 bohr. This plot
agrees well with the one computed by Ryzhikh and co-workers
[24].

The curve of the electrons, clipped close to the nucleus,
shows the well-known shell structure, with the two 1s electrons
tightly bound and the two more diffuse 2s electrons. The
picture clearly shows that, passing from Li− to LiPs, the
electronic distribution of the first shell is unchanged. The sec-
ond shell, however, is slightly different so the total electronic
distribution of LiPs is not that of Li−. This is consistent with the
previously discussed finding that the wave function does not
“contain” Li−.

The positronic distribution is rather broad, confirming that
geometrical properties cannot be discussed using the aver-
age distances only. In the distinguishable picture model the
positron is moving in the same region of space around the nu-
cleus where it is possible to find the two 2s electrons. Observing
that at distances greater than about 8 bohrs the positronic curve
superimposes to the electronic curve, Ryzhikh and co-workers
[24] suggested the formation of Ps when the positron is far
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FIG. 2. Contour plot of P(re,rp): the probability of finding an
electron at distance re from the nucleus and the positron at distance
rp from the nucleus. Distances are in bohrs.

away from the nucleus. Here we further analyze this observa-
tion to substantiate this intuition in a more rigorous way.

To get a better insight on the structure of the system we
computed several two-dimensional probability distributions.
Figure 2 shows the contour plot of P(re,rp): the probability
of finding an electron at distance re from the nucleus and the
positron at distance rp from the nucleus.

The (clipped in the plot) structure on the left side of Fig. 2
represents the positron distribution corresponding to the region
where two electrons, that we identify as the 1s electrons in the
distinguishable picture model, stay close to the nucleus. The
meaning of such a vertical elongated hill is that the electronic
distribution in that region, from 0 to 2 bohrs, is practically
not affected by the position of the positron. The maximum is
located at approximately re = 0.4 bohr and rp = 5.6 bohrs. In
fact we already saw in Fig. 1 that the positron preferably stays
outside the 1s shell.

More interesting, and revealing, is the heart-shaped struc-
ture for re > 2. The local maximum is at (4.3, 4.6), consistent
with Fig. 1. The ridge along the direction where re ≈ rp clearly
shows that when the positron moves far from the nucleus
it carries one electron with it. Figure 3 shows the radial
probability distribution of the electrons when the positron is
fixed at rp = 5, 9, 13, and 17 bohrs (more precisely, in a bin
of 0.1-bohr width). The distribution of the 1s electrons does
not change while one electron moves following the positron,
forming a local maximum.

As intuitively understood by different authors, the positron,
far from the nucleus, forms a Ps system. However, it would not
be correct to describe LiPs as positronium “orbiting” around a
lithium atom, as sometimes has been done, since the positron
penetrates the electronic distribution and can be found close to

FIG. 3. Radial probability distribution, in arbitrary units, of the
electrons when the positron is found at rp = 5, 9, 13, and 17 bohrs
from the nucleus.

the nucleus, as shown in Fig. 1. What happens to the positron
in the region between 2 and 8 bohrs from the nucleus? Does
it stay, on average, close to only one electron or does it try to
stay as close as possible to as many electrons as it can in order
to maximize the interactions? In other words, does the Ps still
exist even when the positron is between 2 and 8 bohrs?

To answer this question we propose an alternative way to
analyze the distribution functions. We first order the particles-
nucleus distances, from the smallest to the largest. In practice,
we are temporarily labeling the particles from the closest to the
nucleus to the farthest. We then bin the ordered distances ob-
taining, for LiPs, five distribution functions that we call sorted
distribution functions because we sort the distance vector in
ascending order. This does not violate the indistinguishability
of the electrons since we are not assigning any permanent
label to them. This kind of analysis is a generalization of
the partitioning of the radial density function of two-electron
systems into inner- and outer-electron radial density [38] where
the distances from the two electrons to the nucleus are sorted
before binning. Such an analysis is impossible to generalize
to many-body systems when using an analytical integration
method, but it is trivial using a Monte Carlo method.

FIG. 4. Electronic distributions, in arbitrary units, of the sorted
electrons (solid blue) and the positronic one (dashed red).
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FIG. 5. Electron-positron sorted distances distributions (solid
blue) and the exact electron-positron distribution of Ps (dashed black),
in arbitrary units.

Figure 4 shows the sorted electronic distributions of the
four electrons and the positronic one. The distribution of the
last electron is amazingly similar to the positronic distribution,
while the next to the last is quite different, and it peaks closer
to the nucleus. This plot shows that for any given position of
the positron, there is always, on average, an electron almost at
the same distance from the nucleus. We now turn to the sorted
electron-positron distributions.

Figure 5 shows the electron-positron sorted distances dis-
tributions with the exact distribution of Ps superimposed. The
distribution of the closest electron, with respect to the positron,
is very similar to the distribution of an isolated Ps, with the
same maximum, while the other electrons are more distant on
average. These graphs gives further support to the conclusion
that positronium survives even when the positron is close to the
nucleus. Of course we cannot say that the positron is always
coupled to a specific electron, but only that the positron moves
in the environment forming—with one electron at a time—a
Ps system. It is like a dancer that, during the dance, exchanges
partners, but is always dancing with only one partner at a time.

We performed a similar analysis on the structure of the 2,4So

state.

FIG. 6. Electron-nucleus (solid blue) and positron-nucleus
(dashed red) distribution functions, in arbitrary units, of the 2,4So

state of LiPs.

FIG. 7. Contour plot of P(re,rp) for the 2,4So state of LiPs: the
probability to find an electron at distance re from the nucleus and the
positron at distance rp from the nucleus. Distances are in bohrs.

Figure 6 shows the electronic and positronic distribution
of this excited state. Compared with the LiPs ground state of
Fig. 1, this state is much more diffuse. Both the positron and
the 2p electrons are more distant from the nucleus, and again
the two curves have the same decay. A contour plot of P (re,rp)
distribution, analogous to Fig. 2, is shown in Fig. 7.

The heart-shaped structure, with maximum at (4.7,9.9),
shows that the positron has the same behavior as in the LiPs
ground state and again the Ps is a well-defined structure within
the LiPs 2,4So state. However, it is found at larger distances
from the nucleus compared to the ground state.

The sorted distributions for this excited state are shown in
Figs. 8 and 9.

FIG. 8. Electronic distributions, in arbitrary units, of the sorted
electrons (solid blue) and the positronic one (dashed red) for the 2,4So

state of LiPs.
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FIG. 9. Electron-positron sorted distances distributions (solid
blue) for the 2,4So state of LiPs and the exact electron-positron
distribution of Ps in a P state (dashed black), in arbitrary units.

As already found for the ground state, in the 2,4So state
the positronic distribution follows the distribution of the outer
electron. Consistently with Figs. 6 and 7, the positron is found
at much larger distances from the nucleus than in the ground
state. Also, it overlaps less with the electronic distributions
of the other three electrons, and in particular with the inner
2p electron, while in the ground state the positron occupies
a region of space where the inner 2s electron can be found
more frequently. In other words, the positron in the 2,4So state
interacts mainly with the outer electron. This can be seen
more clearly looking at the electron-positron sorted distances
distribution of Fig. 9. The dashed curve is the theoretical

distribution of the P state of positronium, since both the
electron and the positron occupy a 2p orbital. The overlap
is almost perfect, as a result of the reduced perturbation from
the more distant electrons.

IV. CONCLUSIONS

In this work we investigated the binding of a positron to all
the known excited states of the lithium anion using the fixed
node Diffusion Monte Carlo method. The positron does not
form a bound state with the 5So or 5P e state of Li−. We have
confirmed that the 2,4So excited state is bound, and give the
best, to date, variational estimation of the total energy and a
rigorous lower bound of the binding energy.

We examined in detail the structure of the ground state of
LiPs. The inspection of various one- and two-dimensional dis-
tribution functions led to the conclusion that Ps is a reasonably
well-defined entity within LiPs, not only when the positron
is far away as has been already suggested in the past, but
also closer to the nucleus. A similar analysis of the 2,4So state
suggests a similar structure, with a Ps subsystem found at larger
distances from the nucleus with respect to the ground state.

We introduced the sorted radial distribution functions and
the two-dimensional distribution functions as a useful tool
to get a better insight on the internal structure of many-
body systems, and in particular of positronic systems. These
distributions are extremely easy to compute in a Monte Carlo
simulation of a many-body system, while they are impossible
to estimate using a standard computational technique based
on analytic integration. This is probably the main reason why
such an analysis has never been performed before on LiPs.
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