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Relativistic semiempirical-core-potential calculations in Ca+, Sr+, and Ba+ ions
on Lagrange meshes
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Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-
core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The
core orbitals are defined by a Dirac-Hartree-Fock calculation using the GRASP2K package. The valence electron
is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence
electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate
variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate
matrix elements. Properties involving the low-lying metastable 2D3/2,5/2 states of Ca+, Sr+, and Ba+ are studied,
such as polarizabilities, one- and two-photon decay rates, and lifetimes. Good agreement is found with other
theory and observation, which is promising for further applications in alkalilike systems.
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I. INTRODUCTION

Atomic polarizabilities and forbidden transitions are of
much interest due to their various applications, e.g., in optical
atomic clocks, which are based on transitions involving long-
lived metastable states [1,2]. Experiments in this field have
reached such a high accuracy that relativistic effects are visible
and must be precisely accounted for in the calculations [3–14].
Today’s most advanced atomic clocks report relative system-
atic frequency uncertainties below 10−17 [15,16]. Reaching
higher accuracy is limited by small energy shifts resulting from
blackbody radiation and the quadratic Stark effect [5,10,12],
highly dependent on the accuracy of static and dynamic
polarizabilities [1].

Singly ionized calcium (Ca+), strontium (Sr+), and barium
(Ba+) have been proposed as candidates for optical frequency
standards due to the long lifetime of their 2D3/2,5/2 states [2].
Numerous experiments have been performed in these alkaline-
earth-metal ions [17–33]. Additionally, several theoretical
studies have been carried out using many-body approaches
[4,9–11,34–37]. The estimation of these lifetimes involves
the study of the competition between the one-photon electric
quadrupole (E2) and magnetic dipole (M1) channels and the
two-photon electric dipole (2E1) transitions. While the E2 and
M1 decay rates are widely studied, to our knowledge only one
prior calculation [38] of 2E1 decay rates of the 2D3/2,5/2 states
has been carried out in these ions.
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Ab initio methods include electron correlation through
explicit electron excitations. The codes based on these ap-
proaches enable the calculation of various spectroscopic prop-
erties [39–41]. However, the computational task is important,
requiring the diagonalization of large matrices. By contrast,
methods introducing a semiempirical core potential simulate
the core-valence correlations for an atom with few valence
electrons by means of a core-polarization (CP) potential,
offering reduced computational times [1,42,43]. The CP po-
tential is tuned to ensure that the energies of the valence
electrons reproduce the observed binding energies. Relativis-
tic semiempirical-core-potential calculations of lifetimes and
polarizabilities have been performed in Ca+ [4] and Sr+ [9],
but no such work exists in Ba+.

The present work combines a semiempirical-core-potential
Dirac-Hartree-Fock approach (DHFCP) and the Lagrange-
mesh method (LMM) [44,45] to study relativistic polarizabili-
ties, one- and two-photon decay rates, and associated lifetimes
in Ca+, Sr+, and Ba+ ions. The LMM is an approximate
variational approach involving a basis of Lagrange functions
related to a set of mesh points associated with a Gauss quadra-
ture [44–46]. Lagrange functions are continuous functions
that vanish at all points of the corresponding mesh but one.
The principal simplification appearing in the LMM is that
matrix elements are calculated with the Gauss quadrature. The
one-body potential matrices are then diagonal and only involve
values of the potential at mesh points.

Recently, we have shown that numerically exact solutions
of the Dirac-Coulomb equation are obtained with the LMM
[45,47]. The method is accurate for most central potentials,
such as Yukawa potentials [47]. It also allows the accurate
calculation of polarizabilities and of one- and two-photon
decay rates in various types of potentials with small computing
times [48,49]. In this work, the core orbitals obtained from a
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closed-shell Dirac-Hartree-Fock (DHF) calculation with the
GRASP2K package [50,51] are projected on Lagrange bases,
contrary to Refs. [4] and [9] where a DHF program was
developed using B splines or S-spinors. The DHFCP-LMM
method is used for single-valence-electron calculations.

In Sec. II, the formulation of the DHFCP method is recalled,
and relativistic expressions of polarizabilities and of one-
and two-photon decay rates are presented in the case of a
single valence electron in a DHFCP potential. In Sec. III, the
principle of the LMM is summarized and the studied properties
are approximated with Gauss quadratures. Section IV reports
numerical results for low-lying states in Ca+, Sr+, and Ba+,
and analyzes the accuracy of the semiempirical-core-potential
approach by comparison with ab initio calculations and exper-
imental data. Section V contains conclusions.

We use for the fine-structure constant and the atomic
unit (a.u.) of time the 2014 CODATA recommended val-
ues 1/α = 137.035 999 139 and h̄/Eh = 2.418 884 326 509×
10−17 s [52].

II. RELATIVISTIC FORMULATION

A. Closed-shell DHF equations and core orbitals

The starting point of the present approach is a DHF
calculation for the closed-shell core state of the atoms. In a.u.,
the Dirac-Coulomb Hamiltonian for Nel electrons in a central

field for a point nucleus of charge Z is given by [39]

HDC =
Nel∑
i=1

[
cαi · pi + (βi − 1)c2 − Z

ri

]
+

Nel∑
i<j

1

rij

, (1)

where c is the speed of light and α and β are the (4 × 4) Dirac
matrices. Since, in the present work, the DHF method is applied
to the ground state of closed-shell ions, the total symmetry J�

is equal to 0+, with J denoting the total electronic angular
momentum and � the parity. For such systems, the total wave
function corresponds to a single configuration state function
(CSF), constructed using antisymmetrized products of Dirac
spinors

φnκm(r) = 1

r

(
Pnκ (r)χκm(r̂)

iQnκ (r)χ−κm(r̂)

)
, (2)

involving the large and small radial components, Pnκ (r) and
Qnκ (r), respectively. The spinor spherical harmonics χκm(r̂)
are common eigenstates of L2, S2, J2, and Jz with respective
eigenvalues l(l + 1), 3/4, j (j + 1), and m, where j = |κ| − 1

2
and l = j + 1

2 sgn κ . The quantum number n labels the differ-
ent states with the same κ symmetry.

The energy of the closed-shell ion is expressed through one-
electron integrals I and two-electron Slater integrals Rk as
[39,53]

Ecore =
∑

a

qa I (a,a) +
∑

a

1

2
qa(qa − 1)

[
R0(aa,aa) − [ja]

2ja

2la∑
k=2

〈ja||C (k)||ja〉2Rk(aa,aa)

]

+
∑

a,b>a

qaqb

⎡
⎣R0(ab,ab) −

la+lb∑
k=|la−lb |

〈ja||C (k)||jb〉2Rk(ab,ba)

⎤
⎦, (3)

where the notation [j ] means (2j + 1), and contributions to the
sums over k are not null when la + lb + k is even. Indices a

and b refer to one-electron orbitals naκa and nbκb, respectively,
and qa is the occupation number of orbital a.

The one- and two-electron integrals appearing in Eq. (3) are
respectively given by

I (a,a) =
∫ ∞

0

[
−Z

r
P 2

a (r) + cPa(r)

(
− d

dr
+ κa

r

)
Qa(r)

+cQa(r)

(
d

dr
+ κa

r

)
Pa(r) +

(
−Z

r
− 2c2

)
Q2

a(r)

]
dr

(4)

and

Rk(ab,cd) =
∫ ∞

0

∫ ∞

0
[Pa(r1)Pc(r1) + Qa(r1)Qc(r1)]

× rk
<

rk+1
>

[Pb(r2)Pd (r2) + Qb(r2)Qd (r2)]dr1dr2,

(5)

where r< (r>) denotes the minimum (maximum) of r1 and r2.
The one-electron radial orbitals used to construct the single

CSF are determined variationally so as to leave Ecore, and
additional terms for preserving their orthonormality, stationary
with respect to their variations. The resulting coupled radial
equations are solved iteratively within the self-consistent field
procedure by means of finite difference techniques on an
exponential grid [41]. The DHF program used in this work
is implemented in the GRASP2K package [50,51].

B. DHFCP Hamiltonian and valence orbitals

Within the frozen-core approximation [39,54], where the
relaxation of the core is neglected, the radial DHFCP equation
for a single valence electron, denoted by the subscript v ≡ nvκv

in the following, is given by

HDHFCP φv(r) = εDHFCP
v φv(r), (6)

where εDHFCP
v is the energy of the valence electron. The

Hamiltonian HDHFCP reads

HDHFCP =
(

−Z/r c
(− d

dr
+ κv

r

)
c
(

d
dr

+ κv

r

) −Z/r − 2c2

)
+ Vcore(r) (7)

and acts on a two-component radial wave function φv(r) =
(Pv(r) Qv(r))T , where the superscript T means transposition.
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The semiempirical core potential Vcore(r) appearing in Eq. (7)
is defined as the single-electron operator

Vcore(r) = Vdir(r) + Vexc(r) + VCP(r), (8)

where, in the case of the interaction with a closed-shell core
(core electrons are denoted by the subscript c ≡ ncκc in the
following), the direct and exchange potentials Vdir(r) and
Vexc(r) are defined by their matrix elements [9,39,55],

〈v|Vdir|v〉 =
∑

c∈core

[jc] R0(vc,vc), (9)

〈v|Vexc|v〉 = −
∑

c∈core

∑
k

[jc]

(
jc k jv

1/2 0 −1/2

)2

Rk(vc,cv).

(10)

The core-polarization potential VCP(r) has been introduced
to simulate the core-valence correlation neglected in the
DHF approximation [56–59]. The electric field of the valence
electron polarizes the core, which acquires an induced dipole
moment proportional to the core static dipole polarizability
α1(core) interacting with the valence electron [56–59]. The
potential VCP(r) is written as

VCP(r) = −α1(core)

2r4

[
1 − exp

(−r6
/
ρ6

κ

)]
, (11)

where ρκ is a cutoff parameter that is tuned to repro-
duce the experimental binding energy of the lowest state of
each κ symmetry, and 1 − exp (−r6/ρ6

κ ) is a cutoff function

regularizing VCP(r) at the origin [4]. Expression (11) can be
extended by taking higher-order corrections into account [9].

The present semiempirical approach implies corrections to
operators. In particular, when computing matrix elements of
2λ-pole transitions between states naκa and nbκb, the radial
transition operator needs to be modified as [4,9,56,60]

r̃λ = rλ − αλ(core)

rλ+1

√
1 − exp [−r2(λ+2)/ρ̄2(λ+2)], (12)

where αλ(core) is the static multipole polarizability of the core
and ρ̄ is the average value ρ̄ = (ρκa

+ ρκb
)/2.

C. Polarizabilities

The static polarizability of an atomic system can be sepa-
rated into two terms: a dominant first term from the intermedi-
ate valence-excited states α(v) and a smaller second term from
the intermediate core-excited states α(core) [12]. The latter is
smaller than the former by several orders of magnitude [1].

For an atomic system described with Eq. (6), the dipole
polarizability α1(nvκvmv) of a state nvκvmv with angular
momentum jv > 1/2 depends on the magnetic projection mv

[1]. It is given by

α1(nvκvmv) = αS
1 (v) + αT

1 (v)
3m2

v − jv(jv + 1)

jv(2jv − 1)
. (13)

The quantity αS
1 (v) is the scalar polarizability while αT

1 (v) is
the tensor polarizability in j representation. The 2λ-pole scalar
polarizability reads [1,9,48]

αS
λ (v) =

∑
κ ′

v

2[j ′
v]

[λ]

(
j ′
v λ jv

−1/2 0 1/2

)2∑∫
n′

v

{ ∫∞
0 [Pv(r)Pv′(r) + Qv(r)Qv′(r)]r̃λ dr

}2

εv′ − εv

, (14)

with the subscript v′ ≡ n′
vκ

′
v . The radial functions Pv(r), Qv(r) and Pv′(r), Qv′(r) are solutions of Eq. (6) with respective energies

εv and εv′ . The sum over n′
v represents a sum over the discrete states and an integral over the continuum that also involves negative

energies. The dipole tensor polarizability is defined as [1,9]

αT
1 (v) = 4

√
5jv(2jv − 1)[jv]

6(jv + 1)(2jv + 3)

∑
κ ′

v

(−1)jv+j ′
v [j ′

v]

{
jv 1 j ′

v

1 jv 2

}(
j ′
v 1 jv

−1/2 0 1/2

)2∑∫
n′

v

{ ∫∞
0 [Pv(r)Pv′(r) + Qv(r)Qv′(r)]r̃ dr

}2

εv′ − εv

.

(15)

D. Decay rates and lifetimes

The lifetime (in s) of an atomic state is given by the inverse of the sum of all possible decay rates (in s−1), τ = 1/
∑

i Wi . The
dominant one-photon E2 and M1 and two-photon 2E1 contributions are studied in this work.

For an atomic system described with Eq. (6), the average partial decay rates describing the 2E1 two-photon transitions read
in a.u. [49,61,63]

dW 2E1

dω1
= ω1ω2

8π3c2[ji]

∑
jν

⎧⎨
⎩[Sjν

2E1(2,1)
]2 + [Sjν

2E1(1,2)
]2 + 2

∑
j ′
ν

d
jν ,j

′
ν

2E1 S
jν

2E1(2,1)S
j ′
ν

2E1(1,2)

⎫⎬
⎭, (16)

where the angular coupling factor d
jν,j

′
ν

2E1 is given in Ref. [49], and S
jν

2E1(2,1) reads

S
jν

2E1(2,1) = �
jν

2E1(2,1)
∑
κν

∑∫
nν

ME1
f,ν(ω2; G)ME1

ν,i (ω1; G)

εν − εi + ω1
. (17)
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The angular factor �
jν

2E1(2,1) is given in Ref. [49]. Sjν

2E1(1,2) is
analogously obtained by permuting indices 1 and 2. Kets |i〉 ≡
|niκi〉 and |f 〉 ≡ |nf κf 〉 correspond to solutions of Eq. (6) for
the initial and final states with respective energies εi and εf ,
and ωj is the frequency of the j th photon. Energy conservation
imposes εi − εf = ω1 + ω2, where the recoil of the nucleus
is neglected. As for polarizabilities, the transition proceeds
through an infinite set of intermediate states |ν〉 ≡ |nνκν〉 at
energy εν .

The electric radial matrix elementsMEL
in Eq. (17) contain

an arbitrary gauge parameter G from which the results should
be independent [61,62]. The G = 0 value defines the Coulomb
(or velocity) gauge, which leads to the electric multipole
velocity form in the nonrelativistic limit. The value G =√

(L + 1)/L defines the Babushkin (or length) gauge, which
leads to the nonrelativistic electric multipole length form of the
transition operator, and hence allows to account for correction
(12).

In the long-wavelength (LW) approximation [39,62], the

radial matrix element ME1
α,β in Eq. (17) reads in the length

gauge [62]

ME1
α,β (ω;

√
2) =

√
2

(
ω

c

)∫ ∞

0
[Pα(r)Pβ(r)

+Qα(r)Qβ(r)]r̃ dr. (18)

The spontaneous 2E1 decay rate, W2E1, is obtained by
integrating dW 2E1/dω1 over ω1 from 0 to εi − εf . The value
of W2E1 is multiplied by 1/2 to avoid counting twice each pair,
because both photons have the same characteristics [63].

The spontaneous emission rate for a one-photon transition
i → f reads in a.u. [62]

Wi→f = 2ωt

c

[jf ]

[L]

(
ji L jf

1/2 0 −1/2

)2∣∣MσL

f i (ωt )
∣∣2, (19)

where σ = E or M , and ωt = εi − εf is the transition energy.

In the LW approximation, ME2
f i reads in the length gauge [62]

ME2
f i (ωt ;

√
3/2) = 1√

6

(
ωt

c

)2 ∫ ∞

0
[Pf (r)Pi(r)

+Qf (r)Qi(r)]r̃2 dr, (20)

and the gauge-independent radial matrix elementMM1
f i is given

by [62]

MM1
f i (ωt ) = 1√

2

(
ωt

c

)
(κf + κi)

∫ ∞

0
[Pf (r)Qi(r)

+Qf (r)Pi(r)]r dr. (21)

No correction similar to Eq. (12) is applied to the magnetic
transition operator. The excellent comparison between the
present M1 decay rates and the reference values [64] (see
Table VII) infers that such corrections would be small.

The use of the LW approximation is justified by the small
variation (only on the sixth digit) found in the obtained results
when considering (ωr/c)L/(2L + 1)!! operators instead of
spherical Bessel functions jL(ωr/c) that occur in the relativis-
tic transition operators [62].

The multipole matrix elements involved in the calculation
of polarizabilities, one- and two-photon decay rates are dom-
inated by the form of the wave function at long distances
from the nucleus. By tuning energies to experimental values,
semiempirical-core-potential methods enable to obtain wave
functions having the correct asymptotic decrease [9].

III. LAGRANGE-MESH METHOD

A. Expansions on a Lagrange basis

The principles of the LMM are described in Refs. [44–46],
and its application to the Dirac equation is presented in
Refs. [45] and [47]. The mesh points xj are defined by [44]

Lα
N (xj ) = 0, (22)

where j = 1 to N , and Lα
N is a generalized Laguerre poly-

nomial [65]. This mesh is associated with a Gauss-Laguerre
quadrature

∫ ∞

0
g(x) dx ≈

N∑
j=1

λj g(xj ), (23)

with the weights λj . Note that the dependence of xj and λj

on parameter α is implicit. The Gauss quadrature is exact
for the Laguerre weight function xαe−x multiplied by any
polynomial of degree at most 2N − 1 [66]. The regularized
Lagrange functions are defined by [45,67,68]

f̂
(α)
j (x) = (−1)j

√
N !

�(N + α + 1)xj

Lα
N (x)

x − xj

xα/2+1e−x/2.

(24)

The functions f̂
(α)
j (x) are polynomials of degree N − 1 multi-

plied by x and by the square root of the Laguerre weight xαe−x .
The Lagrange functions satisfy the Lagrange conditions

f̂
(α)
j (xi) = λ

−1/2
i δij . (25)

They are not orthonormal, but become orthonormal at the
Gauss-quadrature approximation. Condition (25) drastically
simplifies the expressions of the one-body matrix elements
calculated with the Gauss quadrature.

Radial functions Pv(r) and Qv(r) are expanded in regular-
ized Lagrange functions (24) as

Pv(r) = h−1/2
v

Nv∑
j=1

pvj f̂
(α)
j (r/h), (26)

Qv(r) = h−1/2
v

Nv∑
j=1

qvj f̂
(α)
j (r/h), (27)

where hv is a scaling parameter aimed at adapting the scaled
mesh {hvxi}Nv

i=1 to the physical extension of the problem.
The parameter αv = 2(γv − 1), where γv = √κ2

v − (αZ)2, can
be selected so that the Lagrange functions behave as rγv

near the origin [47]. Here, another choice αv = 2(γv − |κv|)
is preferable [48,49]. The basis functions then behave as
rγv−|κv |+1, and the physical rγv behavior can be simulated by
linear combinations.
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Let us introduce expansions (26) and (27) in Eq. (6).
Projecting on the Lagrange functions and using the associ-
ated Gauss quadrature leads to the 2Nv × 2Nv Hamiltonian
matrix,

HDHFCP
κv

= Hκv
+
(

V
pp

dir 0

0 V
qq

dir

)
+
(

V
pp

exc V
pq

exc

V
qp

exc V
qq

exc

)

+
(

V
pp

CP 0

0 V
qq

CP

)
, (28)

where the Nv × Nv block matrices verify V
pp

dir = V
qq

dir , V
qp

exc =
(V pq

exc)T , and V
pp

CP(i,j ) = V
qq

CP(i,j ) = VCP(hvxi) δij . The matrix
Hκv

corresponds to the 2Nv × 2Nv hydrogenlike Dirac Hamil-
tonian at the Gauss-quadrature approximation, and reads

Hκv
=
( −Z/(hvxi) δij

c
hv

(
DG

ji + κv

xi
δij

)
c
hv

(
DG

ij + κv

xi
δij

)
[−Z/(hvxi) − 2c2] δij

)
, (29)

with a 2×2 block structure, where the matrix elements Dij =
〈f̂ (αv )

i |d/dx|f̂ (αv )
j 〉 are calculated at the Gauss-quadrature ap-

proximation as

DG
i �=j = (−1)i−j

√
xi

xj

1

xi − xj

, DG
ii = 1

2xi

. (30)

The diagonalization of Hamiltonian matrix (28)
provides a set of 2Nv orthogonal eigenvectors pv =
(pv1, . . . ,pvNv

,qv1, . . . ,qvNv
)T for each valence orbital

φv of a given κv symmetry, and
∑Nv

j=1 (p2
vj + q2

vj ) = 1 ensures
the normalization of Pv(r) and Qv(r) at the Gauss-quadrature
approximation.

B. Evaluation of two-electron Slater integrals

Let us illustrate the calculation of the two-electron Slater
integrals Rk by considering, e.g., the exchange potential matrix
in Eq. (28). The matrix element (i,j ) of the Nv × Nv block
V

pq
exc is given by Eq. (10), where the integral Rk

pq(ic,cj ) reads,

according to Eq. (5),

Rk
pq(ic,cj ) = h−1

v

∫ ∞

0

∫ ∞

0
f̂

(αv )
i (r1/hv)Pc(r1)

× rk
<

rk+1
>

Qc(r2)f̂ (αv )
j (r2/hv) dr1dr2. (31)

Two integration methods are devised in order to accurately
compute Rk

pq(ic,cj ) with Gauss-Laguerre quadratures. The
first one, denoted as “M I”, corresponds to the strategy sug-
gested by Hartree [41,69], who first introduced the functions
Y k(bd; r). In the present case (31), Y k

q (jc; r) reads

Y k
q (jc; r) = r

∫ ∞

0

rk
<

rk+1
>

Qc(s)h−1/2
v f̂

(αv )
j (s/hv) ds, (32)

with r ≡ r1 and s ≡ r2, and is the solution of the second-order
differential equation

d2

dr2
Y k

q (jc; r) − k(k + 1)

r2
Y k

q (jc; r)

= −2k + 1

r
Qc(r)h−1/2

v f̂
(αv )
j (r/hv) (33)

with the boundary conditions Y k
q (jc; 0) = 0 and dY k

q (jc; r)/

dr → −kY k
q (jc; r)/r + Qc(r)h−1/2

v f̂
(αv )
j (r/hv) as r → ∞.

Special attention is required for the k = 0 case for
which Y 0

q (jc; ∞) = ∫∞
0 Qc(s)h−1/2

v f̂
(αv )
j (s/hv) ds, whereas

Y k
q (jc; ∞) = 0 for k > 0. Equation (33) is solved on Lagrange

meshes, as presented in the Appendix. Once Y k
q (jc; r) is

known, the two-electron Slater integral (31) is expressed as

Rk
pq(ic,cj ) =

∫ ∞

0
h−1/2

v f̂
(αv )
i (r/hv)Pc(r)

1

r
Y k

q (jc; r) dr

(34)

and can be computed with the appropriate Gauss-Laguerre
quadrature (see the Appendix).

The second method, denoted as “M II”, separates Rk
pq(ic,cj )

in two terms as

Rk
pq(ic,cj ) = h−1

v

∫ ∞

0
f̂

(αv )
j (r2/hv)Qc(r2) rk

2

∫ ∞

r2

f̂
(αv )
i (r1/hv)Pc(r1)

rk+1
1

dr1dr2

+h−1
v

∫ ∞

0

f̂
(αv )
j (r2/hv)Qc(r2)

rk+1
2

∫ r2

0
f̂

(αv )
i (r1/hv)Pc(r1) rk

1 dr1dr2. (35)

The first term is denoted as Rk
pq(ic,cj ), and the order of integration is permuted in the second term. The integration bounds

r1 ∈ [0,r2] and r2 ∈ [0,∞[ become r1 ∈ [0,∞[ and r2 ∈ [r1,∞[, leading to

Rk
pq(ic,cj ) = Rk

pq(ic,cj ) + Rk
qp(jc,ci). (36)

By using the change of variable r1 = r + r2, Rk
pq(ic,cj ) is integrated over variables r2 and r , and reads

Rk
pq(ic,cj ) = h−1

v

∫ ∞

0
f̂

(αv )
j (r2/hv)Qc(r2) rk

2

∫ ∞

0

f̂
(αv )
i [(r + r2)/hv]Pc(r + r2)

(r + r2)k+1
drdr2. (37)

This double integral is evaluated with two different Gauss-
Laguerre quadratures, one for each integration variable (see
the Appendix). Gauss quadratures of Rk

pp(ic,cj ) and Rk
qq(ic,cj )

are analogously obtained using M I and M II, as well as the
Slater integral R0

pp(ic,jc) involved in the Nv × Nv block V
pp

dir
of Eq. (28).
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C. Projection of core orbitals on Lagrange bases

Each GRASP2K core orbital is expanded over a basis of
Lagrange functions depending on the parameter αc = 2(γc −
|κc|). A different value of hc is assigned to each orbital and
is chosen such that the largest GRASP2K grid point of orbital
c, Rc, is at the center of [hcxNc−1,hcxNc

], where xNc−1 and
xNc

denote the last two Lagrange mesh points, i.e., hc =
2Rc/(xNc−1 + xNc

). To compute the unknown {pcj }Nc

j=1 and

{qcj }Nc

j=1 coefficients for each core orbital, the radial wave
functions Pc(r) and Qc(r) are evaluated at each point hcxi

of the scaled Lagrange mesh. Because the GRASP2K grid
points do not correspond to Lagrange mesh points, the wave
functions are first interpolated with cubic splines, which are
piecewise polynomials, allowing to evaluate the functions at
any r . Applying the Lagrange condition (25) respectively
yields the expansion coefficients pci = (hcλi)1/2 Pc(hcxi) and
qci = (hcλi)1/2 Qc(hcxi), for i = 1 to Nc.

D. Polarizabilities and decay rates on Lagrange meshes

Polarizabilities and two-photon decay rates proceed through
an infinite set of intermediate states with some value of κ ′

v .
Finite-basis techniques such as the LMM allow a discretization
of the continuum, leading to a truncated sum over 2N ′

v

intermediate states. Some of these states may correspond to
approximate eigenstates of Eq. (6), while the other ones,
discretizing the continuum, have no physical meaning and are
called pseudostates.

Let εn′
vκ

′
v
, n′

v = 1, . . . ,2N ′
v be the eigenvalues of matrix

HDHFCP
κ ′

v
with κ ′

v replacing κv . The corresponding eigenvectors
contain the coefficients pv′j and qv′j of the components Pv′ (r)
and Qv′ (r) of the intermediate states. The latter are calculated
with α′

v = 2(γ ′
v − |κ ′

v|) in place of αv = 2(γv − |κv|), i.e.,
matrix HDHFCP

κ ′
v

is calculated on a different mesh h′
vx

′
j with

N ′
v mesh points. Hence, the physical intermediate states have

the exact behavior rγ ′
v at the origin. Accurate calculations of

Eqs. (14), (15), and (17) with a Gauss-Laguerre quadrature are
possible by choosing a third mesh h̄x̄i where h̄ = 2hvh

′
v/(hv +

h′
v). In the two-photon case, hv corresponds to hi or hf .

The x̄i correspond to the weight function xᾱe−x with ᾱ =
(αv + α′

v)/2, and the corresponding weights are denoted as
λ̄i .

Approximate scalar polarizabilities αS
λ (v) are obtained from

Eq. (14) as

αS
λ (v) =

∑
κ ′

v

2[j ′
v]

[λ]

(
j ′
v λ jv

−1/2 0 1/2

)2

×
2N ′

v∑
n′

v=1

{ ∫∞
0 [Pv(r)Pv′(r) + Qv(r)Qv′(r)]r̃λ dr

}2

εv′ − εv

.

(38)

Tensor polarizabilities αT
1 (v) are analogously approximated

from Eq. (15).

Similarly, approximate S
j ′
2E1(2,1) terms of the 2E1 decay

rates (16) are obtained from Eq. (17) as

S
j ′
2E1(2,1)

= �
j ′
2E1(2,1)

∑
κ ′

2N ′∑
n′=1

ME1
f,n′κ ′ (ω2; G)ME1

n′κ ′,i(ω1; G)

εn′κ ′ − εi + ω1
, (39)

where the notations nν , jν , and κν related to the intermediate
states ν are replaced by n′, j ′, and κ ′. Sj ′

2E1(1,2) are analogously
approximated. The integral common to Eqs. (38) and (39) is
calculated with the Gauss quadrature as∫ ∞

0
[Pnκ (r)Pn′κ ′(r) + Qnκ (r)Qn′κ ′(r)]r̃ k dr

≈
N∑

j=1

N ′∑
j ′=1

[pnκjpn′κ ′j ′ + qnκj qn′κ ′j ′ ] Ik
jj ′ , (40)

where Ik
jj ′ reads

Ik
jj ′ =

∫ ∞

0
h−1/2f̂

(α)
j (r/h) r̃ k h′−1/2f̂

(α′)
j ′ (r/h′) dr

≈ h̄(hh′)−1/2
NG∑
i=1

λ̄i f̂
(α)
j (h̄x̄i/h) r̃ k(x̄i) f̂

(α′)
j ′ (h̄x̄i/h′),

(41)

and the nonpolynomial factor r̃ k(x̄i) is given by

r̃ k(x̄i) = (h̄x̄i)
k − αk(core)

(h̄x̄i)k+1

√
1 − exp [−(h̄x̄i)2(k+2)/ρ̄2(k+2)].

(42)

If r̃ k was replaced by rk , the Gauss quadrature (23) would
be exact with NG � (N + N ′ + k + 1)/2 mesh points. This
suggests the use of NG > (N + N ′ + k + 1)/2 in the present
case. The integrals appearing in the one-photon E2 and M1
decay rates (20) and (21) are analogously calculated with a
Gauss-Laguerre quadrature.

In the two-photon case, the integral over ω1 is evaluated
with a Gauss-Legendre quadrature using Nω1 mesh points.

IV. NUMERICAL RESULTS

A. Calculations of core orbitals

The core orbitals of each ion are calculated with GRASP2K

and are projected on Lagrange bases. Comparing the original
orbitals, the one- and two-electron integrals, and the core
energies with those computed with the LMM allows one to
assess the accuracy of the core description within the present
approach.

Let us first compute with the LMM the norm, mean
values of powers of r , and core-orbital overlaps and
compare them with the GRASP2K results. Any orbital
from GRASP2K being orthonormal, the error on the norm
can be written as

√〈φncκc
|φncκc

〉 − 1, where 〈φncκc
|φncκc

〉 ≈∑Nc

j=1 (p2
ncκcj

+ q2
ncκcj

) at the Gauss-quadrature approxima-
tion. Similarly, mean values of powers of r read 〈rs〉ncκc

≈∑Nc

j=1(hcxj )s(p2
ncκcj

+ q2
ncκcj

) with the Gauss quadrature,
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TABLE I. Contribution of one- (Itot) and two-electron (Rtot) terms
to Ca2+, Sr2+, and Ba2+ core energies, Ecore (in a.u.). LMM M I and
M II values are compared with GRASP2K results. Powers of 10 are
indicated within brackets.

Term M I M II GRASP2K

Ca2+

Itot −9.197 475 6 [2] −9.197 470 37 [2]
Rtot 2.406 424 7 [2] 2.406 422 8 [2] 2.406 419 74 [2]
Ecore −6.791 050 9 [2] −6.791 052 8 [2] −6.791 050 63 [2]

Sr2+

Itot −4.378 474 7 [3] −4.378 471 73 [3]
Rtot 1.200 919 8 [3] 1.200 919 5 [3] 1.200 917 63 [3]
Ecore −3.177 554 9 [3] −3.177 555 2 [3] −3.177 554 10 [3]

Ba2+

Itot −1.107 863 7 [4] −1.107 862 86 [4]
Rtot 2.943 151 2 [3] 2.943 151 1 [3] 2.943 145 62 [3]
Ecore −8.135 485 8 [3] −8.135 485 9 [3] −8.135 482 95 [3]

which is exact for s = −2 and −1. The exactness for s � 0
is recovered by choosing NG � (2Nc + s + 1)/2 mesh points.
The overlap 〈φncκc

|φn′
cκc

〉 within the same κc symmetry is given
by Eqs. (40) and (41) with κ = κ ′ = κc and k = 0. Using a
basis of Nc = 50 Lagrange functions for Ca2+, Sr2+, and Ba2+,
all relative errors with respect to GRASP2K are in the range
10−7 − 10−6.

Let us now compute with the LMM the core energies (3),
Ecore, and compare them with the GRASP2K results. Projecting
Pc(r) and Qc(r) on Nc Lagrange functions and using the Gauss
quadrature yields I (c,c) = pT

c Hκc
pc for the one-electron inte-

grals (4), where pc = (pc1, . . . ,pcNc
,qc1, . . . ,qcNc

)T , and the
2Nc × 2Nc matrix Hκc

is given by Eq. (29) with κc instead
of κv . According to Eq. (3), the total one-electron energy of
the core is expressed as Itot =∑c qc I (c,c). The two-electron
Slater integrals (5) are computed using methods M I and
M II. The Appendix provides expressions on Lagrange meshes
for the valence case. Similar expressions can be derived for
the Slater integrals Rk(cc,cc), R0(cc′,cc′), and Rk(cc′,c′c).
The total two-electron energy of the core, Rtot, is expressed
as Ecore − Itot, i.e., as the sum of the last two terms on the
right-hand side of Eq. (3).

Table I displays the Ca2+, Sr2+, and Ba2+ core energies
using a basis of Nc = 50 Lagrange functions. The relative
error on Itot with respect to GRASP2K ranges from 5.7×10−7 to
7.4×10−7. Hence, the accuracy on one-electron integrals is of
the same order of magnitude as the one on the wave functions
themselves. The relative error on Rtot is 2×10−6, and both
M I and M II provide the same order of accuracy. Summing
the one- and two-electron contributions, the accuracy on Ecore

is 3×10−7 for M I and M II. Increasing the number of Lagrange
functions beyond Nc = 50 does not improve the accuracy of
the results.

B. Calculations of valence orbitals

Table II displays DHF and DHFCP energies, εDHF
v and

εDHFCP
v (in a.u.), of the five lowest states in Ca+, Sr+, and Ba+

ions, relative to the core energy. The results are computed with
Nc = Nv = 50 Lagrange functions. The values of the scaling

TABLE II. DHF and DHFCP energies, εDHF
v and εDHFCP

v (in a.u.),
of the five lowest states in Ca+, Sr+, and Ba+. Energies are given
relative to the energy of the core. DHF-LMM values are compared
with results from GRASP2K.

εDHF
v εDHFCP

v

State LMM GRASP2K LMM

Ca+

4s1/2 −0.416 626 −0.416 631 56 −0.436 277 6
3d3/2 −0.330 859 −0.330 869 35 −0.374 082 8
3d5/2 −0.330 750 −0.330 759 53 −0.373 806 3
4p1/2 −0.309 994 −0.309 998 55 −0.321 496 7
4p3/2 −0.309 084 −0.309 088 86 −0.320 481 1

Sr+

5s1/2 −0.382 915 −0.382 927 55 −0.405 355 2
4d3/2 −0.307 011 −0.307 028 86 −0.339 033 6
4d5/2 −0.306 360 −0.306 378 05 −0.337 756 3
5p1/2 −0.284 816 −0.284 826 03 −0.297 300 8
5p3/2 −0.281 698 −0.281 707 26 −0.293 649 1

Ba+

6s1/2 −0.343 264 −0.343 286 19 −0.367 633 8
5d3/2 −0.310 428 −0.310 459 81 −0.345 426 9
5d5/2 −0.308 268 −0.308 299 53 −0.341 777 5
6p1/2 −0.260 904 −0.260 920 58 −0.275 315 4
6p3/2 −0.254 560 −0.254 576 95 −0.267 611 3

parameter hv are 0.10 for ndj states, 0.11 for (n + 1)s1/2 states,
and 0.12 for (n + 1)pj states. In practice, all values between
0.1 and 0.2 are acceptable for these states.

DHF-LMM values, obtained by neglecting VCP(r) in
Eq. (8), are compared with results from GRASP2K at the
frozen-core approximation. The relative error on εDHF

v with
respect to GRASP2K is similar for M I and M II, and slightly
increases with Z, ranging from 1.4×10−5 to 3.3×10−5 in Ca+,
from 3.3×10−5 to 5.9×10−5 in Sr+, and from 6.3×10−5 to
9.9×10−5 in Ba+. Besides, the fine-structure splittings are well
reproduced for the ndj and (n + 1)pj states. The accuracy
of the present valence calculations is sufficient to obtain
reliable results for polarizabilities, one- and two- photon decay
rates, and associated lifetimes when adding the contribution of
VCP(r), as shown in Secs. IV C and IV D. Increasing the number
of Lagrange functions beyond Nv = 50 does not improve the
accuracy of the results.

The values of the core static dipole polarizabilities used
in the DHFCP-LMM calculations are computed at the rela-
tivistic random-phase approximation (RRPA) and are taken
from Ref. [71]: α1(Ca2+) = 3.254 a.u., α1(Sr2+) = 5.813 a.u.,
and α1(Ba2+) = 10.61 a.u. The ρκv

values (in a.u.), listed in
Table III, ensure that the relative error on εDHFCP

v with respect
to experimental NIST data [70] is below 10−7 for all states
presented in Table II, considering both M I and M II. The
obtained ρκv

numbers show good agreement with the ones
provided by Ref. [4] for Ca+ and by Ref. [9] for Sr+.

C. Calculations of polarizabilities

Tables IV and V respectively display static scalar dipole
(αS

1 ) and quadrupole (αS
2 ) polarizabilities (in a.u.) of the five

012506-7



LIVIO FILIPPIN et al. PHYSICAL REVIEW A 97, 012506 (2018)

TABLE III. Cutoff parameters, ρκv
(in a.u.), for different κv

symmetries in Ca+, Sr+, and Ba+. Comparison with Refs. [4] and
[9].

ρκv
(a.u.)

Ca+ Sr+ Ba+

κv LMM Ref. [4] LMM Ref. [9] LMM

−1 1.73808 1.7419 2.02900 2.04960 2.35081
+1 1.63549 1.6389 1.94914 1.97169 2.24066
−2 1.63216 1.6354 1.95229 1.97600 2.26242
+2 1.84605 1.8472 2.34998 2.35353 2.75043
−3 1.84776 1.8489 2.36151 2.36534 2.77960

lowest states in Ca+, Sr+, and Ba+ ions. Tensor dipole (αT
1 )

polarizabilities (in a.u.) are given for the jv > 1/2 states.
Core dipole and quadrupole polarizabilities from Ref. [71]
are added to the valence scalar values, αS

1 (v) and αS
2 (v). The

core quadrupole values are α2(Ca2+) = 6.936 a.u., α2(Sr2+) =
17.15 a.u., and α2(Ba2+) = 45.96 a.u.

The DHFCP-LMM results are computed with Nc = Nv =
N ′ = 50 Lagrange functions, where N ′ denotes the number of
functions used to describe the intermediate states. Significant
digits are estimated by increasing N ′ from 50 to 80. The
LMM calculations are performed with M I and M II, and the
comparison of their results allows one to assess the precision
of the values displayed in Tables IV and V.

A more stringent estimate of the precision achieved by the
DHFCP-LMM approach is given by studying the effect of
variations in the values of the core dipole and quadrupole
polarizabilities on the final results. A second set of core
dipole values is provided by Ref. [72]: α1(Ca2+) = 3.284 a.u.,
α1(Sr2+) = 5.748 a.u., and α1(Ba2+) = 10.426 a.u. The rel-
ative differences with respect to the first set of values are
respectively 0.9%, 1.1%, and 1.7%. A second set of core
quadrupole values is provided by Ref. [14] for Ca2+ and Sr2+,
and by Ref. [11] for Ba2+: α2(Ca2+) = 6.15 a.u., α2(Sr2+) =
14.50 a.u., and α2(Ba2+) = 44 a.u. The relative differences
with respect to the first set of values are respectively 11.3%,
15.5%, and 4.3%, thus substantially higher than for the core
dipole values.

TABLE IV. Static scalar dipole (αS
1 ) polarizabilities (in a.u.) of the five lowest states in Ca+, Sr+, and Ba+. Tensor dipole (αT

1 ) polarizabilities
(in a.u.) are given for the jv > 1/2 states. Core polarizabilities from Refs. [71,72] are added to the DHFCP-LMM valence αS

1 (v) results.
Comparison with other theory and experiment. Uncertainties in the last digits are given within parentheses.

Ca+

4s1/2 3d3/2 3d5/2 4p1/2 4p3/2

Method αS
1 αS

1 αT
1 αS

1 αT
1 αS

1 αS
1 αT

1

DHFCP-LMM 75.272(24) 32.986(10) −17.884(18) 32.814(10) −25.174(26) −3.408(78) −1.584(77) 10.202(20)
RCICP [3] 75.46(72) 32.98(24) −17.97(17) 32.80(24) −25.28(24) −2.98(11) −1.12(10) 10.20(11)
DFCP [4] 75.28 32.99 −17.88 32.81 −25.16 −2.774 −0.931 10.12
RMBPT-SD [5] 76.1(5) 32.0(3) −17.43(23) 31.8(3) −24.51(29) −0.75(70) 1.02(64) 10.31(28)
RCCSD [6] 76.03 32.3 −17.02 32.05 −23.92 0.82 2.82 10.08
RCCSD(T) [7] 76.1(2) 33.67(180) −17.71 33.11(180) −24.78(4)
RLCCSD(T) [8] 76.1(11) 32.0(11)
Expt. SA [73] 75.3(4)

Sr+

5s1/2 4d3/2 4d5/2 5p1/2 5p3/2

αS
1 αS

1 αT
1 αS

1 αT
1 αS

1 αS
1 αT

1

DHFCP-LMM 89.708(36) 63.102(14) −35.072(58) 61.979(10) −47.325(76) −31.69(21) −21.43(20) 9.802(41)
RCICP [9] 90.10(127) 63.12(82) −35.11(50) 61.99(72) −47.38(67) −31.29(49) −20.92(70) 9.836(147)
RMBPT-SD [12] 92.2(7) 63.3(9) −35.5(6) 62.0(9) −47.7(8) −32.2(9) −21.4(8) 10.74(23)
RCCSD [6] 90.54 63.74 −35.26 62.08 −47.35 −31.27 −20.79 10.52
RCCSD(T) [7] 91.23(30) 64.7(25) −35.88(5) 63.5(25) −48.29(7)
RCCSD(T) [13] 88.29(100) 61.43(52) −35.42(25) 62.87(75) −48.83(30)
RLCCSD(T) [10] 91.3(9) 62.0(5)
Expt. DFI [74] 86(11)

Ba+

6s1/2 5d3/2 5d5/2 6p1/2 6p3/2

αS
1 αS

1 αT
1 αS

1 αT
1 αS

1 αS
1 αT

1

DHFCP-LMM 120.74(9) 49.438(26) −21.403(93) 49.832(28) −29.183(120) 22.39(41) 45.86(36) 3.110(86)
RCCSD [6] 123.18 53.80 −22.92 56.53 −31.83 20.46 45.53 4.70
RCCSD(T) [7] 123.7(5) 54.17(250) −22.19(4) 56.87(240) −32.17(3)
RCCSD(T) [13] 124.26(100) 48.81(46) −24.62(28) 50.67(58) −30.85(31)
RLCCSD(T) [11] 124.15
Expt. RESIS [75] 123.88(5)
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TABLE V. Static scalar quadrupole (αS
2 ) polarizabilities (in a.u.) of the five lowest states in Ca+, Sr+, and Ba+. Core polarizabilities from

Refs. [11,14,71] are added to the DHFCP-LMM valence αS
2 (v) results. Comparison with other theory and experiment. Uncertainties in the last

digits are given within parentheses.

Ca+

4s1/2 3d3/2 3d5/2 4p1/2 4p3/2

Method αS
2 αS

2 αS
2 αS

2 αS
2

DHFCP-LMM 875.78(223) 5143(111) −3435(76) 74803(150) −35781(76)
DFCP [4] 882.43 4928 −3304 74660 −35710
RCCSD(T) [14] 906(5) −3706(75)
RMBPT-SD [5] 871(4)

Sr+

5s1/2 4d3/2 4d5/2 5p1/2 5p3/2

αS
2 αS

2 αS
2 αS

2 αS
2

DHFCP-LMM 1351.7(44) 2777(43) −1773(36) 31576(79) −13091(43)
RCICP [9] 1356.3(315) 2713(44) −1728(23) 31596(455) −13099(225)
RCCSD(T) [14] 1366(9) −1732(41)
RMBPT-SD [12] 1370.0(28)
Expt. DFI [74] 1.1(10)×103

Ba+

6s1/2 5d3/2 5d5/2 6p1/2 6p3/2

αS
2 αS

2 αS
2 αS

2 αS
2

DHFCP-LMM 4067(4) 728.4(15) −1127(6) 23423(4) −6973(7)
RLCCSD(T) [11] 4182(34)
Expt. RESIS [75] 4420(250)

Using the second set of core polarizabilities in Eqs. (11)
and (12) enables estimation of theoretical uncertainties on the
values displayed in Tables IV and V. Note that using another
set of core dipole values implies determination of other ρκv

values in Eq. (11) to ensure relative errors on εDHFCP
v below

10−7 with respect to NIST data.
In order to study the accuracy of the DHFCP-LMM

approach, the present results are compared with other
semiempirical-core-potential approaches (RCICP–relativistic
configuration interaction with a semiempirical core poten-
tial, DFCP–Dirac-Fock with a semiempirical core potential),
with ab initio methods (RMBPT-SD–relativistic many-body
perturbation theory with single and double contributions,
R(L)CCSD(T)–relativistic (linearized) coupled cluster method
with single, double (and partial triple) contributions), and
with experimental works (SA–spectral analysis, DFI–delayed
field ionization, RESIS–resonant excitation Stark ionization
spectroscopy).

1. Dipole polarizabilities

The ground (n + 1)s1/2 dipole polarizabilities involve
n′p1/2,3/2 intermediate states. They are dominated by the
resonant (n + 1)s1/2 → (n + 1)pj transitions, and their accu-
racy is largely dependent on the accuracy of the transition
matrix elements connecting these states. Excellent consistency
is found with RCICP [3] and DFCP [4] for Ca+ (n = 3)
and with RCICP [9] for Sr+ (n = 4), while no reference
value is available with these approaches for Ba+ (n = 5). The
agreement with ab initio calculations is satisfactory, although
the present method tends to underestimateαS

1 by a few percents.
This is also true for the RCICP and DFCP methods, and is a
direct consequence of the slightly different line strengths for
the resonant transitions in these two types of calculations. Good

agreement with observation is found for Ca+, while the large
uncertainty of the experimental value for Sr+ cannot be used
to discriminate between theoretical estimates. By contrast, ab
initio calculations are more consistent with experiment than
the present one for Ba+.

The ndj dipole polarizabilities involve n′p1/2,3/2,n
′f5/2

states for nd3/2, and n′p3/2,n
′f5/2,7/2 states for nd5/2. The

results of αS
1 and αT

1 are consistent with RCICP and DFCP
for Ca+ and Sr+. The agreement with ab initio methods is
satisfactory for Ca+ and Sr+, while for Ba+ better agreement
is found with Ref. [13] than with Refs. [6] and [7].

The (n + 1)pj dipole polarizabilities involve n′s1/2,n
′d3/2

states, and additional n′d5/2 states for (n + 1)p3/2. Negative αS
1

values for Ca+ and Sr+ arise from negative oscillator strengths
of the transitions to (n + 1)s1/2 and ndj . For 4pj states in
Ca+, cancellations in the sum lead to small αS

1 values, and
consistency with RCICP and DFCP is poor. Moreover, the ab
initio works do not agree with each other. Better agreement
is found between αT

1 values of 4p3/2. For 5pj states in Sr+,
excellent consistency is obtained with RCICP. Results are
in good agreement with ab initio methods for αS

1 , while the
present αT

1 value of 5p3/2 is around 8% smaller because the
matrix element of 5s1/2 → 5p3/2 is smaller. Only one ab initio
calculation is available for 6pj states in Ba+. The agreement
is poor (10% difference) for 6p1/2. For 6p3/2, αS

1 values agree
well, while αT

1 results disagree because of oscillator strength
cancellations associated with a higher uncertainty.

2. Quadrupole polarizabilities

The ground (n + 1)s1/2 quadrupole polarizabilities involve
n′d3/2,5/2 states. The present values agree very well (<1% dif-
ferences) with DFCP [4] for Ca+ and with RCICP [9] for Sr+,
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TABLE VI. 2E1 decay rates, W2E1 (in s−1), of the ndj → (n +
1)s1/2 transitions in Ca+ (n = 3), Sr+ (n = 4), and Ba+ (n = 5).
DHF-LMM and DHFCP-LMM values are compared with results from
Refs. [38] and [76].a Uncertainties in the last digits are given within
parentheses. Powers of 10 are indicated within brackets.

W2E1 (s−1)

LMM Refs. [38,76]a

Transition DHF DHFCP DHF All order

Ca+

3d3/2 → 4s1/2 3.446 [−3] 1.030(2) [−4] 3.458 [−3] 9.800 [−5]
3d5/2 → 4s1/2 3.392 [−3] 1.047(2) [−4] 3.404 [−3] 9.945 [−5]

Sr+

4d3/2 → 5s1/2 2.765 [−3] 3.465(11) [−4] 2.777 [−3] 3.525 [−4]
4d5/2 → 5s1/2 2.704 [−3] 3.753(11) [−4] 2.718 [−3] 3.807 [−4]

Ba+

5d3/2 → 6s1/2 7.359 [−6] 1.446(9) [−7] 7.384 [−6] 1.538 [−7]
5d5/2 → 6s1/2 1.005 [−5] 3.851(25) [−7] 1.013 [−5] 4.039 [−7]

aCorrected values [76]; a factor 1/2 is missing in Ref. [38].

while no reference value is available with these approaches for
Ba+. The comparison with ab initio methods shows that the
present values are a few percents lower, for the same reason as
for dipole polarizabilities. The Sr+ experimental value from
Ref. [74] is clearly incompatible with the theoretical works,
while for Ba+ the experimental result from Ref. [75] is in
favor of the ab initio number, matching within the experimental
uncertainties.

The ndj quadrupole polarizabilities involve n′s1/2,

n′d3/2,5/2,n
′g7/2 states and additional n′g9/2 states for nd5/2.

Hence, ndj intermediate states must be excluded from the
sum over n′ in the ndj polarizability. The present values for
Ca+ differ from the DFCP results by 4% and do not match
with RCICP within the theoretical uncertainties for Sr+. The
agreement with other semiempirical approaches is thus poor.
Ab initio values are only available for nd5/2 states. The level of
agreement ranges from 5% to 9% for Ca+ and below 5% for
Sr+. Note that no reference number for the 5dj states in Ba+

is available for comparison.
The (n + 1)pj quadrupole polarizabilities involve

n′p3/2,n
′f5/2 states, and additional n′p1/2,n

′f7/2 states
for (n + 1)p3/2. Hence, (n + 1)p3/2 intermediate states
must be excluded from the sum over n′ in the (n + 1)p3/2

polarizability. Excellent consistency (0.2% differences) with
DFCP and RCICP is obtained for Ca+, and the values agree
very well within the theoretical uncertainties for Sr+. As for
the 5dj states, no reference number for the 6pj states in Ba+

is available for comparison.

D. Calculations of decay rates and lifetimes

Table VI displays 2E1 decay rates, W2E1 (in s−1), of
the ndj → (n + 1)s1/2 transitions in Ca+ (n = 3), Sr+

(n=4), and Ba+ (n=5) ions. The nd3/2 → (n + 1)s1/2

transitions involve n′p1/2,3/2 intermediate states, while the
nd5/2 → (n + 1)s1/2 transitions only involve n′p3/2 states.
The DHF-LMM and DHFCP-LMM results are computed
in the length gauge with Nc = Nv = N ′ = 50 Lagrange

functions. The integral over ω1 is evaluated with Nω1 = 50
mesh points. Significant digits are estimated by increasing
N ′ from 50 to 80 and by comparing results from M I and
M II. Better agreement between M I and M II is obtained
for DHFCP-LMM results, since DHF-LMM energies differ
more significantly between both integration methods. As
for Tables IV and V, using the second set of core dipole
polarizabilities enables us to estimate theoretical uncertainties
on the DHFCP-LMM values displayed in Table VI.

As mentioned in Sec. I, only one prior calculation has
been carried out in these ions [38] using the ab initio rela-
tivistic single-double all-order method. The comparison with
the present results enabled detection that a factor 1/2 was
missing in Table I of Ref. [38]. Indeed, both approaches
led to comparable differential decay rates dW 2E1/dω1, and
the only source of error was a wrong choice of bounds for
the integration over ω1. A corrigendum has recently been
published in Ref. [76].

The DHF-LMM results agree very well with corrected
reference values, since both calculations are based on an ab
initio method. The differences range from 0.4% to 0.5%, apart
from 0.8% for the 5d5/2 → 6s1/2 transition in Ba+. By contrast,
differences between the DHFCP-LMM results and corrected
all-order values are one order of magnitude higher, ranging
from 1.4% to 6.0% depending on the studied ion. However,
the overall agreement is highly satisfying, keeping in mind
that semiempirical results are compared to an ab initio method
that explicitly includes single- and double-electron excitations
to all orders of perturbation theory. Besides, the present study
leads to the same conclusion as in Ref. [38], i.e., that the DHF
values of the 2E1 decay rates are strongly modified by the
inclusion of electron correlation. Indeed, the DHF calculation
overestimates the rates by factors of 10–50.

Table VII displays lifetimes, τ (in s), and multipole contri-
butions to the transition rates, W (in s−1), of the ndj states
in Ca+ (n = 3), Sr+ (n = 4), and Ba+ (n = 5) ions. The
DHFCP-LMM values of the 2E1 decay rates are taken from
Table VI. The DHFCP-LMM values of the E2 decay rates are
computed in the length gauge with Nc = Nv = 50, and M1
decay rates are computed with the same parameters. Significant
digits of the E2 and M1 results are estimated by comparison
with Nv = 60 considering M I and M II, and the comparison of
the results from M I and M II allows the precision of the values
displayed in Table VII to be assessed. Again, an estimation of
theoretical uncertainties of the values displayed in Table VII is
obtained by using the second set of core dipole and quadrupole
polarizabilities.

DHFCP-LMM results of the total lifetimes τ are compared
with other theory and with observation in order to study the
accuracy of the present approach. While the cited theoretical
references report only on calculations of E2 and M1 contribu-
tions to the lifetimes of the ndj states, the present work also
includes the 2E1 contributions.

While the nd3/2 states can decay only via nd3/2 → (n +
1)s1/2 channels, the nd5/2 states decay via nd5/2 → (n + 1)s1/2

and nd5/2 → nd3/2 channels. 2E1 decay rates being propor-
tional to ω6, their contribution is negligible for nd5/2 → nd3/2

(<10−13 s−1) but not for ndj → (n + 1)s1/2. E2 decay rates,
proportional to ω5, are dominant for ndj → (n + 1)s1/2. They
are negligible for nd5/2 → nd3/2 in Ca+ and Sr+, but they
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TABLE VII. Lifetimes, τ (in s), and multipole contributions to the transition rates, W (in s−1), of the ndj states in Ca+ (n = 3), Sr+ (n = 4),
and Ba+ (n = 5). DHFCP-LMM results of the total lifetimes τ are compared with other theory and experiment. Uncertainties in the last digits
are given within parentheses. Powers of 10 are indicated within brackets for W .

τ (s) W (s−1)

State DHFCP-LMM Other theory Experiment Decay channel Multipole DHFCP-LMM

Ca+

3d3/2 1.154(7) 1.194(11) [34] 1.111(46) [19] 3d3/2 → 4s1/2 E2 8.662(49) [−1]
1.143(1) [4] 1.17(5) [20] M1 1.947(61) [−11]
1.185(7) [35] 1.20(1) [21] 2E1 1.030(2) [−4]
1.196(11) [17] 1.176(11) [17]

∑
W 8.663(49) [−1]

1.16 [36] 1.113(45) [22]

3d5/2 1.124(6) 1.163(11) [34] 1.174(10) [24] 3d5/2 → 4s1/2 E2 8.892(49) [−1]
1.114(1) [4] 1.09(5) [20] 2E1 1.047(2) [−4]
1.110(9) [35] 1.168(7) [21] 3d5/2 → 3d3/2 E2 2.207(28) [−13]
1.165(11) [17] 1.168(9) [17] M1 2.422(11) [−6]
1.14 [36] 1.100(18) [23]

∑
W 8.893(49) [−1]

Sr+

4d3/2 0.445(3) 0.437(14) [34] 0.435(4) [25] 4d3/2 → 5s1/2 E2 2.245(18)
0.4442(67) [9] 0.435(4) [26] M1 9.223(27) [−11]
0.441(3) [10] 0.455(29) [26] 2E1 3.465(11) [−4]
0.426(8) [35] 0.395(38) [27]

∑
W 2.245(19)

4d5/2 0.398(3) 0.3945(22) [34] 0.372(25) [28] 4d5/2 → 5s1/2 E2 2.509(20)
0.3974(59) [9] 0.408(22) [26] 2E1 3.753(11) [−4]
0.394(3) [10] 0.3908(16) [29] 4d5/2 → 4d3/2 E2 1.130(19) [−9]
0.357(12) [35] 0.347(11) [30] M1 2.378(1) [−4]

0.345(33) [27]
∑

W 2.510(20)

Ba+

5d3/2 83.86(15) 81.4(14) [34] 79.8(46) [31] 5d3/2 → 6s1/2 E2 1.192(3) [−2]
81.5(12) [11] 89.4(156) [18] M1 2.696(26) [−11]
82.0 [18] 2E1 1.446(9) [−7]
80.086(714) [35]

∑
W 1.192(3) [−2]

81.5 [37]

5d5/2 31.09(4) 30.34(48) [34] 31.2(9) [32] 5d5/2 → 6s1/2 E2 2.662(5) [−2]
30.3(4) [11] 34.5(35) [28] 2E1 3.851(25) [−7]
31.6 [18] 32.0(46) [18] 5d5/2 → 5d3/2 E2 2.622(10) [−7]
29.856(296) [35] 32(5) [33] M1 5.543(2) [−3]
30.3 [37]

∑
W 3.216(5) [−2]

become comparable to 2E1 contributions for 5d5/2 → 5d3/2

in Ba+. M1 decay rates, proportional to ω3, are negligible
for nd3/2 → (n + 1)s1/2 but not for nd5/2 → nd3/2. However,
their contribution is only significant to the 5d3/2 lifetime
in Ba+.

Taking the inverse of the total decay rates W (in s−1) yields
the total lifetimes τ (in s). The DHFCP-LMM results agree very
well (<1% differences) with DFCP [4] for Ca+ and RCICP
[9] for Sr+, and good consistency is found with various ab
initio calculations for these two ions. Among them, 0.5%–5%
differences are obtained with the very recent work using the
relativistic all-order method [34]. For each ndj lifetime of
Ca+ and Sr+, the present results lie within the uncertainties of
at least one experiment, and the discrepancies with the other
experimental values are not high. It should be noticed that
discrepancies also occur among theoretical and experimental
values as well as between the two of them. Lifetimes are
longer in Ba+ than in Ca+ and Sr+. Comparison of the present
calculation of 5dj lifetimes with Ref. [34] yields 0.9%–5%

differences, in the same range as in Ca+ and Sr+. Values vary
from one to two units between ab initio calculations, and the
large experimental uncertainties due to the long lifetimes do
not allow discrimination between the different works.

V. CONCLUSIONS

This work presents DHFCP-LMM calculations of polar-
izabilities, one- and two-photon decay rates, and associated
lifetimes in Ca+, Sr+, and Ba+ ions. Two integration methods
are devised to compute two-electron Slater integrals, and the
comparison of their results allows the precision of the values
displayed in the tables to be assessed. In addition, the effect
of variations in the values of the core dipole and quadrupole
polarizabilities on the final results is studied, which enables
estimation of theoretical uncertainties on the latter.

The core orbitals are defined by a closed-shell DHF cal-
culation with the GRASP2K package and are projected on
Lagrange bases. The single valence electron is described in
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the frozen-core approximation by a Dirac-like Hamiltonian
involving a CP potential to simulate the core-valence electron
correlation. Comparing with GRASP2K results, the accuracy
on core energies is ∼10−7, while the one on DHF valence
energies is ∼10−5 for the five lowest states of each ion. With
the inclusion of VCP, calculated energies are fitted with relative
errors <10−7 in comparison with observation.

Turning to dipole and quadrupole polarizabilities, the agree-
ment with other semiempirical approaches is excellent for
Ca+ and Sr+, while no such reference value exists for Ba+.
Overall good agreement is obtained with ab initio methods
and observation, although semiempirical approaches under-
estimate the ground-state polarizabilities by a few percents.
The principal limitation of the accuracy on polarizabilities
with such approaches lies in the accuracy of the core polar-
izabilities, which have to be computed with an independent
method.

For the 2E1 ndj → (n + 1)s1/2 decay rates, a comparison
with Refs. [38] and [76] shows that both DHF results agree very
well with each other and that a satisfying agreement is obtained
between the DHFCP-LMM and all-order values. Both works
conclude that the DHF values are strongly modified by the
inclusion of electron correlation.

The lifetimes estimation of the metastable ndj states in-
volves the study of the competition between the E2, M1,
and 2E1 decay channels. The present results agree very well
with other semiempirical approaches for Ca+ and Sr+, and
overall good consistency is found with ab initio calculations
and experiments. Results vary more significantly between
calculations for Ba+, and the few existing experiments are
associated with large uncertainties. Moreover, the contribution
of the 2E1 processes to the total decay rates of ndj states is
negligible (0.001%–0.01%) at the present level of theoretical
and experimental accuracy. This conclusion had already been
reached in Ref. [38]. Estimating more accurate lifetimes for the
ndj metastable states in these three ions currently represents a
difficult task. Other decay processes are expected to compete
with the E2, M1, and 2E1 channels, such as magnetic-field-
induced transitions (MIT), and hyperfine-induced transitions
(HIT) for odd-A isotopes of these three ions. These processes
are likely to modify the existing theoretical lifetime values. Be-
sides, high-precision experimental results are urgently needed
to test the theoretical predictions of the 5dj lifetimes in Ba+.

Our work is based on a fully relativistic version of the
semiempirical-core-potential approach. As such, it is an ap-
proximate method, where the comparison with experiments
and other theories should in principle provide an assessment
of the errors due to physical effects that are not included in
the model. As illustrated by Tables IV–VII, estimating more
realistic theoretical uncertainties based on such comparisons
would be statistically meaningless, due to the dispersion of ab
initio and experimental values.

Comparison with other theory and observation shows that
the DHFCP-LMM method provides a simple and efficient
way for evaluating properties of alkalilike ions involving an
infinite number of intermediates states, such as relativistic
polarizabilities and two-photon decay rates. By using the
LMM, which allows a simple computation of one-body matrix
elements, and by developing Gauss-quadrature-based methods
to accurately evaluate the two-electron Slater integrals, precise

results are obtained with small computing times and memory
requirements. Besides, the use of the GRASP2K package for
core-orbital calculations reduces the code-development effort
to only single-valence-electron calculations. The present ap-
proach can play a role in further improvement of theoretical
ndj lifetimes in these three ions. It can also be used to study
a variety of heavy alkalilike systems, such as Cs, Fr, Ra+, and
Yb+, for which theoretical results and experimental data are
available for comparison, or others for which information is
not available. Dynamic polarizabilities, hyperpolarizabilities,
and dispersion coefficients involved in long-range interactions
between pairs of atoms can be studied in various alkalilike
systems. From a methodological point of view, the LMM
could also offer some computational advantages for estimating
other properties involving an infinite number of intermediate
states, such as atomic electric dipole moments and parity
nonconservation amplitudes.
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APPENDIX: TWO-ELECTRON SLATER INTEGRALS
ON LAGRANGE MESHES

Starting with M I, let us introduce in Eq. (33) the expansion
Y k

q (jc; r) = h̄−1/2∑N̄
l=1 yl f̂

(ᾱ=0)
l (r/h̄), satisfying the bound-

ary condition Y k
q (jc; 0) = 0 since f̂

(0)
l (0) = 0. Projecting the

left-hand side of Eq. (33) on h̄−1/2f̂
(0)
l′ (r/h̄) leads to [45]

h̄−2

⎧⎨
⎩

N̄∑
l �=l′

yl

[
(−1)l−l′+1 x̄l + x̄l′√

x̄l x̄l′ (x̄l − x̄l′ )2

]

+yl′

[
x̄2

l′ − 2(2N̄ + 1)x̄l′ − 4

12x̄2
l′

− k(k + 1)

x̄2
l′

]⎫⎬
⎭ (A1)

for l′ = 1 to N̄ , using a Gauss quadrature with parameters
N̄ = Nv + Nc, h̄ = 2hc, and ᾱ = 0. The first two values are
deduced from expression (32), while the Schrödinger-like form
of Eq. (33) requires an integer value of ᾱ to reproduce the exact
behavior of Y k

q (jc; r) near the origin. Projecting the right-hand

side of Eq. (33) on h̄−1/2f̂
(0)
l′ (r/h̄) leads to

−(h̄hv)−1/2
NG∑
m=1

λ̃m f̂
(0)
l′ (h̃x̃m/h̄)

2k + 1

x̃m

×Qc(h̃x̃m)f̂ (αv )
j (h̃x̃m/hv) (A2)

for l′ = 1 to N̄ , using a Gauss quadrature with parame-
ters NG > Nv + Nc, h̃ = 4hvhc/(3hv + 2hc), and α̃ = (αv +
αc)/2. The equality of Eqs. (A1) and (A2) defines an N̄×N̄

algebraic system which is solved with a standard technique.
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For the case k = 0, the expansion of Y 0
q (jc; r) is not able

to reproduce the asymptotic behavior Y 0
q (jc; ∞) �= 0 since

f̂
(0)
l (r/h̄) → 0 as r → ∞. To overcome this issue, the function

Y 0
q (jc; ∞) (1 − e−r ) is subtracted from Y 0

q (jc; r) in Eq. (33),
and Eq. (A2) is modified to include the Gauss quadrature
of Y 0

q (jc; ∞)
∫∞

0 h̄−1/2f̂
(0)
l′ (r/h̄) e−r dr . Y 0

q (jc; r) is recovered
by adding back Y 0

q (jc; ∞) (1 − e−r ) to the solution of the
modified algebraic system. Once Y k

q (jc; r) is known, integral
(34) is expressed using a Gauss quadrature with the same
parameters as in (A2):

Rk
pq(ic,cj ) ≈ h−1/2

v

NG∑
m=1

λ̃m f̂
(αv )
i (h̃x̃m/hv)Pc(h̃x̃m)

× 1

x̃m

Y k
q (jc; h̃x̃m). (A3)

Turning to M II, let us start with the integral over r

in Eq. (37). Defining h̄ ≡ 2hvhc/(hv + hc), the integrand
reads

(r + r2)(αv+αc)/2−k PNv+Nc−1(r + r2) e−(r+r2)/h̄, (A4)

where PNv+Nc−1 is a polynomial of degree Nv + Nc − 1 and
the first factor is nonpolynomial. Expression (A4) suggests that
computing the integral over r by the Gauss-Laguerre quadra-
ture with weight function exp (−r/h̄) and NG > (Nv + Nc)/2
points should be efficient. Denoting the associated abscissae

and weights by h̄x̄m and h̄λ̄m (with m = 1 to NG) yields∫ ∞

0

f̂
(αv )
i [(r + r2)/hv]Pc(r + r2)

(r + r2)k+1
dr

≈ h̄

NG∑
m=1

λ̄m

f̂
(αv )
i [(h̄x̄m + r2)/hv]Pc(h̄x̄m + r2)

(h̄x̄m + r2)k+1
. (A5)

For each term of the sum over m, the integrand of the integral
over r2 can be written as

(h̄x̄m + r2)(αv+αc)/2−k r
(αv+αc)/2
2 P̃2Nv+2Nc+k−1(r2) e−r2/h̃, (A6)

where P̃2Nv+2Nc+k−1 is a polynomial of degree 2Nv + 2Nc +
k − 1 and h̃ ≡ h̄/2. This expression incites us to evaluate
the integral over r2 by a Gauss-Laguerre quadrature with
weight function r

(αv+αc)/2
2 exp (−r/h̃) and N ′

G > Nv + Nc +
k/2 points. Let us denote by h̃x̃m′ and h̃λ̃m′ (with m′ = 1 to
N ′

G) the abscissae and weights of this Gauss quadrature. The
integral Rk

pq(ic,cj ) given by Eq. (37) reads, finally,

Rk
pq(ic,cj )

≈ h−1
v h̄h̃

N ′
G∑

m′=1

λ̃m′ f̂
(αv )
j (h̃x̃m′/hv)Qc(h̃x̃m′ ) (h̃x̃m′ )k

×
NG∑
m=1

λ̄m

f̂
(αv )
i [(h̄x̄m + h̃x̃m′ )/hv]Pc(h̄x̄m + h̃x̃m′ )

(h̄x̄m + h̃x̃m′ )k+1
. (A7)

[1] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43,
202001 (2010).

[2] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Rev. Mod. Phys. 87, 637 (2015).

[3] J. Jiang, L. Jiang, X. Wang, D.-H. Zhang, L.-Y. Xie, and C.-Z.
Dong, Phys. Rev. A 96, 042503 (2017).

[4] Y. B. Tang, H. X. Qiao, T. Y. Shi, and J. Mitroy, Phys. Rev. A
87, 042517 (2013).

[5] M. S. Safronova and U. I. Safronova, Phys. Rev. A 83, 012503
(2011).

[6] J. Kaur, S. Singh, B. Arora, and B. K. Sahoo, Phys. Rev. A 92,
031402(R) (2015).

[7] J. Kaur, S. Singh, B. Arora, and B. K. Sahoo, Phys. Rev. A 95,
042501 (2017).

[8] B. Arora, M. S. Safronova, and C. W. Clark, Phys. Rev. A 76,
064501 (2007).

[9] J. Jiang, J. Mitroy, Y. Cheng, and M. W. J. Bromley, Phys. Rev.
A 94, 062514 (2016).

[10] J. Jiang, B. Arora, M. S. Safronova, and C. W. Clark, J. Phys. B:
At. Mol. Opt. Phys. 42, 154020 (2009).

[11] E. Iskrenova-Tchoukova and M. S. Safronova, Phys. Rev. A 78,
012508 (2008).

[12] U. I. Safronova, Phys. Rev. A 82, 022504 (2010).
[13] B. K. Sahoo, R. G. E. Timmermans, B. P. Das, and D. Mukherjee,

Phys. Rev. A 80, 062506 (2009).
[14] B. Arora, D. K. Nandy, and B. K. Sahoo, Phys. Rev. A 85, 012506

(2012).

[15] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and
T. Rosenband, Phys. Rev. Lett. 104, 070802 (2010).

[16] N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, and E. Peik,
Phys. Rev. Lett. 116, 063001 (2016).

[17] A. Kreuter, C. Becher, G. P. T. Lancaster, A. B. Mundt, C. Russo,
H. Häffner, C. Roos, W. Hänsel, F. Schmidt-Kaler, R. Blatt, and
M. S. Safronova, Phys. Rev. A 71, 032504 (2005).

[18] J. Gurell, E. Biémont, K. Blagoev, V. Fivet, P. Lundin,
S. Mannervik, L.-O. Norlin, P. Quinet, D. Rostohar, P. Royen,
and P. Schef, Phys. Rev. A 75, 052506 (2007).

[19] M. Knoop, M. Vedel, and F. Vedel, Phys. Rev. A 52, 3763 (1995).
[20] J. Lidberg, A. Al-Khalili, L.-O. Norlin, P. Royen, X. Tordoir,

and S. Mannervik, J. Phys. B 32, 757 (1999).
[21] P. A. Barton, C. J. S. Donald, D. M. Lucas, D. A. Stevens, A. M.

Steane, and D. N. Stacey, Phys. Rev. A 62, 032503 (2000).
[22] F. Arbes, F. Benzing, T. Gudjons, F. Kurth, and G. Werth,

Z. Phys. D: At. Mol. Clusters 29, 159 (1994).
[23] M. Block, O. Rehm, P. Seibert, and G. Werth, Eur. Phys. J. D 7,

461 (1999).
[24] H. Guan, Y. Huang, P.-L. Liu, W. Bian, H. Shao, and K.-L. Gao,

Chin. Phys. B 24, 054213 (2015).
[25] S. Mannervik, J. Lidberg, L.-O. Norlin, P. Royen, A. Schmitt,

W. Shi, and X. Tordoir, Phys. Rev. Lett. 83, 698 (1999).
[26] E. Biémont, S. Mannervik, L.-O. Norlin, P. Royen, A. Schmitt,

W. Shi, and X. Tordoir, Eur. Phys. J. D 11, 355 (2000).
[27] C. Gerz, T. Hilberath, and G. Werth, Z. Phys. D: At. Mol. Clusters

5, 97 (1987).

012506-13

https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1088/0953-4075/43/20/202001
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/PhysRevA.96.042503
https://doi.org/10.1103/PhysRevA.96.042503
https://doi.org/10.1103/PhysRevA.96.042503
https://doi.org/10.1103/PhysRevA.96.042503
https://doi.org/10.1103/PhysRevA.87.042517
https://doi.org/10.1103/PhysRevA.87.042517
https://doi.org/10.1103/PhysRevA.87.042517
https://doi.org/10.1103/PhysRevA.87.042517
https://doi.org/10.1103/PhysRevA.83.012503
https://doi.org/10.1103/PhysRevA.83.012503
https://doi.org/10.1103/PhysRevA.83.012503
https://doi.org/10.1103/PhysRevA.83.012503
https://doi.org/10.1103/PhysRevA.92.031402
https://doi.org/10.1103/PhysRevA.92.031402
https://doi.org/10.1103/PhysRevA.92.031402
https://doi.org/10.1103/PhysRevA.92.031402
https://doi.org/10.1103/PhysRevA.95.042501
https://doi.org/10.1103/PhysRevA.95.042501
https://doi.org/10.1103/PhysRevA.95.042501
https://doi.org/10.1103/PhysRevA.95.042501
https://doi.org/10.1103/PhysRevA.76.064501
https://doi.org/10.1103/PhysRevA.76.064501
https://doi.org/10.1103/PhysRevA.76.064501
https://doi.org/10.1103/PhysRevA.76.064501
https://doi.org/10.1103/PhysRevA.94.062514
https://doi.org/10.1103/PhysRevA.94.062514
https://doi.org/10.1103/PhysRevA.94.062514
https://doi.org/10.1103/PhysRevA.94.062514
https://doi.org/10.1088/0953-4075/42/15/154020
https://doi.org/10.1088/0953-4075/42/15/154020
https://doi.org/10.1088/0953-4075/42/15/154020
https://doi.org/10.1088/0953-4075/42/15/154020
https://doi.org/10.1103/PhysRevA.78.012508
https://doi.org/10.1103/PhysRevA.78.012508
https://doi.org/10.1103/PhysRevA.78.012508
https://doi.org/10.1103/PhysRevA.78.012508
https://doi.org/10.1103/PhysRevA.82.022504
https://doi.org/10.1103/PhysRevA.82.022504
https://doi.org/10.1103/PhysRevA.82.022504
https://doi.org/10.1103/PhysRevA.82.022504
https://doi.org/10.1103/PhysRevA.80.062506
https://doi.org/10.1103/PhysRevA.80.062506
https://doi.org/10.1103/PhysRevA.80.062506
https://doi.org/10.1103/PhysRevA.80.062506
https://doi.org/10.1103/PhysRevA.85.012506
https://doi.org/10.1103/PhysRevA.85.012506
https://doi.org/10.1103/PhysRevA.85.012506
https://doi.org/10.1103/PhysRevA.85.012506
https://doi.org/10.1103/PhysRevLett.104.070802
https://doi.org/10.1103/PhysRevLett.104.070802
https://doi.org/10.1103/PhysRevLett.104.070802
https://doi.org/10.1103/PhysRevLett.104.070802
https://doi.org/10.1103/PhysRevLett.116.063001
https://doi.org/10.1103/PhysRevLett.116.063001
https://doi.org/10.1103/PhysRevLett.116.063001
https://doi.org/10.1103/PhysRevLett.116.063001
https://doi.org/10.1103/PhysRevA.71.032504
https://doi.org/10.1103/PhysRevA.71.032504
https://doi.org/10.1103/PhysRevA.71.032504
https://doi.org/10.1103/PhysRevA.71.032504
https://doi.org/10.1103/PhysRevA.75.052506
https://doi.org/10.1103/PhysRevA.75.052506
https://doi.org/10.1103/PhysRevA.75.052506
https://doi.org/10.1103/PhysRevA.75.052506
https://doi.org/10.1103/PhysRevA.52.3763
https://doi.org/10.1103/PhysRevA.52.3763
https://doi.org/10.1103/PhysRevA.52.3763
https://doi.org/10.1103/PhysRevA.52.3763
https://doi.org/10.1088/0953-4075/32/3/017
https://doi.org/10.1088/0953-4075/32/3/017
https://doi.org/10.1088/0953-4075/32/3/017
https://doi.org/10.1088/0953-4075/32/3/017
https://doi.org/10.1103/PhysRevA.62.032503
https://doi.org/10.1103/PhysRevA.62.032503
https://doi.org/10.1103/PhysRevA.62.032503
https://doi.org/10.1103/PhysRevA.62.032503
https://doi.org/10.1007/BF01437133
https://doi.org/10.1007/BF01437133
https://doi.org/10.1007/BF01437133
https://doi.org/10.1007/BF01437133
https://doi.org/10.1007/s100530050590
https://doi.org/10.1007/s100530050590
https://doi.org/10.1007/s100530050590
https://doi.org/10.1007/s100530050590
https://doi.org/10.1088/1674-1056/24/5/054213
https://doi.org/10.1088/1674-1056/24/5/054213
https://doi.org/10.1088/1674-1056/24/5/054213
https://doi.org/10.1088/1674-1056/24/5/054213
https://doi.org/10.1103/PhysRevLett.83.698
https://doi.org/10.1103/PhysRevLett.83.698
https://doi.org/10.1103/PhysRevLett.83.698
https://doi.org/10.1103/PhysRevLett.83.698
https://doi.org/10.1007/s100530070063
https://doi.org/10.1007/s100530070063
https://doi.org/10.1007/s100530070063
https://doi.org/10.1007/s100530070063
https://doi.org/10.1007/BF01436883
https://doi.org/10.1007/BF01436883
https://doi.org/10.1007/BF01436883
https://doi.org/10.1007/BF01436883


LIVIO FILIPPIN et al. PHYSICAL REVIEW A 97, 012506 (2018)

[28] A. A. Madej and J. D. Sankey, Opt. Lett. 15, 634 (1990).
[29] V. Letchumanan, M. A. Wilson, P. Gill, and A. G. Sinclair,

Phys. Rev. A 72, 012509 (2005).
[30] G. P. Barwood, C. S. Edwards, P. Gill, H. A. Klein, and

W. R. Rowley, in Eleventh International Conference on Laser
Spectroscopy, 1993, edited by L. Bloomfield, T. Gallagher, and
D. Larson, AIP Conf. Proc. (AIP, New York, 1993), p. 35.

[31] N. Yu, W. Nagourney, and H. Dehmelt, Phys. Rev. Lett. 78, 4898
(1997).

[32] C. Auchter, T. W. Noel, M. R. Hoffman, S. R. Williams, and
B. B. Blinov, Phys. Rev. A 90, 060501 (2014).

[33] W. Nagourney, J. Sandberg, and H. Dehmelt, Phys. Rev. Lett.
56, 2797 (1986).

[34] U. I. Safronova, M. S. Safronova, and W. R. Johnson, Phys. Rev.
A 95, 042507 (2017).

[35] B. K. Sahoo, M. R. Islam, B. P. Das, R. K. Chaudhuri, and
D. Mukherjee, Phys. Rev. A 74, 062504 (2006).

[36] N. Vaeck, M. Godefroid, and C. F. Fischer, Phys. Rev. A 46,
3704 (1992).

[37] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.
A 63, 062101 (2001).

[38] M. S. Safronova, W. R. Johnson, and U. I. Safronova, J. Phys. B
43, 074014 (2010).

[39] I. P. Grant, Relativistic Quantum Theory of Atoms and Molecules
(Springer, New York, 2007).

[40] M. S. Safronova and W. R. Johnson, Adv. At. Mol. Opt. Phys.
55, 191 (2008).

[41] C. F. Fischer, M. Godefroid, T. Brage, P. Jönsson, and G.
Gaigalas, J. Phys. B 49, 182004 (2016).

[42] J. Mitroy, J. Y. Zhang, and M. W. J. Bromley, Phys. Rev. A 77,
032512 (2008).

[43] J. Mitroy and J. Y. Zhang, Eur. Phys. J. D 46, 415
(2008).

[44] D. Baye and P.-H. Heenen, J. Phys. A 19, 2041 (1986).
[45] D. Baye, Phys. Rep. 565, 1 (2015).
[46] M. Vincke, L. Malegat, and D. Baye, J. Phys. B 26, 811

(1993).
[47] D. Baye, L. Filippin, and M. Godefroid, Phys. Rev. E 89, 043305

(2014).
[48] L. Filippin, M. Godefroid, and D. Baye, Phys. Rev. A 90, 052520

(2014).
[49] L. Filippin, M. Godefroid, and D. Baye, Phys. Rev. A 93, 012517

(2016).
[50] P. Jönsson, X. He, C. F. Fischer, and I. P. Grant, Comput. Phys.

Commun. 177, 597 (2007).

[51] P. Jönsson, G. Gaigalas, J. Bieroń, C. F. Fischer, and I. P. Grant,
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