
PHYSICAL REVIEW A 97, 012503 (2018)

Critical stability of the three-body system (Z, e−, e+)
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We studied the stability of the system (Z, e−, e+) as a function of the fixed nuclear charge Z. This system,
which can be a model to study more complex systems such as positrons bound to atoms or charged excitons in
semiconductors, is stable for Z < 1. We studied, using the diffusion Monte Carlo method, its ground-state energy
E(Z) as a function of the nuclear charge, giving a rigorous upper bound to the critical charge: Zc < 0.421. We
fitted the available data to give a nonvariational estimate of the critical charge: 0.418 < Zc < 0.419. We also
studied a P e bound excited state of unnatural parity and estimated its critical charge: 0.54 < Zc < 0.55.
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I. INTRODUCTION

The stability of matter composed by particles with different
charges and masses is a fundamental problem in many areas
of physics. The ultimate goal is to understand more deeply
the mechanism by which matter sometimes shows a collective
binding instead of splitting into smaller fragments. Atomic
and molecular physics were built on the studies of small
quantum systems, like the helium atom or the hydrogen
molecule. They served to define new concepts, to develop
new computational techniques, and to get new insight on the
properties of many-electron systems. After almost a century
the problem of stability of these systems is still being explored,
and only in recent years was a rigorous proof of the stability
of the hydrogen molecule given [1].

Solid-state physics is another field where the problem of
stability of charged excitons and biexcitons in semiconductors
in different environments and geometrical setting is being
actively studied both experimentally [2] and theoretically [3].
Here the behavior of electrons and holes is modeled using a
fictitious system of particles with varying charges and masses.

The study of stability of exotic matter, such as the tdμ

molecule, that plays a crucial role in the process of muon
catalyzed fusion, or systems of atoms and antiatoms such as
the hydrogen-antihydrogen system [4], is another application
of this fundamental problem.

Last but not least, in the last 20 years, hundreds of papers
have been devoted to the study of the stability of positron-atom
and positron-molecule systems in their ground [5] or excited
states [6]. A few atoms and ions are able to bind a positron,
while others can bind positronium, Ps (e+,e−), or both [7].
Sometime the structure of these systems seems well described
by a positron orbiting an atom. In other cases, Ps is responsible
for the binding. Unfortunately, our theoretical understanding
of these systems is far from satisfactory.

In recent years, there has been a renewed interest in
the stability of heliumlike systems as a function of the nu-
clear charge Z, considered as a real continuous variable. Of
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particular interest is the determination of the critical nuclear
charge Zc, the minimum value for which the system still has
at least one bound state, while for Z < Zc the system loses an
electron.

There has been a controversy in the literature on the
value of the critical charge Zc, which has finally been
established by Estienne and co-workers [8] to be Zc =
0.911 028 224 077 255 73 and independently confirmed by
Pilón and Turbiner [9].

The study of the two-electron atomic model has been fun-
damental in our understanding of the structure and properties
of larger atoms, but no such fundamental model has been
carefully studied in the field of systems containing a positron.
The fact that a system composed of a proton, an electron, and
a positron does not form a bound state [10] focused theoretical
attention towards the stable four-body system PsH, which has
been experimentally detected by Schrader and co-workers in
1992 [11] and to date is probably the most studied positronic
system.

There is, however a rarely studied three-body system that is
rich in features that, besides being of purely theoretical interest,
could pave the way to a deeper understanding of positronic
compounds. It is the Z-Ps system, composed of an electron
and a positron moving in the field of a fixed nucleus of charge
Z. This system could also be a model for an exciton bound to
a screened charge.

In this paper we investigate, using the diffusion Monte
Carlo (DMC) method, its energetic properties, with particular
attention to the value of the critical charge Zc for the ground
and one excited state. Atomic units are used throughout the
paper.

II. THE Z-Ps SYSTEM

Consider a positive and a negative unit charge moving in a
field generated by a fixed charge Z:

Ĥ = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
+ Z

r2
− 1

r12
.

Z-Ps has two dissociation channels: (Ze−) + e+ and Z + Ps
and two corresponding energy thresholds. For Z → 1 from
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below, the (Z,e−) hydrogenic system is negatively charged and
can bind a positron: The first energy threshold is the energy of
the hydrogenic system E = −Z2/2. When Z = 1 the system
dissociates into H + e+. When Z � 1 the system dissociates
into a Z charge and a positronium Ps. This energy threshold is
E = −1/4. In order to be chemically stable, disregarding the
electron-positron annihilation, the energy of the system must
be lower than both thresholds.

Harjiu and co-workers [12] described a simplified model of
Z-Ps. Consider the electron positioned close to the Z charge.
This system has energy −Z2/2. The orbiting positron feels an
effective charge of Z − 1, with an energy of −(Z − 1)2/2.

The total energy of this simplified model is

E(Z) = −1

2
+ Z − Z2 = Z2

(
−1 + 1

Z
− 1

2Z2

)
. (1)

Note that E(1) = −1/2, correctly recovering the first dis-
sociation limit. Going towards Z → 0, the system dissociates
into the fixed charge and the Ps system, with E = −1/4, but
the simplified model does not describe the physical situation.
Nevertheless the value of the threshold energy is reached for
Z = 1/2 and the three particles form a stable bound state for
1/2 < Z < 1. The calculations of Harjiu and co-workers [12]
showed that the stability domain extends somewhat for values
of Z < 1/2. They gave a first estimate of the critical charge
Zc ≈ 0.45, but did not attempt a more accurate determination
of the critical charge Zc. The main objective of this paper is to
give a more precise bound to Zc.

III. CALCULATIONS

The wave function of an electronic system containing a
positron, in most known cases, can be qualitatively under-
stood considering the two limiting cases. �(e+A), where a
positron can be considered attached to the unperturbed A

system, and �(PsA+) where the positron detaches an electron,
forming positronium, and the wave function describes Ps
orbiting around the A+ ion. The relative importance of the two
structures depends on the ionization potential of the species
A [13,14]. By varying the nuclear charge, Z-Ps can describe
either a Ps or a positron bound to a core; this makes it an
ideal model to study positronic systems. To this effect it is
extremely important that the employed functional form for
the wave function of Z-Ps has enough variational freedom to
represent both limiting cases.

We employed a compact correlated wave function [6,15] to
describe the ground state of Z-Ps for various Z charges:

� =
L∑

i=1

ϕi, (2)

ϕi = Pi1(r1)Pi2(r2)Pi3(r12), (3)

P (r) = e
a r+b r2

1+c r . (4)

The wave functions, with L = 4, were optimized using
variational Monte Carlo (VMC) and then used in subsequent
diffusion Monte Carlo (DMC) simulations. The ground-state

FIG. 1. DMC energy as a function of Z. The error bars are smaller
than the symbol size. The dashed curve is the energy of the simplified
model.

wave function is positive everywhere and DMC is able to
estimate the exact ground-state energy within a statistical error.

Short preliminary calculations in the range Z = 0.4 to 1
with large steps verified that for Z → 1 the system is always
bound and correctly dissociates into H + e+. Going in the
opposite direction this preliminary scan found the system
bound up to Z = 0.43 while for Z = 0.42 the statistical error
was larger than the binding energy. Figure 1 shows the curve
E(Z) along with the energy of the simplified model.

IV. DETERMINATION OF Zc

In order to give a more accurate estimate of the critical
charge Zc we performed much longer DMC simulations from
Z = 0.420 to 0.450 with steps of 0.001. The smallest value of
Z where the estimated energy still lies below the dissociation
threshold of −0.25 gives a rigorous upper bound to the value of
the critical charge. The results in Table I, computed eliminating
the time step bias on average, show that the system is still
bound for Z = 0.421. For Z = 0.420 our DMC energy was
statistically indistinguishable from the energy threshold so we
cannot say if the system is still bound and we can only say that
Zc < 0.421.

Estienne and co-workers [8] in their accurate estimation of
the critical charge of two-electron atoms performed a linear
extrapolation using six points very close to the critical point
computing the variational energy at intervals of Z of 10−13

with quadruple precision arithmetic. This kind of accuracy is
unattainable in DMC due to the inherent statistical error of the
simulations, so to give a second estimate of the critical charge
we follow a different route.

To estimate the critical point of the two-electron atom,
Zamastil and co-workers [16] and Guevara and Turbiner
[17] employed a Puiseux expansion with integer and half-
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TABLE I. DMC energies in a.u. for Z = 0.421 to 0.450. The error
bar on the last digits is in parentheses.

Z E (a.u.) DMC

0.421 − 0.2500019(13)
0.422 − 0.2500040(14)
0.423 − 0.2500084(14)
0.424 − 0.2500127(15)
0.425 − 0.2500174(16)
0.426 − 0.250024(2)
0.427 − 0.250030(2)
0.428 − 0.250038(2)
0.429 − 0.250048(2)
0.430 − 0.250058(2)
0.431 − 0.250067(2)
0.432 − 0.250080(2)
0.433 − 0.250091(3)
0.434 − 0.250104(3)
0.435 − 0.250119(3)
0.436 − 0.250136(3)
0.437 − 0.250150(3)
0.438 − 0.250169(3)
0.439 − 0.250188(3)
0.440 − 0.250207(3)
0.441 − 0.250228(3)
0.442 − 0.250249(3)
0.443 − 0.250273(3)
0.444 − 0.250296(3)
0.445 − 0.250321(3)
0.446 − 0.250347(3)
0.447 − 0.250372(3)
0.448 − 0.250401(3)
0.449 − 0.250430(3)
0.450 − 0.250460(3)

integer powers of Z − Zc. They confirmed the rigorous result
obtained by Simon [18] that the energy expansion E(Z) =∑∞

n=0 Bn(Z − Zc)αn around the critical charge lacks a square-
root term α = 1/2 but includes a linear term α = 1 and an
α = 3/2 term.

As the first exploration step we performed a least-squares
fit of the data using a quadratic model,

E(Z) = − 1
4 + a2(Z − Zc)2, (5)

resulting in Zc = 0.4192 and a2 = −0.484 097. This simple
model is able to reproduce the fitted data with five decimal
digits. When we added a linear term to the model the total
square deviation of the fit did not statistically improve and
the linear coefficient was quite small, of the order of 10−9,
statistically indistinguishable from zero. However, when we
restricted the fit to the first ten points, closer to the critical
charge, a linear term is no longer negligible and the estimate
of Zc is 0.4187.

Given the statistical noise of the available data at the
moment it is not possible to safely establish the presence of
a small linear term in the E(Z) expansion around Zc; however,
it is likely that 0.418 < Zc < 0.419.

Additional calculations, with one of the computational
techniques employed to study the helium atom with high

accuracy, could be employed to completely resolve the matter
studying the system sufficiently close to Zc. We are planning
to do such a study in the future.

Estienne and co-workers [8] found that the wave function at
the critical point is not only square integrable, as theoretically
predicted, but also remains localized at a finite distance from
the nucleus. We computed the average distance of the electron
and positron from theZ charge. We observed Ps detaching from
the fixed charge as its value approaches Zc. For Z = 0.422 the
Ps is at about 70 bohrs from the positive charge.

All our calculations used a fixed positive charge of infinite
mass. A finite mass decreases the binding energy of the system
increasing the critical charge [19]. To give a rough estimate of
the effect of a finite mass we use the result of Mitroy [20], who
found that the critical mass of the system of unitary charges
(m+, e−, e+) is m = 0.697 78. Assuming a linear dependence
of the critical charge in the E(Z, 1/m) plane and interpolating
between our results and Mitroy’s, we find that the critical
charge using the mass of a proton increases slightly from 0.421
to 0.4212.

A future work could explore in detail the behavior of the
system varying both the mass and the charge.

V. BEHAVIOR FOR Z → 1

While the hydrogen atom cannot bind a positron, approach-
ing Z → 1 from below, there is an electrostatic interaction
between the positron and the negatively charged (Z, e−) sys-
tem that can bind the positron into a stable three-body system.
The simplified model gives a total energy of E = −(1/2) −
(Z − 1) − (Z − 1)2. We performed DMC simulations for Z =
0.9 to 0.99 with steps of 0.01 and fitted the energy with
a quadratic model, E(Z) = −1/2 + a1(Z − 1) + a2(Z − 1)2,
with a1 = −1.002 61 and a2 = −1.203 07. Examining the
positronic distribution for Z = 0.99 we find the dissociating
positron at an average distance of more than 100 bohrs from
the Z charge.

VI. THE P e EXCITED STATE

H− has only one true bound state. However, it also has an
excited bound state, the 2p2 3P e state, of unnatural parity em-
bedded in the continuum of natural parity. States of unnatural
parity have also been found in various positronic systems [21].
The simplest known so far is the 2,4So state of PsH [22]. We
investigated the existence of a similar state for Z-Ps where
formally the two particles are in 2p orbitals and together build
a state of P e symmetry. We omit the spin of the particles since
they are irrelevant in this case as the wave function is not
required to be either symmetric or antisymmetric with respect
to the exchange of the leptons.

The trial wave function employed,

� = (x1y2 − y1x2)
4∑

i=1

ϕi, (6)

has the correct spatial symmetry, while the functional form of
ϕi has been described above. We varied Z with steps of 0.01,
optimizing the wave function at each point, and performed
a subsequent DMC simulation. Since this excited state has a
node, which might be different from the exact node of the
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unknown exact wave function [23], DMC can only guarantee
that the fixed node energy is an upper bound to the exact,
unknown, energy.

Our DMC simulations show that the P e state is below the
dissociation threshold as Z → 1. When Z is reduced we found
a stable bound state up to Z = 0.55 with respect to dissociation
into Z + Ps (2p), while for Z = 0.54 the state does not seem
to be bound.

VII. CONCLUSIONS

We analyzed the Z-Ps three-body system, composed by a
fixed positive charge Z, an electron, and a positron, showing
that it is rich of features present also in many-body positronic
systems. Figure 2 shows its stability diagram as a function of
the nuclear charge Z. Below a critical value Zc the system
dissociates into Z and Ps. For Z � 1 the system dissociates
into e+ + Ze−.

Using DMC we studied its ground-state energy E(Z) as a
function of the nuclear charge giving a rigorous upper bound

FIG. 2. Stability diagram as a function of Z for the system
composed by a fixed positive charge Z, an electron e−, and a
positron e+.

to the critical charge Zc < 0.421. We fitted the available data
with a quadratic model to give a nonvariational estimate of
the critical charge 0.418 < Zc < 0.419 We showed that this
system has an additional P e bound state of unnatural parity
and estimated its critical charge to be 0.54 < Zc < 0.55.

ACKNOWLEDGMENT

We wish to thank Mike Towler for his gracious hospitality
at the TTI Institute during the “Quantum Monte Carlo in the
Apuan Alps IX” conference where this work has begun.

[1] J.-M. Richard, J. Fröhlich, G.-M. Graf, and M. Seifert, Phys.
Rev. Lett. 71, 1332 (1993).

[2] B. Urbaszek, R. J. Warburton, K. Karrai, B. D. Gerardot, P. M.
Petroff, and J. M. Garcia, Phys. Rev. Lett. 90, 247403 (2003).

[3] D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 57, 4956
(1998).

[4] D. K. Gridnev and C. Greiner, Phys. Rev. Lett. 94, 223402
(2005).

[5] G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997).
[6] D. Bressanini, Phys. Rev. Lett. 109, 223401 (2012).
[7] X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85,

012503 (2012).
[8] C. S. Estienne, M. Busuttil, A. Moini, and G. W. F. Drake, Phys.

Rev. Lett. 112, 173001 (2014).
[9] H. O. Pilón and A. Turbiner, Phys. Lett. A 379, 688 (2015).

[10] E. A. G. Armour, Phys. Rev. Lett. 48, 1578 (1982).
[11] D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U.

Mikkelsen, Phys. Rev. Lett. 69, 57 (1992).
[12] A. Harju, B. Barbiellini, and R. M. Nieminen, Phys. Rev. A 54,

4849 (1996).

[13] D. Schrader, Nucl. Instrum. Methods Phys. Res., Sect. B 143,
209 (1998).

[14] J. Mitroy, M. Bromley, and G. Ryzhikh, J. Phys. B: At., Mol.
Opt. Phys. 35, R81(R) (2002).

[15] D. Bressanini and G. Morosi, J. Phys. B: At., Mol. Opt. Phys.
41, 145001 (2008).

[16] J. Zamastil, J. Cížek, L. Skala, and M. Šimánek, Phys. Rev. A
81, 032118 (2010).

[17] N. L. Guevara and A. V. Turbiner, Phys. Rev. A 84, 064501
(2011).

[18] B. Simon, J. Funct. Anal. 25, 338 (1977).
[19] A. W. King, L. C. Rhodes, C. A. Readman, and H. Cox, Phys.

Rev. A 91, 042512 (2015).
[20] J. Mitroy, J. Phys. B: At., Mol. Opt. Phys. 33, 5307

(2000).
[21] M. W. J. Bromley, J. Mitroy, and K. Varga, Phys. Rev. A 75,

062505 (2007).
[22] J. Mitroy and M. W. J. Bromley, Phys. Rev. Lett. 98, 063401

(2007).
[23] D. Bressanini, Phys. Rev. B 86, 115120 (2012).

012503-4

https://doi.org/10.1103/PhysRevLett.71.1332
https://doi.org/10.1103/PhysRevLett.71.1332
https://doi.org/10.1103/PhysRevLett.71.1332
https://doi.org/10.1103/PhysRevLett.71.1332
https://doi.org/10.1103/PhysRevLett.90.247403
https://doi.org/10.1103/PhysRevLett.90.247403
https://doi.org/10.1103/PhysRevLett.90.247403
https://doi.org/10.1103/PhysRevLett.90.247403
https://doi.org/10.1103/PhysRevA.57.4956
https://doi.org/10.1103/PhysRevA.57.4956
https://doi.org/10.1103/PhysRevA.57.4956
https://doi.org/10.1103/PhysRevA.57.4956
https://doi.org/10.1103/PhysRevLett.94.223402
https://doi.org/10.1103/PhysRevLett.94.223402
https://doi.org/10.1103/PhysRevLett.94.223402
https://doi.org/10.1103/PhysRevLett.94.223402
https://doi.org/10.1103/PhysRevLett.79.4124
https://doi.org/10.1103/PhysRevLett.79.4124
https://doi.org/10.1103/PhysRevLett.79.4124
https://doi.org/10.1103/PhysRevLett.79.4124
https://doi.org/10.1103/PhysRevLett.109.223401
https://doi.org/10.1103/PhysRevLett.109.223401
https://doi.org/10.1103/PhysRevLett.109.223401
https://doi.org/10.1103/PhysRevLett.109.223401
https://doi.org/10.1103/PhysRevA.85.012503
https://doi.org/10.1103/PhysRevA.85.012503
https://doi.org/10.1103/PhysRevA.85.012503
https://doi.org/10.1103/PhysRevA.85.012503
https://doi.org/10.1103/PhysRevLett.112.173001
https://doi.org/10.1103/PhysRevLett.112.173001
https://doi.org/10.1103/PhysRevLett.112.173001
https://doi.org/10.1103/PhysRevLett.112.173001
https://doi.org/10.1016/j.physleta.2014.12.029
https://doi.org/10.1016/j.physleta.2014.12.029
https://doi.org/10.1016/j.physleta.2014.12.029
https://doi.org/10.1016/j.physleta.2014.12.029
https://doi.org/10.1103/PhysRevLett.48.1578
https://doi.org/10.1103/PhysRevLett.48.1578
https://doi.org/10.1103/PhysRevLett.48.1578
https://doi.org/10.1103/PhysRevLett.48.1578
https://doi.org/10.1103/PhysRevLett.69.57
https://doi.org/10.1103/PhysRevLett.69.57
https://doi.org/10.1103/PhysRevLett.69.57
https://doi.org/10.1103/PhysRevLett.69.57
https://doi.org/10.1103/PhysRevA.54.4849
https://doi.org/10.1103/PhysRevA.54.4849
https://doi.org/10.1103/PhysRevA.54.4849
https://doi.org/10.1103/PhysRevA.54.4849
https://doi.org/10.1016/S0168-583X(98)00277-8
https://doi.org/10.1016/S0168-583X(98)00277-8
https://doi.org/10.1016/S0168-583X(98)00277-8
https://doi.org/10.1016/S0168-583X(98)00277-8
https://doi.org/10.1088/0953-4075/35/13/201
https://doi.org/10.1088/0953-4075/35/13/201
https://doi.org/10.1088/0953-4075/35/13/201
https://doi.org/10.1088/0953-4075/35/13/201
https://doi.org/10.1088/0953-4075/41/14/145001
https://doi.org/10.1088/0953-4075/41/14/145001
https://doi.org/10.1088/0953-4075/41/14/145001
https://doi.org/10.1088/0953-4075/41/14/145001
https://doi.org/10.1103/PhysRevA.81.032118
https://doi.org/10.1103/PhysRevA.81.032118
https://doi.org/10.1103/PhysRevA.81.032118
https://doi.org/10.1103/PhysRevA.81.032118
https://doi.org/10.1103/PhysRevA.84.064501
https://doi.org/10.1103/PhysRevA.84.064501
https://doi.org/10.1103/PhysRevA.84.064501
https://doi.org/10.1103/PhysRevA.84.064501
https://doi.org/10.1016/0022-1236(77)90042-8
https://doi.org/10.1016/0022-1236(77)90042-8
https://doi.org/10.1016/0022-1236(77)90042-8
https://doi.org/10.1016/0022-1236(77)90042-8
https://doi.org/10.1103/PhysRevA.91.042512
https://doi.org/10.1103/PhysRevA.91.042512
https://doi.org/10.1103/PhysRevA.91.042512
https://doi.org/10.1103/PhysRevA.91.042512
https://doi.org/10.1088/0953-4075/33/23/304
https://doi.org/10.1088/0953-4075/33/23/304
https://doi.org/10.1088/0953-4075/33/23/304
https://doi.org/10.1088/0953-4075/33/23/304
https://doi.org/10.1103/PhysRevA.75.062505
https://doi.org/10.1103/PhysRevA.75.062505
https://doi.org/10.1103/PhysRevA.75.062505
https://doi.org/10.1103/PhysRevA.75.062505
https://doi.org/10.1103/PhysRevLett.98.063401
https://doi.org/10.1103/PhysRevLett.98.063401
https://doi.org/10.1103/PhysRevLett.98.063401
https://doi.org/10.1103/PhysRevLett.98.063401
https://doi.org/10.1103/PhysRevB.86.115120
https://doi.org/10.1103/PhysRevB.86.115120
https://doi.org/10.1103/PhysRevB.86.115120
https://doi.org/10.1103/PhysRevB.86.115120



