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The device-independent approach to quantum key distribution (QKD) aims to establish a secret key between
two or more parties with untrusted devices, potentially under full control of a quantum adversary. The performance
of a QKD protocol can be quantified by the secret key rate, which can be lower bounded via the violation of an
appropriate Bell inequality in a setup with untrusted devices. We study secret key rates in the device-independent
scenario for different quantum repeater setups and compare them to their device-dependent analogon. The quantum
repeater setups under consideration are the original protocol by Briegel et al. [Phys. Rev. Lett. 81, 5932 (1998)]
and the hybrid quantum repeater protocol by van Loock et al. [Phys. Rev. Lett. 96, 240501 (2006)]. For a given
repeater scheme and a given QKD protocol, the secret key rate depends on a variety of parameters, such as the
gate quality or the detector efficiency. We systematically analyze the impact of these parameters and suggest
optimized strategies.
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I. INTRODUCTION

Quantum cryptography—the science of (secure) private
communication based on fundamental properties of quantum
particles—is a very active field of research and was founded
in the early 1980s [1]. An unconditionally secure encryption
technique, the one-time pad [2], relies on a preshared key
between the parties who wish to communicate. Secure com-
munication can thus be achieved by securely distributing this
key, which is the ultimate task of quantum key distribution
(QKD). The famous BB84 protocol [3] was the first proposal
for achieving secure QKD. Since then, a variety of other QKD
protocols have been published [4–6]. However, the security
of these device-dependent (DD) protocols relies on a perfect
characterization of the measurement devices and the source,
which is impossible in practice. Any realistic implementation
is imperfect, which makes these QKD protocols vulnerable to
an adversary [7–10]. Ideally, one wants to drop any assumption
about any device involved in the QKD scheme, which is
referred to as device-independent (DI) QKD [11,12].

As photons possess a long coherence time, one can transmit
these particles through fibers or free space, thus allowing
long-distance QKD. Due to photon losses, though, which
exponentially scale with the distance one wants to overcome,
QKD is limited to distances of L � 150 km [13,14]. This
problem can be circumvented with quantum repeaters [15].

In this work, we aim at comparing achievable secret key
rates in the DD and DI scenario for different quantum repeaters
without implemented error correction. In particular, we provide
a systematic analysis on how experimental quantities and errors
manifest themselves in the corresponding secret key rates. The
DD case has been analyzed in [16]. Here, we shed light on
the fundamental differences between both scenarios, especially
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the requirements needed for a reasonably high DI secret key
rate.

The structure of this paper is as follows. In Sec. II we
review a generic quantum repeater model [15], recapitulate
the fundamentals of QKD, and explain the peculiarities in the
device-independent case. Important ingredients, such as the
secret key rate R and the errors we account for, are described. In
Sec. III we apply the given framework to the original quantum
repeater proposal by Briegel et al. [15]. Section IV focuses on
the key analysis for the hybrid quantum repeater [17].

II. GENERAL FRAMEWORK

The main source of errors in quantum communication
with photons are losses in the optical fiber, which scale
exponentially with the length L0, such that the transmittivity
ηt is given by

ηt (L0) = 10−α
L0
10 , (1)

where α denotes the attenuation coefficient. In this work we
use α = 0.17 dB/km, which is the attenuation coefficient at
wavelengths around 1550 nm. To overcome the exponential
photon loss, quantum repeaters for long-distance quantum
information transmission have been suggested.

In this section we review a generic model for a quantum
repeater, originally introduced by Briegel et al. [15]. Further-
more, we briefly discuss other sources of errors in QKD and
how we model and incorporate them in the quantum repeater
scheme. See [16] for a detailed discussion of imperfections.
We also review the main ideas of DIQKD, in particular the DI
protocol that we use [11].

A. Generic quantum repeater model

The purpose of a quantum repeater is to generate and
distribute entangled states over a large distance L that separates
two parties, typically called Alice and Bob. In order to increase
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FIG. 1. A generic quantum repeater setup proposed by [15]. Let
k denote the number of distillation rounds performed prior to the first
ES and N the maximum nesting level. Alice and Bob are separated
by the distance L = 2NL0 and share at the end of the nested protocol
the entangled state ρ.

the distance over which the states are entangled, one performs
entanglement swapping (ES) at intermediate repeater stations
equally separated by a fundamental length L0. In the nested
quantum repeater proposal (see Fig. 1 for a schematic represen-
tation), ES is performed in N consecutive nesting levels, where
2N segments of fundamental length L0 amount to the total
distanceL = 2NL0, which corresponds to 2N − 1 intermediate
repeater stations. For the sake of simplicity, we only allow state
purification via entanglement distillation (ED) before the first
ES is done. The repeater stations are equipped with quantum
memories and processors to perform the mentioned quantum
operations. For ED, we employ the Deutsch et al. [18] protocol,
which generates after k rounds of distillation a final state of high
purity out of 2k copies of an initial state ρ0. The ES protocol
involves Bell measurements, which can be implemented in
various ways in the experiment [19,20]. We review the ED
and ES protocol in Appendix B.

As entanglement can be used as a resource for many
quantum informational tasks [21,22], it is important to quantify
the number of entangled states that can be distributed between
Alice and Bob per second by a quantum repeater. This quantity
is described by the repeater rate Rrep, which clearly depends
on errors that occur in the quantum repeater. We briefly discuss
which errors are taken into account and how we model them.
Afterwards we discuss the time restrictions that we focus on
and explicitly give the expression for the repeater rate.

1. Errors of the quantum repeater

The elements of a quantum repeater and their errors are
as follows: (i) Quantum channel – Photon losses in the fiber
are described via the transmittivity ηt , Eq. (1). (ii) Source –
We assume that the source creates on demand a state ρ0 and
distributes it to adjacent repeater stations. The quality of these
states is described via the fidelity F0 with respect to a certain
Bell state, defined in Eqs. (14a) and (14b). (iii) Detectors –
We assume photon number resolving detectors (PNRDs) with
efficiency ηd , where dark counts of the detectors are neglected.
This is a reasonable approximation for realistic dark counts of

the order of 10−5 or below, see [16]. (iv) Gates – ED and
ES rely on controlled two-qubit operations, implemented by
a gate with quality pG. This imperfect gate introduces noise,
thus mixing the ideal pure entangled state. We further assume
that one-qubit gates work perfectly.

The errors in (i)–(iv) give rise to a success probability for
ED in round k and for ES in nesting level n. We denote those
probabilities with P

(k)
ED and P

(n)
ES , respectively. Finally, let P0

denote the probability that a source successfully links two
adjacent repeater stations in the 0th nesting level with an initial
entangled state ρ0.

2. Repeater rate

For a given set of parameters and within a model that
respects the errors we introduced in the previous section, one
can achieve a certain repeater rate Rrep. In order to characterize
this repeater rate, we need to clarify which time restrictions
we account for. The only time-consuming operation that we
consider is the time needed to distribute an entangled photon
pair among adjacent repeater stations and acknowledge their
successful transmission. This so-called fundamental time T0

depends on the speed of light c = 2 × 108 m/s in the fiber,
the fundamental length L0 separating two repeater stations,
and the location of the photon source. We consider the case
where the source is located at one repeater station, which
yields the fundamental time T0 = 2L0/c [16]. Furthermore,
we investigate repeaters with deterministic and probabilistic
ES, i.e., P

(n)
ES = 1 and P

(n)
ES < 1, respectively.

a. Deterministic ES. For perfect detectors ηd = 1, the ES
can be performed in a deterministic manner. The corresponding
repeater rate is given by [23]

Rdet
rep = 1

T0

1

Zn

(
P

(k)
L0

) , (2)

where the recursive probability P
(k)
L0

in distillation round k is
defined via

P
(k)
L0

:= P
(k)
ED

Z1
(
P

(k−1)
L0

) ∀ k � 1 (3)

and P
(0)
L0

:= P0. Here, Zn(p) denotes the average number of
attempts to successfully establish 2n entangled pairs (each
generated with probability p) and it is given by [23]

Zn(p) :=
2n∑

j=1

(
2n

j

)
(−1)j+1

1 − (1 − p)j
. (4)

The 2n generated pairs are then deterministically converted via
ES in the repeater stations to an entangled pair between Alice
and Bob.

b. Probabilistic ES. ES is a probabilistic procedure for
imperfect detectors. Given P0 � 1, the repeater rate of a
quantum repeater with k rounds of ED and ES in n nesting
levels can be approximated by

Rprob
rep = 1

T0

(
2

3

)n+k

P0

k∏
j=1

P
(j )
ED

a
(j−1)
ED

n∏
i=1

P
(i)
ES

a
(i−1)
ES

, (5)
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FIG. 2. A typical QKD setup. Alice and Bob share a classical and
a quantum channel. A source provides possibly entangled states ρ that
can be measured by the perfectly characterized measurement devices.
A dichotomic classical output is generated in each measurement
round.

which is a generalized and slightly modified version of the
repeater rates given in [16,24].1 Here, a(j )

ED and a
(i)
ES denote con-

stants that one has to choose depending on success probabilities
to create an entangled state in the corresponding ED round
and nesting level, respectively. They fulfill 0 < a

(j )
ED,a

(i)
ES � 1

and are typically close to 1. The repeater rate in Eq. (5)
underestimates the actual repeater rate, as already pointed out
in [23]. Recently, a more sophisticated approach to quantify the
repeater rate with probabilistic ES appeared in the literature
[25].2 To our knowledge, an analytical study of the optimal
strategy has not been performed yet.3

B. Quantum key distribution

With the repeater rates in Eqs. (2) and (5), we now study the
possibility to use the entangled states as a resource to generate
a secret key.

1. Device-dependent QKD

Suppose that Alice and Bob share a classical, authenticated
channel and a possibly entangled state ρ, transmitted through
a quantum channel. A typical QKD setup is shown in Fig. 2.
In each measurement round, Alice and Bob can choose from
a set of measurement settings {A0,A1, . . . } and {B0,B1, . . . }.
The setting determines which measurement is performed on

1In [24], the repeater rate for probabilistic ES is derived without
initial ED and without the constants a

(i)
ES. In [16] initial ED is included

and a common constant aED is introduced for every ED round, which
results in a larger repeater rate. In general, it is not justified to
use a common constant aED, as they quickly approach unity for an
increasing number of ED steps. As we show in Appendix A, one can
tackle this problem in a more efficient way and one can similarly
introduce constants for the ES procedure.

2Note, however, that for more than n = 2 nesting levels, the repeater
rate of [25] rapidly becomes only numerically feasible and provides
no further insight into our analysis. Also, since we want to keep n

in principle arbitrary, we settle for the approximated repeater rate in
Eq. (5).

3In practice, the optimal strategy for maximizing the repeater rate
is to immediately perform ES as soon as entangled pairs are available
in two neighboring repeater links and then proceed by already
distributing new states among these available repeater stations. Monte
Carlo simulations suggest that this approach can significantly exceed
the analytical repeater rates in Eqs. (2) and (5), depending on n.

their subsystem. Throughout this work we consider dichotomic
measurement outcomes ai,bj ∈ {±1}.

The performance of a QKD protocol is quantified by the
secret key rate [16]

R := Rrawr∞ = RrepRsiftPclickr∞, (6)

which is our figure of merit. The quantities introduced in Eq. (6)
are the raw key rate Rraw, the fraction Rsift of measurements
performed in the same basis by Alice and Bob, the probability
Pclick for a valid measurement result, and the secret fraction r∞
(see below).

After generating an arbitrarily long bit string, the classical
postprocessing of the measurement data begins, including
sifting, which corresponds to discarding measurements where
the settings of Alice and Bob did not match. Note that we fix
Rsift = 1, which can be approximately achieved by choosing
the measurement settings with biased probabilities [26]. The
sifted or raw key leads to the raw key rate Rraw, which is
the number of raw bits Alice and Bob generate per second.
These bits are only partially secure, which is described by
the secret fraction r∞. The explicit form of r∞ depends on
the protocol one employs. A variety of QKD protocols exist
in the literature, such as the BB84 and the six-state protocol
[3,6]. In these QKD protocols one has full knowledge about the
Hilbert space dimensions, which is crucial for the security of
these protocols. For instance, the security of the BB84 protocol
critically depends on the four dimensions of the Hilbert space
associated to a qubit pair [27]. The secret fraction for the BB84
protocol is given by [13]

rBB84
∞ = max{0,1 − h(Qz) − h(Qx)}. (7)

In Eq. (7) the binary entropy is denoted as h(p) :=
−p log2(p) − (1 − p) log2(1 − p) and the quantum bit error
rate (QBER) in measurement direction i is Qi . The QBER
is defined as the probability that Alice and Bob generate
discordant outcomes, given a fixed set of measurement settings,
i.e.,

Qz = P (a �= b | A = Z,B = Z), (8a)

Qx = P (a �= b | A = X,B = X), (8b)

for measuring Pauli Z and X operators.

2. Device-independent QKD

In practice, it is impossible to have full control over the
devices involved in a QKD setup. The idea of DIQKD is
to extract a secret key without making detailed assumptions
about the involved devices [11]. The security of such DIQKD
protocols is based on a loophole-free Bell-inequality violation
[28], for which we have to assume that the two parties are
causally separated. In the spirit of device independence, the
measurement devices are treated as black boxes that perform
some (unknown) measurement conditioned on a classical input
chosen by Alice and/or Bob. The measurement should again
yield a dichotomic classical output. However, in practice some-
times detectors fail and produce no outcome. Measurements
where any of the black boxes do not produce an output have to
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FIG. 3. The DIQKD setup. The measurement devices are treated
as black boxes, i.e., the exact internal operations are unknown.
Additionally, the dimension of the Hilbert space associated to the
state ρ is not specified.

be incorporated into the measurement data. Alice and Bob can
achieve this by randomly assigning a measurement result {±1}
to such events [29]. In this sense, every event is a valid DIQKD
measurement, yielding Pclick = 1. Note that these events can
be incorporated in our description by substituting the final state
that Alice and Bob share in the following way:

ρ → η2
dρ + 1 − η2

d

4
1, (9)

where ηd refers to the probability that a no-detection event
was replaced by a random outcome. Note that ηd enters the
expression in (9) quadratically, because two detectors of the
same efficiency are involved in each measurement. Figure 3
shows the DIQKD setup. The DI secret key rate can be
calculated via

RDI = RrawrDI
∞ = Rrepr

DI
∞ , (10)

where we used Pclick = 1 and Rsift = 1 (see above). In the
DD case, the probability Pclick is a function of the detector
efficiency ηd , whereas in the DI scenario ηd enters the secret
fraction rDI

∞ due to the modification of the quantum state in (9).
Comparing Eqs. (6) and (10) reveals that both key rates

share the common repeater rate Rrep, which is consistent with
the fact that the purpose of the quantum repeater is simply
to provide entangled states to the two parties. Alice and Bob
can then choose to trust their devices or not. Several DIQKD
protocols have been proposed in the literature [11,30,31]. We
employ the protocol in [11].

3. DIQKD protocol

In the DIQKD protocol of [11] Alice randomly (with
biased probabilities) chooses between three measurement set-
tings {A0,A1,A2}. The exact internal measurement process
is unknown, but the device generates a dichotomic classical
output a ∈ {±1} (no-detection events get an assignment of ±1,
uniformly at random). Similarly, Bob chooses between two
measurement settings {B0,B1}, producing a binary output b ∈
{±1} in each round. A random small subset of their (classical)
measurement data generated with the setting {A2,B1} is used
to estimate Q := P (a �= b | A2,B1) and the outcomes of the
settings {A0/1,B0/1} are used to calculate

S := Tr

⎡
⎣ρ

∑
i,j∈{0,1}

(−1)i·jAi ⊗ Bj

⎤
⎦. (11)

The main result of [11] is a lower bound for the DI secret
fraction of the remaining measurement data of the setting

{A2,B1}, given by

rDI
∞ = max

{
0,1 − h(Q) − h

(
1 +

√
S2/4 − 1

2

)}
, (12)

under the condition that S > 2 and that the marginal proba-
bilities of Alice and Bob are symmetric, i.e., Tr[ρAi ⊗ 1] =
0 = Tr[ρ1 ⊗ Bj ] for all i,j . This lower bound was proven for
collective attacks and one-way classical postprocessing in [11].
See also [32] for more general quantum adversaries and general
communication between the parties. In the following section
we adopt the specific implementation given in [11], where Q

and S are the QBER and the Clauser-Horne-Shimony-Holt
(CHSH) parameter [33], respectively.

4. Comparing DDQKD and DIQKD protocols

To point out the distinct features separating both scenarios
and how they impact the secret key rates, we have to make the
DD and the DI protocol effectively comparable. The specific
implementation given in [11] for the DI protocol uses

A0,1 = X ± Z√
2

, A2 = Z, (13a)

B0 = X, B1 = Z, (13b)

for the measurement operators. To compare this to the
BB84 protocol, where Alice uses {Ax = X,Az = Z} and Bob
{B0,B1} as in Eq. (13b), we also consider the asymmetric im-
plementation of the DI protocol, such that {A2 = Z,B1 = Z} is
measured with probability → 1 and with a negligible but equal
fraction with which the other measurement operators are used.
In the DI and DD case they use these measurement settings
to estimate the CHSH value, Eq. (11), and the QBER Qx ,
respectively. Then, in the asymptotic limit, these protocols are
equivalent in the sense that almost always the Z measurement
is used. Alice and Bob only rely on different assumptions
regarding the trust in their measurement devices.

5. Entangled state, QBER, and CHSH parameter

The explicit form of the state that is distributed to Alice and
Bob by the quantum repeater is of fundamental importance
for achievable secret key rates. Maximal correlation, and thus
maximal security is provided if the state ρ is pure and in one
of the four Bell states:

|φ1,2〉 := 1√
2

(|00〉 ± |11〉), (14a)

|φ3,4〉 := 1√
2

(|01〉 ± |10〉). (14b)

For the specific implementation in Eqs. (13), the ideal state
is the pure state |φ1〉 for which the CHSH parameter reaches
its maximum value 2

√
2 [34] and the QBERs vanish. Then,

the DD and DI secret fraction are both equal to 1, which
maximizes the corresponding secret key rates. In practice, the
source cannot provide perfectly pure states due to noise and
other imperfections. Under the assumption that the initially
distributed states ρ0 are genuine two-qubit states, they can be
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transformed into a generic Bell-diagonal state

ρ0 =
4∑

i=1

c
(0)
i,0 |φi〉〈φi | (15)

by using local operations [35].4 The Bell coefficients c
(0)
i,0 are

non-negative and fulfill normalization
∑

i c
(0)
i,0 = 1. We assume

throughout this work that the sources generate the generic Bell-
diagonal state given in Eq. (15). The ED and ES protocols we
use produce Bell-diagonal states, provided the input states have
been of the form (15). The quantum repeater thus distributes
the final state,

ρ =
4∑

i=1

c
(k)
i,n|φi〉〈φi |, (16)

to Alice and Bob, where c
(k)
i,n denotes the Bell coefficients after

ED in k rounds and ES in n nesting levels. The coefficients c
(k)
i,n

fulfill normalization, and they depend on c
(0)
i,0 and on the explicit

form of the protocol. See [16,18] or Appendix B for details of
the protocols. The transformation rules for the coefficients c

(k)
i,n

under ED and ES are summarized in Appendixes C and D for
the two quantum repeater setups. For Bell-diagonal states, as
in Eq. (16), the QBERs Q(k)

x,n and Q(k)
z,n are given by

Q(k)
x,n = c

(k)
2,n + c

(k)
4,n, (17a)

Q(k)
z,n = c

(k)
3,n + c

(k)
4,n. (17b)

To calculate the quantities needed for the DI secret fraction,
one needs to substitute the state ρ, Eq. (16), with its noisy
version (9). This results in

Q(k)
z,n = η2

d

(
c

(k)
3,n + c

(k)
4,n

) + 1 − η2
d

2
, (18a)

S(k)
n = 2

√
2η2

d

(
c

(k)
1,n − c

(k)
4,n

)
, (18b)

where S(k)
n denotes the violation of the CHSH inequality with

the final state.

III. THE ORIGINAL QUANTUM REPEATER

Now we want to compare achievable secret key rates for
the original quantum repeater (OQR) [15] in the DD and
DI scenario. In Sec. III A we give the missing expressions
needed to calculate the repeater rate Rrep. This is followed
by a systematic secret-key-rate analysis, where we compare
the DD and DI QKD performance numerically (Sec. III B) and
analytically (Sec. III C). Since any two-qubit mixture can be
transformed into depolarized Bell states with local operations
[36], we assume that the sources initially distribute such
states with Bell coefficients c

(0)
1,0 = F0 and c

(0)
i�2,0 = (1 − F0)/3,

where F0 denotes the fidelity with respect to the Bell state |φ1〉.

4Note that depolarizing reduces only nonlocal correlations.

A. Parameters and error model

In order to calculate the repeater rate Rrep, we need to
specify the probabilities P0, Pclick, P

(n)
ES , and P

(k)
ED and how the

gate quality pG enters the expression. The probability that the
source successfully connects two adjacent repeater stations
with an entangled photon pair is given by the transmittivity
P0 = ηt (L0), Eq. (1), and the probability for a valid QKD
measurement is Pclick = η2

d . The ED and ES protocol employ
controlled two-qubit gates, that may introduce noise due to
imperfections. We adopt the depolarizing model of [15] for
noisy gates,

O(χ ) = pGOideal(χ ) + 1 − pG

4
1, (19)

where χ denotes an arbitrary two-qubit state on which the gate
O acts. The ED and ES include twofold detections with PNRDs
of efficiency ηd . For perfect detectors ηd = 1, the repeater rate
is given by Eq. (2). In case of nonperfect detectors, however,
the detection events lead to a factor η

2(k+n)
d for the success

probabilities P
(k)
ED and P

(n)
ES . Starting from Eq. (5), we thus get

Rprob
rep = 1

T0

(
2

3

)k+n

η
2(k+n)
d ηt (L0)

n∏
i=1

1

a
(i−1)
ES

k∏
j=1

P
′ (j )
ED

a
(j−1)
ED

(20)

for the repeater rate with probabilistic ES, where P
′ (j )
ED now

denotes the success probability for ED in round j without
the detector efficiency ηd , which can be calculated via the
coefficients c

(j )
i,0 only [see Appendix C, Eq. (C2)].

B. Performance: DD vs DI secret key rate

With the framework provided in the previous sections, we
now want to systematically analyze achievable secret key rates
in the DD and DI scenario. We split the analysis into two
parts, one with perfect detectors ηd = 1 and one with imperfect
detectors ηd < 1, as this quantity determines which repeater
rate has to be used for the calculation. Currently feasible
PNRDs reach detector efficiencies of ηd ≈ 0.95 at wavelengths
around 1550 nm [37].

1. Perfect detectors

For this part we use the deterministic repeater rate in
Eq. (2). Note that for ηd = 1, the differences in the secret
key rates solely originate from the DD and DI secret fraction.
We begin the performance analysis with perfect gate qualities
pG = 1 to understand how ED and ES influence the secret
key rates. Suppose Alice and Bob are separated by the total
distance L = 600 km. At the end of the repeater protocol, they
receive a Bell-diagonal state with coefficients c

(k)
i,n. Figure 4

shows the secret key rates R and RDI (upper subfigures), the
corresponding secret fractions r∞ and rDI

∞ (middle subfigures),
and the fidelity F (|φ1〉,ρ) := 〈φ1|ρ|φ1〉 of the final state ρ and
the pure Bell state |φ1〉 (lower subfigures) as a function of the
initial fidelity F0 for various numbers of initial ED rounds k

and nesting levels n. The secret key rates are calculated via
Eqs. (6) and (10). The secret fractions, Eqs. (7) and (12), are
calculated via the QBERs and the CHSH parameter given in
Eqs. (17) and (18).
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FIG. 4. Secret key rate R, secret fraction r∞, and final fidelity
F = c

(k)
1,n with respect to |φ1〉 in the DD (dashed lines) and DI (solid

lines) scenario versus the initial fidelity F0 for the gate quality pG = 1,
perfect detector efficiency ηd = 1, and the total distance L = 600 km.
Different numbers of initial ED rounds are shown, where k = 0
corresponds to the rightmost curve and k = 3 to the leftmost one. The
left (right) column represents n = 2 (n = 3) nesting levels, which
corresponds to a fundamental length L0 = 150 km (L0 = 75 km).
Note that for ηd = 1, the curves for the final fidelity F for the DD and
DI scenario coincide.

The first feature that one notices is the fact that R � RDI

holds, which is what we expect since in the DD case, Alice and
Bob can rely on more assumptions, which directly leads to a
higher secret fraction. This should hold in any fair DD to DI
comparison. The secret key rates are only identical in the ideal
case where ηd = 1, pG = 1, and F0 = 1. Only under these
perfect conditions do Alice and Bob share the pure and maxi-
mally entangled state |φ1〉〈φ1|, which yields a secret fraction of
1. Comparing the case of n = 2 nesting levels with n = 3, one
observes that both secret key rates significantly increase with n.
For perfect gates, it is advantageous to reduce the fundamental
length L0 to decrease photon losses. This holds although
more intermediate repeater stations involve more noisy states
connected by ES, which reduces the secret fractions r∞ and
rDI
∞ as shown in Fig. 4. For a larger number of ED rounds

k, both QKD protocols become more resistant to noise in the
initial state ρ0 but they suffer from an overall smaller secret key
rate, as several copies of states are consumed. From the lower
subfigures, we observe that ED and ES are two counteracting
processes, when it comes to the final fidelity F with respect to
|φ1〉. This is consistent with the shown secret fractions, since
a lower fidelity F results in an increase of the QBERs and in a
decrease of the CHSH parameter [see Eqs. (17) and (18)].

We now consider imperfect gates. Figure 5 shows the same
quantities as in Fig. 4 but for pG = 0.99. The lower gate quality
has a strong impact on the DI secret fraction rDI

∞ and thus also on
the DI secret key rate, especially for more nesting levels n. The

FIG. 5. Secret key rate R, secret fraction r∞, and final fidelity
F = c

(k)
1,n with respect to |φ1〉 in the DD (dashed lines) and DI

(solid lines) scenario versus the initial fidelity F0 for pG = 0.99,
perfect detector efficiency ηd = 1, and the total distance L = 600 km.
Different numbers of initial ED rounds are shown, where k = 0
corresponds to the rightmost curve and k = 3 to the leftmost one.
The left (right) column represents n = 2 (n = 3) nesting levels. Note
that for ηd = 1, the curves for the final fidelity F for the DD and DI
scenario coincide.

mixing of the final state due to noisy gates has a significantly
larger influence on the CHSH parameter as it has on the QBER
Qx . If the source distributes states with a high initial fidelity
F0, it is not beneficial for the final fidelity F to perform any
ED. (See crossing points of solid lines in Fig. 5.)

2. Imperfect detectors

For an imperfect detector efficiencyηd < 1, the repeater rate
is calculated via Eq. (5). The DD secret key rate additionally
suffers from the global scaling factor Pclick = η2

d [see Eq. (6)].
In the DI scenario, however, the lack of perfect detectors is
equivalent to performing QKD with states having increased
noise, see substitution (9). These differences aside, the DD
and DI secret key rates can be calculated as before. Figure 6
compares the secret key rates as a function of the fidelity F0

for various numbers of ED rounds k, different numbers of
nesting levels n, and different gate qualities pG for ηd = 0.975
and L = 600 km. By comparing the upper two subfigures, we
again observe that the gate quality has a much stronger impact
on the DI secret key rate. Reducing pG = 1 to pG = 0.99
results in significantly smaller DI secret key rates, while the
DD secret key rates are more or less of the same order. The
difference between the DD and DI secret key rate becomes
higher by increasing the number of initial ED rounds, which
indicates that the number of imperfect quantum operations is
a critical quantity for DIQKD. This is also confirmed by the
lower subfigure, where we increased the number of nesting

012337-6



DEVICE-INDEPENDENT SECRET-KEY-RATE ANALYSIS … PHYSICAL REVIEW A 97, 012337 (2018)

FIG. 6. DD (dashed lines) and DI (solid lines) secret key rate
versus the fidelity F0 with imperfect detectors of efficiency ηd =
0.975 and the total distance L = 600 km. We use different gate
qualities pG and different number of nesting levels n. The rightmost
curve corresponds to k = 0 and the leftmost curve to k = 3 initial ED
rounds.

levels from n = 2 to n = 3. One gets only a nonvanishing DI
secret key rate for k = 0, whereas the DD secret key rates
gain about 1 order of magnitude. Recall that performing ES
in more nesting levels decreases the fundamental length L0,
thus reducing the probability of photon losses in the fiber. This
explains the higher DD secret key rates for n = 3. However, in
the DI case, the errors introduced by imperfections outweigh
the benefits that one gains from a reduced fundamental length
L0. Hence, in the DI case one has to accept a larger amount of
photon losses in the fiber of larger fundamental length L0 in
comparison to the DD case. In addition, one has to ensure that
the source distributes entangled states of high initial fidelity F0.
This decreases the number of ED and ES steps and thus reduces

FIG. 7. DD (dashed lines) and DI (solid lines) secret key rate
versus the fidelity F0 for various different detector efficiencies ηd . The
gate quality, the number of nesting levels, and the total length are set
to pG = 0.99, n = 2, and L = 600 km, respectively. The rightmost
curve corresponds to k = 0 and the leftmost curve to k = 3 initial ED
rounds.

the errors introduced by imperfect devices. We conclude that
in general, the strategy for optimizing the DI secret key rate
is different from the DD case. In Fig. 7 we vary the detector
efficiency ηd and keep the gate quality pG fixed. It compares DI
(solid lines) and DD (dashed lines) secret key rates for various
values of ηd and confirms the intuition that a reduction of the
detector efficiency has a larger impact on the DI secret key rate.
We observe a similar pattern as in Fig. 6. With a decreasing
detector efficiency both secret key rates drop, but the DI secret
key rate is far more affected by the imperfections of the detector
than its DD analogon.

C. Analytical results – Performance

As the secret fractions are calculated via the coefficients c
(k)
i,n

of the final Bell-diagonal state, it is desirable to analytically
characterize the behavior of the coefficients c

(k)
i,n under ED and

ES operations with imperfect devices. Formulating general
analytical results is cumbersome due to the recursive nature
of the transformation rules for the Bell coefficients under ED
and ES, see Eqs. (C1) and (C3). In an idealized scenario, where
the source distributes pure states, however, we can find closed
transformation rules for the coefficients c

(k)
i,n, depending on the

number of nesting levels n and the gate quality pG. We thus
consider the case c

(0)
1,0 = F0 = 1 and c

(0)
i�2,0 = 0, and since ED is

obsolete for maximally entangled states we set k = 0. One can
show via Eqs. (C3) that the coefficients transform according to

c
(0)
1,n = 1 + 3pn̄

G

4
and c

(0)
i�2,n = 1 − pn̄

G

4
∀ n ∈ N, (21)

where n̄ := 2n − 1 denotes the number of intermediate re-
peater stations. With Eq. (21) one can express the QBERs and
the CHSH parameter in terms of n̄ and pG. For the DD QBERs,
Eqs. (17), one immediately finds

Q(0)
x,n = Q(0)

z,n = 1 − pn̄
G

2
(22)

and for the DI quantities via Eqs. (18) similarly,

Q(0)
z,n = 1 − η2

dp
n̄
G

2
, (23a)

S(0)
n = 2

√
2η2

dp
n̄
G. (23b)

Recall that the DI secret fraction is only nonvanishing if the
CHSH inequality is violated. Thus, we obtain the condition

S(0)
n > 2 ⇔ η2

dp
n̄
G >

1√
2
, (24)

which the parameters pG, ηd , and n̄ have to fulfill. The DD and
DI secret fractions then become

rDD
∞ = η2

d

[
1 − 2h

(
1 − pn̄

G

2

)]
, (25a)

rDI
∞ = 1 − h

(
1 − η2

dp
n̄
G

2

)
− h

(
1

2
+ 1

2

√
2η4

dp
2n̄
G − 1

)
,

(25b)
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FIG. 8. Relative change ∂pG
r∞/r∞ versus the gate quality pG in

the DD (dashed lines) and DI (solid lines) scenario for detector effi-
ciencies ηd = 1 and ηd = 0.975 [see Eqs. (C4b) and (C6b)]. Different
numbers of nesting level n are shown, where n = 1 corresponds to
the leftmost curves and n = 3 to the rightmost ones.

where for rDD
∞ , we included the factor η2

d compared to Eq. (7).
Now, we can investigate the impact of the experimental
quantities ηd , pG, and n onto the secret fractions in terms of
partial derivatives, which are given in Eqs. (C4) and (C6) in
Appendix C 2. We quantify the influence of the parameter onto
the secret fractions via these partial derivatives and thus ask the
question which of the two secret fractions, DD or DI, alters its
value faster when the corresponding parameter is changed.

1. Impact of the detector efficiency ηd .

Using the fact that ∂ηd
rDI
∞ is a monotonic function and

respecting the condition given in Eq. (24), one can show that the
inequality ∂ηd

rDI
∞ > ∂ηd

rDD
∞ holds, see Eq. (C8) in Appendix C 2

for details. Hence, the DI secret fraction reacts more sensitively
to changes in the detector efficiency than the effective DD
secret fraction does.

2. Impact of the gate quality pG

For the derivatives of the secret fractions with respect to the
gate quality pG and the nesting levels n, the ordering of the
corresponding expressions in Eqs. (C4) and (C6) in Appendix
C 2 is not as obvious as for the detector efficiency ηd . Thus, for
the sake of simplicity, we settle for a numerical comparison.
Figure 8 shows the relative change of the derivatives ∂pG

r∞ in
the DD [Eq. (C4b)] and DI [Eq. (C6b)] case with respect to the
corresponding secret fraction r∞ for ηd = 1 and ηd = 0.975
as a function of the gate quality. We observe that the relative
change of the DI secret fraction is larger than its DD analogon.
For ηd < 1 and almost perfect gates 1 − pG � 1, though, the
opposite is true (see inset in Fig. 8). This follows from the
fact that ∂pG

rDI
∞ no longer diverges for pG → 1 and ηd < 1, in

contrary to ∂pG
rDD
∞ ; see Eqs. (C4b) and (C6b).

However, an important difference is that the relative change
in the DI case also depends on the detector efficiency ηd , in
contrast to the DD case. Figure 8 also verifies the intuition
that the impact of the gate quality pG rises with an increasing

FIG. 9. Relative change ∂nr∞/r∞ versus the number n in the DD
(dashed lines) and DI (solid lines) scenario for detector efficiencies
ηd = 1 and ηd = 0.975 [see Eqs. (C4c) and (C6c)]. The rightmost
curves correspond to the gate quality pG = 0.99 and the leftmost
ones to pG = 0.95.

number of nesting levels, i.e., with an increasing number of
imperfect quantum operations.

3. Impact of the nesting levels n

To quantify the influence of n, let us extrapolate the integer n

to a continuous variable. In Fig. 9 we numerically compare the
relative change of ∂nr∞, Eqs. (C4c) and (C6c), with respect to
corresponding secret fractions r∞. It confirms that the relative
change ∂nr∞/r∞ in the DI case is larger than its DD analogon,
as expected. Note that ∂nr∞/r∞ is negative and that the DD
ratio is again independent of the detector efficiency ηd . One
can also observe, that the impact of n dramatically increases
with a decreasing gate quality pG, which is consistent with
previous results.

To close this section we conjecture that our analytical results
approximately hold for sufficiently pure initial states, since ε

small contributions to other Bell states |φi �=1〉 in the initially
distributed states do not significantly alter the state at the end
of the ES protocol.

IV. THE HYBRID QUANTUM REPEATER

Let us now consider the hybrid quantum repeater (HQR)
introduced by van Loock et al. [17] and Ladd et al. [38]. It
still employs the nested scheme for ES as shown in Fig. 1, but
the repeater stations and the physical system representing the
qubits are of fundamental difference compared to the OQR.
As in [16], we also restrict our investigation to HQRs where
unambiguous state discrimination (USD) measurements are
involved for state generation [39,40]. In Part IV A of this
section, we introduce the concepts of HQRs, and in Part III B
the comparison of the DD-DI performance follows.

A. Setup, error model, and repeater rate

In Sec. IV A 1 we review the model for intermediate re-
peater stations and briefly capture the main ideas behind the
entanglement creation in this setup. Afterwards, we present in
Sec. IV A 2 the error model for noisy two-qubit gates and
explain how to calculate the repeater rate. See [16] for more
details.

1. Repeater station – Model

The HQR combines discrete and continuous degrees of
freedom. Entanglement is for instance generated between two
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FIG. 10. Illustration of repeater stations in the HQR setup and the
USD scheme following [40]. A coherent state |α〉, the local oscillator
(LO), is generated and sent through linear optical elements, such
as beam splitters and optical switches. Different optical modes are
denoted with a and bi , for i ∈ {1, . . . ,5}. The LO passes a beam
splitter and a part of it interacts with qubit Q1, which is prepared in
an equally weighted superposition of its two possible states |0〉 and
|1〉. The resulting optical state is sent together with the LO to the next
repeater station, where again a part of the LO interacts with qubit Q2,
also prepared in an equally weighted superposition of |0〉 and |1〉. A
50 : 50 beam splitter is applied to modes b1 and b2 and a displacement
operation D to the pulse in mode b4. Depending on the measurement
results of detectors d1 and d2, an entangled state between qubits Q1

and Q2 is generated.

trapped ions inside a cavity, which represent the qubits. The
entangling interaction, however, is induced via coherent optical
states. The interaction between the qubits and the light can thus
be described within the Jaynes-Cummings framework [41]. A
schematic model for intermediate repeater stations is shown in
Fig. 10.

By performing a USD measurement on the optical modes,
after they interacted with the qubits, the entangled state

ρ0 = F0|φ1〉〈φ1| + (1 − F0)|φ2〉〈φ2| (26)

can be conditionally prepared. For the HQR, the probability
P0 to connect two adjacent repeater stations with an entangled
state is given by [16]

P0 = 1 − (2F0 − 1)
ηt ηd

1+ηt (1−2ηd ) . (27)

Note that the probability P0 vanishes for pure states ρ0 =
|φ1〉〈φ1|withF0 = 1, in which case it is not possible to generate
a secret key. For more details regarding the implementation and
state preparation see [16,40].

2. Error model and repeater rate

ES and ED rely on controlled-Z operations. The model
for a noisy two-qubit gate needs to be adjusted for the HQR
implementation. According to [42], the noisy two-qubit gate
O acting upon the two-qubit state χ ≡ χab, which describes
the main errors due to dissipation, is modeled by

O(χ ) =Oideal[p2
c (pG)χ + (1 − pc(pG))2ZaZbρZaZb

+ pc(pG)(1 − pc(pG))(ZaχZa + ZbχZb)
]
. (28)

FIG. 11. DD (dashed lines) and DI (solid lines) secret key rate
for the HQR versus the fidelity F0. The total distance is L = 300 km,
with n = 2 nesting levels. Different numbers of initial ED rounds k

are shown, where the most narrow curves correspond to k = 0 and
the most wide ones to k = 3. The upper two subfigures show the
impact of the effective gate quality, as it is reduced from pG = 1 to
pG = 0.99 with a fixed detector efficiency of ηd = 0.975. The lower
subfigures similarly display the influence of the detector efficiency,
where we reduce it from ηd = 1 to ηd = 0.95 with the fixed parameter
pG = 0.995.

Here,

pc(pG) :=
1 + exp

(
− π

(
1−p2

G

)
2
√

pG(1+pG)

)
2

(29)

represents the probability for each qubit to not suffer a Z

error. The quantity pG in Eq. (29) is the local transmission
parameter that describes the effect of photon losses onto
the gate and can thus be seen as an effective gate quality.
Following [16], we calculate the repeater rate according to
Eq. (2) with deterministic ES, i.e., PES = 1. We use perfect
qubit measurements for the ES and also ED operations, since
the imperfections can in principle be eliminated from the
protocol at the cost of additional photon losses in the quantum
channel, which effectively reduces the gate quality [39]. Note,
however, that we account for detector imperfections at the
initial entanglement distribution [as ηd enters the probability
P0 in Eq. (27)] and detector imperfections at the final qubit
measurements in the laboratories of Alice and Bob. The latter
one implies again a factor Pclick = η2

d for the DD secret key
rate, while in the DI scenario the substitution (9) has to be
performed. The DD and DI secret fractions are calculated
according to Eqs. (7) and (12), and since the final state is again
Bell diagonal, the QBERs and the CHSH parameter are given
by Eqs. (17) and (18).

B. Performance: DD vs DI secret key rate

We now want to investigate the influence of the effective
gate quality pG, the detector efficiency ηd , and the number
of ED and ES operations on the secret key rates. Figure 11
shows the DD and DI secret key rates versus the fidelity
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FIG. 12. DD (dashed lines) and DI (solid lines) secret key rate
versus the fidelity F0. The total distance, the gate quality, and the
detector efficiency are L = 300 km, pG = 0.995, and ηd = 0.975,
respectively. As in Fig. 11, the most narrow curves correspond to
k = 0 and the most wide ones to k = 3 ED rounds. The figure shows
the impact of different nesting levels n, varied from n = 1 to n = 3.

F0 for several numbers of initial ED rounds k. The total
distance is L = 300 km with a fixed number of nesting levels
n = 2. We can observe from the upper two subfigures that gate
imperfections have a large impact on the DD secret key rate, as
already pointed out in [16]. In the DI case, this becomes even
more dramatic. The lower two subfigures show that detector
errors do not significantly reduce the DD secret key rate. The
DI secret key rate, however, is heavily compromised by these
imperfections, as they lead to a mixed state due to the random
assignment of measurement results.

We conclude the key rate analysis with Fig. 12, where the
secret key rates are shown as a function of the initial fidelity
F0 for several numbers of nesting levels n at a fixed total
distance of L = 300 km. We consider gate and detector errors
by pG = 0.995 and ηd = 0.975, respectively. As we can see, it
is beneficial for the DD secret key rate to increase the number of
nesting levels beyond n = 2 to reduce photon losses in the fiber.
By doing so, the DD secret key rates gain approximately 1 order
of magnitude. In the DI case, however, the errors introduced by
the larger number of imperfect quantum operations outweigh
again the benefits that one gains from a reduced fundamental
length L0. For a given fidelity F0 the optimal number k of ED
rounds is in general different from the DD scenario as well.

V. CONCLUSION AND OUTLOOK

In this work, we provided a detailed systematic analysis on
achievable secret key rates of two quantum repeater setups in
the device-independent (DI) scenario and compared it to the
device-dependent (DD) case. We studied the original quantum
repeater (OQR) [15] and the hybrid quantum repeater (HQR)
[17]. The analysis includes a numerical investigation on how
experimental quantities, such as the gate quality pG, the
detector efficiency ηd , the initial fidelity F0, and the number
of nesting levels n and initial entanglement distillation rounds
k, influence the secret key rate. We observed for both setups

that the DI security comes at the expense of being particularly
sensitive towards malfunctions in the devices. Imperfections
of the gates, the detectors, and the sources compromise the
achievable DI secret key rate more than the DD one. Hence,
for any realistic implementation, there is a gap between these
secret key rates that increases with an increasing number of
imperfect quantum operations. For the OQR with an idealized
photon source, we additionally verified analytically that the
parameters pG, ηd , and n have a stronger impact on the DI
secret key rate as they have in the DD scenario.

The proneness of DIQKD to imperfections naturally implies
different optimization strategies for the DI and DD secret key
rate. In the DD scenario the influence of the gate errors is
not as severe as it is in the DI case, thus allowing a shorter
fundamental distance L0 and thus reducing photon losses in
the fiber, i.e., in the DI case there are not as many intermediate
repeater stations feasible as in the DD one. This immediately
yields a stronger limitation for the total distance L that one can
overcome in the DI setup. Similarly, the purity of the initially
distributed states can be improved via more entanglement
distillation rounds in the DD protocol, which makes it more
robust to imperfections of the source.

It remains for future investigations to compare different
DD and DI protocols, besides the BB84 and the modified
Ekert protocol [3,11]. Other ideas are to extend this analysis to
different quantum repeater models, such as the DLCZ quantum
repeater [43]. One could also include more error sources
of the quantum repeater, e.g., errors introduced by quantum
memories, and investigate their impact on the secret key rates.
For the latter one, we conjecture from the provided secret-
key-rate analysis that further imperfections have a qualitatively
similar impact on the DI secret key rate as the ones discussed
in this work.
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APPENDIX A: REPEATER RATE – PROBABILISTIC ES

Here, we provide more details for the repeater rate with
probabilistic ES in Eq. (5). In [24], the repeater rate

Rprob
rep = 1

T0

(
2

3

)n

P ′
0

n∏
i=1

P
(i)
ES (A1)

without initial ED is derived for P ′
0 � 1, where P ′

0 denotes the
success probability to connect two adjacent repeater stations in
nesting level n = 0 with an entangled pair (see also Fig. 1). We
review the derivation of Eq. (A1) and explain how to improve
this rate. Afterwards we include initial ED, inspired by [16].

1. Repeater rate without ED

Following [24], the number of attempts n0 to successfully
create an elementary link is governed by the probability
distribution

p(n0) = (1 − P ′
0)n0−1P ′

0, (A2)
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which yields the expectation value

〈n0〉 =
∑
n∈N0

n0p(n0) = 1

P ′
0

. (A3)

In order to perform ES, one needs entangled states in two
neighboring segments of the repeater line. The corresponding
combined probability distribution is given by

p̃(n0) = p(n0)2 + 2p(n0)
n0−1∑
k=1

p(k), (A4)

which results in the average number of attempts

〈ñ0〉 =
∑

n0∈N0

n0p̃(n0) = 3 − 2P ′
0

(2 − P ′
0)P ′

0

. (A5)

The first ES step can now be performed, which succeeds
with probability P

(1)
ES , thus increasing the average number of

attempts to create an entangled link in nesting level n = 1
according to

〈n1〉 = 〈ñ0〉
∑
k∈N0

(k + 1)(1 − P
(1)
ES )kP (1)

ES = 〈ñ0〉
P

(1)
ES

. (A6)

From now on, our approach deviates from the one in [24],
where 〈ñ0〉 in Eq. (A5) is set to 3/2P ′

0, which is a good
approximation for P ′

0 � 1. Here, we rewrite Eq. (A5) as

〈ñ0〉 = 3 − 2P ′
0

(2 − P ′
0)P ′

0

= 1

P ′
0

3

2
a

(0)
ES, (A7)

where we defined

a
(0)
ES := 1 − 2P ′

0/3

1 − P ′
0/2

. (A8)

In complete analogy to Eq. (A3), the probability P1 to create
an entangled link in nesting level n = 1 is given by the inverse
of Eq. (A6), and we can define an according probability
distribution p(n1) via P1. This is in general not true, as the
success probability of establishing a link in a higher nesting
level n = i in the ni th attempt depends on success probabilities
of the previous nesting levels [24] and the corresponding
probability distribution p(ni) is not analog to the form given
in Eq. (A2). However, this modification allows us to obtain the
recursion

〈ni〉 = 1

Pi

= 〈ñi−1〉
P

(i)
ES

∀ i ∈ N, (A9)

〈ñi〉 = 3 − 2Pi

(2 − Pi)Pi

= 1

Pi

3

2
a

(i)
ES ∀ i ∈ N, (A10)

if we iterate this argument to arbitrary nesting levels. The
constants a

(i)
ES are defined as in Eq. (A8) with the corresponding

probability Pi . The beginning of the recursion is given in
Eqs. (A3) and (A7). Note that this approach also only yields
a good approximation for P ′

0 � 1, but this strategy leads to
repeater rates which are closer to achievable ones that are
calculated with Monte Carlo simulations.

With the relations (A9) and (A10) we can express the
average number of attempts to establish a single entangled

link at the maximum nesting level n = N as

〈nN 〉 = 〈ñN−1〉
P

(N)
ES

= 3

2

a
(N−1)
ES

P
(N)
ES

1

PN−1
= · · ·

=
(

3

2

)N 1

P ′
0

N∏
i=1

a
(i−1)
ES

P
(i)
ES

. (A11)

Each attempt lasts the fundamental time T0, thus yielding the
repeater rate

Rprob
rep = 1

T0

(
2

3

)N

P ′
0

N∏
i=1

P
(i)
ES

a
(i−1)
ES

. (A12)

2. Repeater rate with ED

In the spirit of [16], we now include initial ED, which
is performed at each segment at nesting level n = 0 and
which thus only affects the success probability P ′

0. Thus, P ′
0

is given by the recursively defined probabilities P ′
0 = P

(k)
L0

for
successful ED in k rounds in Eq. (3). By plugging the recursive
probabilities into each other, one arrives at

P
(k)
L0

= 2

3

P
(k)
ED

a
(k−1)
ED

P
(k−1)
L0

= · · · =
(

2

3

)k

P0

k∏
j=1

P
(j )
ED

a
(j−1)
ED

, (A13)

where we defined the constants a
(j )
ED for ED as in Eq. (A8).

Replacing P ′
0 in Eq. (A12) with the right-hand side of Eq. (A13)

yields the repeater rate in Eq. (5).

APPENDIX B: ED AND ES PROTOCOL

For completeness, we review the ED and ES protocols
[16,18], which determine together with the noisy two-qubit
gate models in Eqs. (19) and (28) the transformation of the
coefficients c

(k)
i,n (see Appendixes C and D). Let Cs→t

NOT denote a
controlled-X operation, where s and t indicate the source and
the target qubit, respectively.

1. Entanglement distillation

Suppose Alice and Bob share the two states ρai ,bi
for i ∈

{1,2}. The following steps are performed. (i) Alice/Bob rotates
her/his particles by +/ − π

2 around the X axis in the compu-

tational basis {|0〉,|1〉}. (ii) Alice/Bob applies C
a1→a2
NOT /Cb1→b2

NOT .
(iii) The state ρa2,b2 is measured in the computational basis.
Then, if their measurement results coincide, the state ρa1,b1 has
been purified. Otherwise the state is discarded.

2. Entanglement swapping

Suppose the two entangled states ρa,b and ρc,d are dis-
tributed among two adjacent repeater stations. The follow-
ing algorithm performs ES between these two states. (i) A
Cb→c

NOT -gate is applied. (ii) Qubits b and c are measured in
the basis {|±〉 := (|0〉 ± |1〉)/√2} and {|0〉,|1〉}, respectively.
(iii) Depending on the measurement outcomes, a single-qubit
rotation on qubit d is performed and one obtains the entangled
state ρa,d .
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APPENDIX C: ADDITIONAL MATERIAL – OQR

1. Transformation under ED and ES

With the discussed error models and the ED and ES proto-
cols, we recall the transformation rules of the coefficients c

(k)
i,n.

For the OQR, gate errors are modeled according to Eq. (19).
See [16,18] for details.

a. Entanglement distillation. Two copies of the Bell-
diagonal state ρ(k−1) = ∑4

i=1 c
(k−1)
i |φi〉〈φi | represent the input

states for the ED protocol. Provided the ED protocol is
successful, one is left with one Bell-diagonal state with the
coefficients

c
(k)
1 = 1

8P
′ (k)
ED

[
1 + p2

G

(
8c

(k−1) 2
1 + 8c

(k−1) 2
4 − 1

)]
, (C1a)

c
(k)
2 = 1

8P
′ (k)
ED

[
1 − p2

G

(
1 − 16c

(k−1)
1 c

(k−1)
4

)]
, (C1b)

c
(k)
3 = 1

8P
′ (k)
ED

[
1 + p2

G

(
8c

(k−1) 2
2 + 8c

(k−1) 2
3 − 1

)]
, (C1c)

c
(k)
4 = 1

8P
′ (k)
ED

[
1 − p2

G

(
1 − 16c

(k−1)
2 c

(k−1)
3

)]
, (C1d)

where the success probability of ED round k is

P
′ (k)
ED = 1

2

[
1 + p2

G

(
2c

(k−1)
1 + 2c

(k−1)
4 − 1

)2]
. (C2)

b. Entanglement swapping. Two qubit pairs, each in the
Bell-diagonal state ρn−1 = ∑4

i=1 ci,n−1|φi〉〈φi |, are the input
states to the ES protocol, that includes a probabilistic Bell
measurement on two qubits, one of each pair. The two qubits
not involved in the Bell measurement are again in a Bell-
diagonal state with coefficients ci,n. The transformation rules
are

c1,n = 1 − pG

4
+ pG

4∑
i=1

c2
i,n−1, (C3a)

c2,n = 1 − pG

4
+ 2pG(c1,n−1c2,n−1 + c3,n−1c4,n−1), (C3b)

c3,n = 1 − pG

4
+ 2pG(c1,n−1c3,n−1 + c2,n−1c4,n−1), (C3c)

c4,n = 1 − pG

4
+ 2pG(c1,n−1c4,n−1 + c2,n−1c3,n−1), (C3d)

and the success probability for ES is given by P
(n)
ES = η2

d ,
neglecting dark counts of the detector.

2. Analytical calculations

a. Partial derivatives of secret fractions. The partial deriva-
tives of rDD

∞ , Eq. (25a), with respect to ηd , pG, and n are given
by

∂ηd
rDD
∞ = 2ηd

[
1 − 2h

(
1 − pn̄

G

2

)]
, (C4a)

∂pG
rDD
∞ = 2

n̄η2
dp

n̄−1
G

ln(2)
artanh

(
pn̄

G

)
, (C4b)

∂nr
DD
∞ = 2(n̄ + 1)η2

dp
n̄
G ln(pG)artanh

(
pn̄

G

)
, (C4c)

where we introduced the area hyperbolic tangent

artanh(x) := 1

2
ln

(
1 + x

1 − x

)
∀ x ∈ (−1,1), (C5)

which is the inverse tangent hyperbolic function. The partial
derivatives of rDI

∞ , Eq. (25b), with respect to ηd , pG, and n are

∂ηd
rDI
∞ = 2ηdp

n̄
G

ln(2)
q(ηd,pG,n̄), (C6a)

∂pG
rDI
∞ = n̄η2

dp
n̄−1
G

ln(2)
q(ηd,pG,n̄), (C6b)

∂nr
DI
∞ = (n̄ + 1)η2

dp
n̄
G ln(pG)q(ηd,pG,n̄), (C6c)

where the function q(ηd,pG,n̄) is defined as

q(ηd,pG,n̄) := 2η2
dp

n̄
G√

2η4
dp

2n̄
G − 1

artanh
(√

2η4
dp

2n̄
G − 1

)

+ artanh
(
η2

dp
n̄
G

)
. (C7)

b. Comparison: Impact of detector efficiency. For the partial
derivatives of rDD

∞ and rDI
∞ with respect to the detector effi-

ciency, Eqs. (C4a) and (C6a), one can derive an ordering rela-
tion to show that ηd has a larger impact in the DI scenario. Note
that ∂ηd

rDI
∞ is positive for all parameters ηd , pG, and n̄ that fulfill

the condition (24) and that ηd∂ηd
rDI
∞ is a strictly monotonically

increasing function of η2
dp

n̄
G. Hence, the following ordering

holds:

∂ηd
rDI
∞ � ηd∂ηd

rDI
∞ � lim

η2
dpn̄

G→√
2

−1

(
ηd∂ηd

rDI
∞

)

=
√

2

ln(2)
[artanh(1/

√
2) +

√
2] > 2, (C8)

where we used artanh(1/
√

2) > 0 and 0 � ηd, ln(2) � 1. Fi-
nally, note that in the DD case, ηd enters the effective secret
fraction η2

dr
BB84
∞ as a factor with rBB84

∞ given in Eq. (7). This
partially derived with respect to ηd yields 2ηdr

BB84
∞ , which

is upper bounded by 2. This proves the inequality ∂ηd
rDI
∞ >

∂ηd
rDD
∞ as claimed in Sec. III C.

APPENDIX D: ADDITIONAL MATERIAL – HQR

1. Transformation under ED and ES

Here, we give the transformation relations for the Bell coefficients under ED and ES for the HQR, where gate errors enter the
calculation via Eq. (28). See [16].
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a. Entanglement distillation. We calculate the coefficients after ED round k with respect to the coefficients after ED round
k − 1, which we do not label here explicitly for a better overview. Also, we suppress the dependency on pG of pc(pG) and
introduce the abbreviation p̄ := 2pc(pc − 1):

c
(k)
1 = 1

P
(k)
ED

{
p̄2(c1 − c4)(c1 − c4 + c2 − c3) + p̄

[
c2

1 + c2
4 + (c1 − c4)2 − c1c3 − c2c4

] + c2
1 + c2

4

}
, (D1a)

c
(k)
2 = 1

P
(k)
ED

{p̄2[c1c3 + (c2 − c3 − c4)c4] − p̄(c3 + c4)c4 + 2(p̄ + 1)2c1c4 − p̄(p̄ + 1)c1(c1 + c2)}, (D1b)

c
(k)
3 = 1

P
(k)
ED

{
p̄2(c1c2 + c3c4) + (p̄ + 1)2

(
c2

2 + c2
3

) − p̄(p̄ + 1)[c2(c3 + c4) + (c1 + c2)c3]
}
, (D1c)

c
(k)
4 = 1

P
(k)
ED

{p̄2[c2c4 + (c1 − c3 − c4)c3] − p̄c3(c3 + c4) + 2(p̄ + 1)2c2c3 − p̄(p̄ + 1)(c1 + c2)c2}. (D1d)

The success probability for ED round k is given by

P
′ (k)
ED = (c1 + c4)2 + (c2 + c3)2 + p̄(2c1 + 2c4 − 1)2. (D2)

b. Entanglement swapping. Similar to Eqs. (D1), we neglect the index for the previous nesting level n − 1. The Bell coefficients
transform under the ES protocol according to

c1,n = 2(c1c4 + c2c3) + 2pc[c1(1 − c1 − 3c4) − c2(c3 − c4) − (c2 − c4)c3] + p2
c (2c1 + 2c4 − 1)2, (D3a)

c2,n = 2(c1c3 + c2c4) + pc[(2c1 + 2c4 − 1)2 + 2(c1 − c4)(c2 − c3)] − p2
c (2c1 + 2c4 − 1)2, (D3b)

c3,n = 2(c1c2 + c3c4) + pc[(2c1 + 2c4 − 1)2 − 2(c1 − c4)(c2 − c3)] − p2
c (2c1 + 2c4 − 1)2, (D3c)

c4,n =
4∑

i=1

c2
i − 2pc

[
4∑

i=1

c2
i − (c1 + c4)(c2 + c3)

]
+ p2

c (2c1 + 2c4 − 1)2. (D3d)
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