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Entanglement distribution is a prerequisite for several important quantum information processing and
computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In
this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail
photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for
entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint
that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol
for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss
a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology.
We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to
quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the
optical medium that depend only on the topology of the network and quantify the robustness of the network
against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare
the robustness of different network topologies in order to determine the best topology in a given real-world
scenario, which is critical in the realization of the quantum internet.
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I. INTRODUCTION

The building of quantum networks is an essential ingredient
in the realization of the quantum internet [1], an intercon-
nected network of quantum networks in which all parties
can perform quantum information processing and quantum
computing tasks. Execution of many of these tasks is con-
tingent on the reliable distribution of entanglement among the
members of the network, such as quantum teleportation [2,3],
quantum key distribution for secure communications [4–6],
distributed quantum computation [7], Bell inequality tests
[8–10], quantum clock synchronization [11–13], and quantum
secret sharing [14].

Quantum repeaters [15,16] are essential to overcome the
decoherence of particles caused by the environment for reli-
able entanglement distribution between two parties that are
separated by a distance longer than the decoherence length
of the communication channel. Much like classical repeaters,
which are placed at intermediate points along the channel
in order to amplify the signal being transmitted, quantum
repeaters employ entanglement swapping [2,17] and optionally
entanglement purification [18–20] at intermediate points along
the quantum channel in order to increase the likelihood of
establishing entanglement and to increase the fidelity of the
entanglement.

Entanglement purification protocols require the use of quan-
tum memories, which are not widely available with current
technologies and will be expensive in the near term once they
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are widely available. It is therefore of interest to build networks
and to devise protocols that use quantum repeaters without
quantum memories, which we will refer to as memory-free
quantum repeaters (see Refs. [21] and [22] for examples of
memory-free quantum repeaters).

Using optical fiber, a common medium used to transmit
quantum signals, with single photons as the qubits, photon
loss is the most dominant source of noise, and entanglement
purification is not necessary unless other general sources of
errors are also considered. (Quantum memories may still be
required, however, to store the qubits for later processing.)
One drawback to using optical fibers, however, is the known
exponential decay with distance of both the probability of
successfully transmitting a photon over the fiber and the rate
of entanglement generation between the two ends of the fiber
[23,24].

In order to mitigate this exponential decay of the
entanglement-generation rate for point-to-point links, suppose
that the two parties that would like to share long-distance
entanglement are groups consisting of several spatially dis-
tributed members. The two groups could be, for example,
two companies, and the members of each group could be
the branches of the companies. In Sec. II, we provide an
example of a two-dimensional (2D) lattice-based network
topology, in which the branches of each company are at the two
opposite ends of the network. The network consists of source
stations producing entangled dual-rail photonic qubits trans-
mitted over optical fiber and measurement stations performing
entanglement swapping. In Sec. II A, we exhibit a simultaneous
entanglement distribution protocol on this network to show
that if we care only about creating entanglement between the
two groups (and not about creating entanglement between
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particular members), then the average yield of entangled pairs
of photons shared between the two groups is greater than what
can be achieved with a single channel between the two groups.
We consider only pure loss as the source of noise and do not
require the use of quantum memories even to store the qubits
temporarily.

Another major concern in any network, including the
internet, is its vulnerability to failures of, or attacks on, some
of the nodes in the network. The internet is extremely robust
and can function even when a significant fraction of the nodes
fails. When realized, the quantum internet should possess
a similar robustness to attacks or to failures of its nodes.
How should our networks be constructed so that the quantum
internet is fail-safe? In Sec. III, we address this concern using
techniques from bond and site percolation theory by defining
figures of merit for networks based on the critical bond and
site percolation probabilities of their corresponding graph. We
calculate these figures of merit for network topologies obeying
certain symmetries and use them to compare the robustness of
the networks against photon loss and failures of the nodes.
Our figures of merit allow for a direct comparison of different
networks for the purpose of long-distance entanglement distri-
bution that is based solely on the topology of the network.

The network architecture presented in Sec. II can be used to
perform more than just the protocol presented in Sec. II A. As
we describe in Sec. IV, the network architectures presented in
both Secs. II and III can be generalized to perform entangle-
ment routing, as well as to execute entanglement distribution
protocols involving matter qubits.

II. QUANTUM NETWORK WITH MEMORY-FREE
QUANTUM REPEATERS

As a precursor to a full-fledged quantum network, let us
consider the following scenario. Suppose two trusted parties,
company X and company Y , each with one head office at
distant locations, would like to communicate securely with
each other using current (or near-term) quantum technologies.
They could execute, for example, an entanglement-based quan-
tum key distribution protocol, which requires the companies
to first share entanglement. Suppose that the distribution of
entanglement between the companies is to be carried out using
single photons over optical fiber. We model the loss over the
optical fiber using the pure-loss bosonic channel, also called
the attenuator, to be defined below (10). Given the fact that
quantum memories are currently not widely accessible, due
to technological limitations, we treat quantum memories to be
highly expensive. This limits the companies to communicate
securely by making use of memory-free quantum repeaters,
i.e., entanglement swapping stations along the fiber connecting
the two companies, to share maximally entangled photon pairs.

Now, there is a limit to the optimal yield of entangled
photons between the two ends of an optical fiber if only the
head offices are connected by a single fiber. The probability
that an entangled pair of photons is shared between the two
ends of the fiber of length L is η = e−αL [23–26], where α > 0
is a parameter that depends on the property of the fiber. The
maximum rate of entanglement generation between the two
ends, without any repeaters, is − log2(1 − η) entangled pairs
per optical mode [24,26]. This direct generation of entangled

photons over an optical fiber performs no worse than when
entanglement-generating sources and memory-free quantum
repeaters are placed between the two ends.

However, suppose that each company has, in addition to a
head office, several branches that are allowed to perform tasks
on behalf of the head office, so that entanglement between any
two branches of the companies is sufficient for communication.
Can the yield of entangled photon pairs be increased in this
case? We show in this section that the yield of entangled photon
pairs can be increased.

A. Network architecture and entanglement distribution protocol

Consider a network that is a 2D grid with a rectangular
centered Bravais lattice structure, see Fig. 2, consisting of an
equal number of branches of company X and company Y , with
source stations for entanglement generation and measurement
terminals for entanglement swapping. There are N branches
of company X (Y ), and they are labeled by Xi (Yi), i ∈
{1,2, . . . ,N}, and represented by •. The measurement termi-
nals are represented by⊗ and labeled byMi

j , i ∈ {1,2, . . . ,M},
M being the number of measurement terminals in each row
of the grid, and j ∈ {1,2, . . . ,N} denoting the rows of the
grid. Similarly, the source stations are represented by ◦ and
are labeled by Si

j , i ∈ {1,2, . . . ,M + 1} denoting the source
stations in each row of the grid and j ∈ {1,2, . . . ,N − 1}
denoting the rows of source stations. We define the following
sets:

X = {X1,X2, . . . ,XN }, (1)

Y = {Y1,Y2, . . . ,YN }, (2)

S i = {
Si

1,S
i
2 . . . ,Si

N−1

}∀i ∈ {1,2, . . . ,M + 1}, (3)

Mi = {
Mi

1,M
i
2 . . . ,Mi

N

}∀i ∈ {1,2, . . . ,M}. (4)

We let X ≡ M0 and Y ≡ MM+1. The area covered by
the network is LH , where L = 2�(M + 1) cos θ is the total
horizontal length of the network and H = 2�(N − 1) sin θ is
the total vertical length of the network.

Since quantum memories are not widely accessible and are
expensive, we suppose that only the branches Xi and Yi have
quantum memories, while the measurement terminals contain
memory-free quantum repeaters.

We use a dual-rail scheme based on single photons to encode
the qubits and optical fibers to transmit the photons among the
nodes in the network. Let A1,A2 be two orthogonal optical
modes. The dual-rail encoding of a qubit in these two modes
is defined by letting the states |1,0〉A1A2 and |0,1〉A1A2 , i.e.,
occupation of either mode by a single photon, represent the
computational basis of the qubit system. Specifically, we can
let A1 and A2 be two polarization modes of light, so that the
computational basis is given by

|H 〉A := |1,0〉A1A2 , |V 〉A := |0,1〉A1A2 , (5)

where A denotes the qubit system and H and V refer to
horizontal and vertical polarization, respectively. Though we
consider for concreteness throughout this paper polarization-
based dual-rail photons defined in this way, our results will
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(a) (b) (c)

FIG. 1. All source stations in the network create two pairs of
photons, with each pair in the Bell state �+. The entanglement is
created either between (a) diametrically opposite photons, (b) top and
bottom photons, or (c) the left and right photons.

hold for other dual-rail encodings, such as when A1 and A2 are
frequency-offset modes [27].

We restrict inputs to the optical fiber to the one-photon
subspace spanned by |H 〉A and |V 〉A. Then, any pure state
|ψ〉A1A2 of the qubit system can be written as

|ψ〉A1A2 = α|1,0〉A1A2 + β|0,1〉A1A2 (6)

= α|H 〉A + β|V 〉A, (7)

such that |α|2 + |β|2 = 1.
Each source station generates two pairs of the same Bell

state �+ := |�+〉〈�+|, where |�+〉 = 1√
2
(|H,V 〉 + |V,H 〉).

As illustrated in Fig. 1, the source station creates the entan-
glement between either the diametrically opposite photons
[Fig. 1(a)], the photons at the top and bottom [Fig. 1(b)], or
the photons at the left and right [Fig. 1(c)]. Both photons of a
pair are fired in opposite directions to the nearest measurement
terminals. In Fig. 2, photons are shown to be fired as per
Fig. 1(a).

Each measurement terminal contains two memory-free
repeaters. As illustrated in Fig. 3, each measurement terminal
has the ability to perform two-photon measurements, either
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FIG. 2. A two-dimensional network with the topology of a Bra-
vais lattice containing N = 5 branches of company X and company
Y as well as M = 4 columns of measurement terminals. Indicated in
blue is the firing of a pair of entangled photons in the antidiagonal
direction, while the green line indicates the simultaneous firing of
photons in the diagonal direction, with the final source S5

4 firing in
the antidiagonal direction, in order to create entanglement between
X1 and Y4.

(a) (b) (c)

FIG. 3. Pairs of photons (indicated in blue) arriving from the
source stations (small outer circles) at a measurement terminal (large
central circle). Encircled photon pairs are measured. The measure-
ment terminal measures either (a) pairs of diametrically opposite
photons, (b) pairs of top and bottom photons, or (c) pairs of left and
right photons.

on the diametrically opposite photon pairs, on the photons
pairs at the top and bottom of the measurement terminal, or
on the photons pairs at the left and right of the measurement
terminal. Measurement terminals at the edges of the graph
receive only two photons and can therefore measure only
those two photons. Each repeater performs a Bell measurement
with success probability γ on the photon pairs it receives.
This functionality of the measurement terminals makes them
essentially equivalent to quantum relays [28–31].

Our protocol for distributing entanglement between com-
pany X and company Y is the following. At each time step:

(1) All source stations fire pairs of entangled photons in
the state �+ as per Fig. 1(a).

(2) Upon receiving the photons, the measurement terminals
immediately perform a Bell measurement on the pairs of
photons in the orientation of Fig. 3(a). They all globally
announce the results along with a label uniquely identifying
the measurement terminal.

(3) The X branches, using the announced measurement
results, perform appropriate local operations to recover the
state �+.

Note that the X and Y branches know with which branch of
the other company they are entangled by using the announce-
ments from the measurement terminals. Also, for simplicity
of the analysis below, in this protocol we suppose that all the
entanglement-generating source stations and the measurement
terminals are secured from any infiltration by unauthorized
parties. A more sophisticated analysis, assuming that the mea-
surement terminals and/or the source stations are untrusted,
can be carried out and can potentially allow for the network
to be used for device-independent and measurement-device-
independent quantum key distribution [32–35].

The following subsections are devoted to analyzing this
protocol, proving that the branches of companyX and company
Y will indeed share entanglement after each time step, and
determining the average number of entangled photon pairs
shared by company X and Y after each time step.

B. Entanglement transmission from the source stations

Any physical transformation in quantum mechanics is
described by a completely positive and trace-preserving map,
also referred to as a quantum channel. We model the trans-
mission of a photon through the optical fiber as a pure-loss

012335-3



DAS, KHATRI, AND DOWLING PHYSICAL REVIEW A 97, 012335 (2018)

bosonic channel, also called an attenuator or beam splitter,
which induces the following transformation on the input’s
annihilation operators âi and the associated environment’s
annihilation operators êi :

âi 
→ √
ηâi +

√
1 − ηêi,

êi 
→
√

1 − ηâi + √
ηêi . (8)

This input-output Heisenberg-picture relation is equivalent
to conjugation of the annihilation operators by the unitary
operator

Ui = exp[cos−1(
√

η)(â†
i êi − âi ê

†
i )]. (9)

Using this fact, the pure-loss bosonic channel EA1A2→B1B2 can
be defined as the following quantum channel [36]:

EA1A2→B1B2 (ρA1A2 )

:= TrE1E2{U †
1 ⊗ U

†
2 (ρA1A2 ⊗ |0,0〉〈0,0|E1E2 )U1 ⊗ U2},

(10)

where for i ∈ {1,2}, Ai is the input mode, and Bi and Ei are
the modes of the output and environment associated with Ai .
For any state ρA1A2 ≡ ρA in the qubit subspace spanned by
the states |1,0〉A1A2 = |H 〉A and |0,1〉A1A2 = |V 〉A as defined
in (5), it holds that [36]

EA1A2→B1B2 (ρA1A2 ) = ηρB1B2 + (1 − η)|0,0〉〈0,0|B1B2 (11)

= ηρB + (1 − η)|e〉〈e|B, (12)

where |e〉B := |0,0〉B1B2 . The action of the channel E on the
qubit system A is such that it outputs the exact input state with
probability η or replaces it with the vacuum state of the two
modes A1,A2 with probability 1 − η. Note that the vacuum
state is orthogonal to any state of the qubit system, since the
qubit system is defined on the single-photon subspace of the
two modes as per (5). The action of E on the qubit system A can
thus be identified with that of the erasure channel with erasure
parameter 1 − η and erasure state |e〉〈e| [37].

For XA ∈{|H 〉〈H |A,|H 〉〈V |A,|V 〉〈H |A,|V 〉〈V |A}, we have

EA→B(XA) = ηXB + (1 − η)Tr(XB)|e〉〈e|B. (13)

The four maximally entangled states, also called Bell states,
in the space of two qubits are

|�±〉AĀ := 1√
2

(|H,V 〉AĀ ± |V,H 〉AĀ), (14)

|�±〉AĀ := 1√
2

(|H,H 〉AĀ ± |V,V 〉AĀ), (15)

where Ā is another qubit system. Using (13), the action of the
attenuator on each of the systems A and Ā is

EA→B ⊗ EĀ→B̄(|�+〉〈�+|AĀ)

= η2|�+〉〈�+|BB̄ + η(1 − η)
(

1
21B ⊗ |e〉〈e|B̄

+ |e〉〈e|B ⊗ 1
21B̄

) + (1 − η)2|e〉〈e|B ⊗ |e〉〈e|B̄ , (16)

where

1
21A = 1

2 (|H 〉〈H |A + |V 〉〈V |A) (17)

is the maximally mixed state. Observe that with probability
η2 B and B̄ are maximally entangled, with probability η(1 − η)
one of the photons is lost and the other is in a maximally mixed
state, and with probability (1 − η)2 both photons are lost.

We let

τ
η

BB̄
:= EA→B ⊗ EĀ→B̄(|�+〉〈�+|AĀ)

= η2|�+〉〈�+|BB̄ + (1 − η2)�⊥
BB̄

, (18)

where

�⊥
BB̄

:= η

1 + η

(
1

2
1B ⊗ |e〉〈e|B̄ + |e〉〈e|B ⊗ 1

2
1B̄

)

+ 1 − η

1 + η
|e〉〈e|B ⊗ |e〉〈e|B̄ .

Note that �⊥
BB̄

is orthogonal to �+, i.e., 〈�+|�⊥|�+〉 = 0.
Along with classical communication between B and B̄ on
whether the photons arrived, the state (18) is consistent with
the action of the erasure channel with erasure parameter 1 − η2

and erasure state �⊥
BB̄

.

C. Entanglement swapping at the measurement terminals

All four Bell states in (19) can be written as

|�a,b〉 := (
σa

x σ b
z ⊗ 1

)|�+〉, (19)

where σx = |H 〉〈V | + |V 〉〈H | and σz = |H 〉〈H | − |V 〉〈V |
are the Pauli-x and Pauli-z operators, and a,b ∈ {0,1}. Now,
suppose an entanglement source produces a pair of photons
in the Bell state |�a1,b1〉B1B̄1

and sends one of the photons
to B1 and the other photon to B̄1. Similarly, another source
distributes a photon pair in the Bell state |�a2,b2〉B2B̄2

to B2 and
B̄2. If a Bell measurement is performed on the photons B̄1 and
B̄2, then it is straightforward to show (see Appendix) that each
outcome (a3,b3) ∈ {0,1}2 occurs with probability 1

4 and that the
corresponding postmeasurement state is |�a1⊕a2⊕a3,b1⊕b2⊕b3〉,
where ⊕ denotes addition modulo two.

Using this result, we can determine the state shared by a
branch of company X and a branch of company Y along any
path in the network. Specifically, let us determine the state
shared by X1 and Y4 along the path shown in Fig. 2 after a single
run of the protocol. After the photons arrive at the measurement
terminals, the total joint state is

τ
η

X1M
1
2,1

⊗ τ
η

M1
2,2M

2
3,1

⊗ τ
η

M2
3,2M

3
4,1

⊗ τ
η

M3
4,2M

4
5,1

⊗ τ
η

M4
5,2Y4

, (20)

where the notationMi
j,1 refers to the photon at the measurement

terminal Mi
j arriving from source station Si

j−1 and Mi
j,2 refers

to the photon at the measurement terminal Mi
j arriving from

source station Si+1
j+1. Bell measurements are then performed on

the pairs (M1
2,1,M

1
2,2), (M2

3,1,M
2
3,2), (M3

4,1,M
3
4,2), (M4

5,1,M
4
5,2)

at the corresponding measurement terminals. Since each state
τ η contains a term supported on the zero-photon subspace,
when measuring the joint state (20) in the Bell basis on the
single-photon subspace spanned by {|H 〉,|V 〉} the only term
that will have a nonvanishing contribution to the measurement
outcome probabilities and the postmeasurement states is the
term

(η2)5�+
X1M

1
2,1

⊗ �+
M1

2,2M
2
3,1

⊗ �+
M2

3,2M
3
4,1

⊗ �+
M3

4,2M
4
5,1

⊗ �+
M4

5,2Y4
. (21)
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Thus, after a Bell measurement at each measurement terminal, the postmeasurement state corresponding to outcomes (ai,bi) at
measurement terminals i ∈ [1,4] is(

M1
2,1M

1
2,2

〈
�a1,b1

∣∣ ⊗M2
3,1M

2
3,2

〈
�a2,b2

∣∣ ⊗M3
4,1M

3
4,2

〈
�a3,b3

∣∣ ⊗M4
5,1M

4
5,2

〈
�a4,b4

∣∣)

× (|�+〉X1M
1
2,1

⊗ |�+〉M1
2,2M

2
3,1

⊗ |�+〉M2
3,2M

3
4,1

⊗ |�+〉M3
4,2M

4
5,1

⊗ |�+〉M4
5,2Y4

)

= (
1
2

)4|�a1⊕a2⊕a3⊕a4,b1⊕b2⊕b3⊕b4〉X1Y4 . (22)

Therefore, with probability (η2)5, the two branches will share
a pair of maximally entangled photons along the path shown
in Fig. 2. Since the state (22) can be written in the form (19),
it follows that if X1 applies σb1⊕b2⊕b3⊕b4

z σ a1⊕a2⊕a3⊕a4
x to its

photon, then X1 and Y4 will share a pair of photons in the state
�+.

Now, observe using Fig. 2 that in our protocol all paths
from an X branch to a Y branch have the same length. This
means that the probability that any two of the X and Y branches
share a pair of photons in the state �+ is (η2)5. Note that,
so far, we have assumed that the success probability of the
Bell measurement is 1. If the success probability of the Bell
measurement is γ ∈ [0,1], then the probability that any two of
the X and Y branches share a pair of photons in the state �+
is γ 4(η2)5.

In the general case of M columns of measurement terminals
between company X and company Y , we find that after a
single run of the protocol the state between an X branch
and a Y branch along one path of the network is |�atot,btot〉,
where atot = a1 ⊕ a2 ⊕ · · · ⊕ aM , btot = b1 ⊕ b2 ⊕ · · · ⊕ bM ,
and (a1,b1),(a2,b2), . . . ,(aM,bM ) are the measurement out-
comes at each measurement terminal. This occurs with proba-
bility γ M (η2)M+1.

D. Average entanglement yield

Given a network with N branches of company X and
company Y and M measurement terminals, at each time step
the branches X1, XN , Y1, and YN each receive one photon while
the rest each receive two photons. The maximum possible
number of entangled photon pairs that can be shared between
company X and company Y after one time step is therefore
2(N − 2) + 2 = 2(N − 1), and it does not depend on the
number of possible paths through which X and Y can be
entangled.

Since the probability of obtaining a single entangled pair of
photons between an X branch and a Y branch is γ M (η2)M+1,
and η = e−α�, the average total number ξ 2D

N,M of entangled pairs
created, i.e., the average “yield,” after one time step is

ξ 2D
N,M = 2(N − 1)γ Me−2α�(M+1). (23)

In terms of the total horizontal length L = 2�(M + 1) cos θ of
the network,

ξ 2D
N,M = 2(N − 1)γ Me−α L

cos θ . (24)

We typically let α = 1
22 km [21]. Also, the maximum value

of γ using linear optics is 1
2 [38–40], whereas using nonlinear

optics a perfect Bell measurement, i.e., γ = 1, is possible in
the ideal case [41,42]. Using these values and letting θ = π

4 ,

we plot ξ 2D
N,M as a function of the total length L and the number

of branches N in Fig. 4 for M = 1 and M = 2.
From (23) and (24), we see that, when viewed as a function

of the total length L, increasing the number of columns M

of measurement terminals in the network has the effect of
decreasing the average yield per time step whenever γ < 1,
while for γ = 1 the yield is independent of M . However,
increasing M decreases the distance � between the source
station and the measurement terminal (for fixed L and θ ) and
increases the number of paths from one end of the network to
the other. Increasing M also increases the number of branches
of company Y that a given branch of company X can be
entangled with, and vice versa. For example, for the caseN = 5
and M = 4 in Fig. 2, there is no path from X1 to Y5; however,
for M = 5, there exists a path from X1 to Y5. The increase
in the number of paths from one end to the other makes the
network and protocol robust against failures of intermediate
source stations and/or measurement terminals.

An example of the robustness of the protocol against failures
of source stations and measurement terminals is illustrated in
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FIG. 4. Plots of ξ 2D
N,M as a function of the total length L and the

number of branches N for different values of the success probability
γ of each Bell measurement and M , the number of columns of
measurement terminals in the network: (a) γ = 1

2 , M = 1; (b) γ = 1
2 ,

M = 2; (c) γ = 0.9, M = 1; and (d) γ = 1, M = 2.
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FIG. 5. An illustration of the robustness of the memory-free
entanglement distribution protocol presented in Sec. II A in two
particular cases of nonfunctioning source stations and measurement
terminals, which are enclosed in the shaded regions. Indicated are
two possible paths from X to Y . Despite the nonfunctioning nodes in
5(a), which do not allow shared entanglement between X2 and Y3 via
the green path, the blue path is still available to share entanglement
between X2 and Y5. Similarly, in 5(b), the blue path cannot be used
to share entanglement but the green path can be used.

Fig. 5. The nonfunctioning nodes are enclosed in the shaded
region. The protocol is robust, since in each of the two cases
of nonfunctioning nodes, as shown in Figs. 5(a) and 5(b),
entanglement can still be distributed between X and Y using
the protocol, albeit with a lower average entanglement yield.
For example, in Fig. 5(a), the green path cannot be used to
allow X2 to share entanglement with Y3, but X2 can still share
entanglement with Y5 via the blue path. On the other hand, in
Fig. 5(b), X2 cannot share entanglement with Y5 via the blue
path, but it can share entanglement with Y3 via the green path.

III. LOSS TOLERANCE FOR FUTURISTIC
NETWORK ARCHITECTURES

In the previous section, we considered memory-free quan-
tum repeaters in which, at each time step, the Bell mea-
surements at the measurement terminals were performed im-
mediately upon arrival of the photons so as to not require
the use of quantum memories to store the qubits until both

photons arrive. Ensuring simultaneous arrival of the photons at
the measurement terminals and immediate Bell measurement
is difficult to achieve in practice [43]. With technological
advancements in the future, we can assume that quantum
memories will be easily accessible so that they may be used
throughout the network (and not just at select locations) for the
storage of the qubits.

In this section, we consider full-fledged 2D network ar-
chitectures and topologies in which the network is modeled
as a graph all of whose nodes represent workstations, i.e.,
a members of the network that have quantum memories
and can perform measurements for entanglement swapping
and other quantum operations. In Sec. III A, we model the
network as a graph such that the edges connecting two
neighboring nodes have the same length, and in Sec. III B
we consider graphs whose edges have different lengths. In
each case, we use percolation theory to quantify the robust-
ness of the networks against photon loss and failures of the
nodes.

Our generalized network architecture is illustrated in Fig. 6.
Given a graph, the corresponding quantum network is defined
by placing source stations at the midpoint of each edge of
the graph. Each source station generates one pair of dual-rail
single-photonic qubits in the Bell state �+ and fires each
photon of the pair in opposite directions along the edge
towards the neighboring nodes [44]. As in Sec. II B, the
transmission of the photons along the edge is modeled as a
pure-loss bosonic channel. Each node on the graph represents
a member of the network that is capable of storing photons
using quantum memories and performing Bell measurements
for entanglement swapping. The number of quantum memories
held by each member of the network is equal to the degree d

of the corresponding node in the graph, where the degree of a
node in a graph is equal to the number of nodes it is directly
connected to through edges. Each member of the network has at
least one measurement terminal, with a maximum of � d

2 �, for
the purpose of entanglement swapping. These measurement
terminals can be used on any two of the photons in the
quantum memories. Multiple measurement terminals at each
node, for example, as in Fig. 3 in which each node contains two
measurement terminals, can potentially allow for simultaneous
entanglement distribution in the network depending on the
protocol used.

Depending on the network topology, there may be several
possible ways in which any two members of the network
can become connected, i.e., share entangled photon pairs.
Members of the network, acting in a cooperative manner, can
perform entanglement swapping operations (as discussed in
Sec. II C) in order to direct the entanglement so that members
of interest can become connected. In general, the probability
that any two members of the network are connected decreases
with the increase in the number of intermediate nodes that
participate in the entanglement swapping operations.

A. Homogeneous network topology

A homogeneous network is one in which all edges of the cor-
responding graph have the same length. Graphs whose edges all
have the same length include the four bow-tie lattices in Fig. 8
and the 11 Archimedean lattices in Fig. 7. As described above,
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FIG. 6. Given a graph (left), the corresponding quantum network architecture is illustrated explicitly for the circled portion of the graph
(right) and consists of the following elements: members of the network placed at the nodes of the graph (gray circles), each possessing d

quantum memories (represented by red dots inside the nodes), where d is the degree of the node, and source stations (white circles) placed at
the midpoint of each edge of the graph that generate pairs of dual-rail single-photonic qubits (represented by blue dots) in the state �+. Each
qubit of the pair is fired from the source station in opposite directions along the edge of the graph. The quantum memories allow each member
of the network to store the arriving qubits for later processing. Each member of the network has at least one measurement terminal, with a
maximum of � d

2 �, that can be used to perform Bell measurements for entanglement swapping on any two of the stored qubits.

in these two figures each member of the network is represented
by •, and the source stations (not indicated) are placed at the
midpoint of each edge between neighboring nodes. Members
of the network are capable of storing photons with quantum
memories and performing entanglement swapping operations
by Bell measurements. By the calculation in Sec. II B, any
two neighboring nodes share the entangled state �+ with

probability η2, and with probability 1 − η2 at least one of the
photons is lost and there is no entanglement between the nodes.

Of interest in a quantum network is the ability to establish
long-range connections between any two nodes in the network.
Whether such long-range connections are possible in the case
when entanglement between neighboring nodes is established
probabilistically along the edges as described above can

FIG. 7. Eleven Archimedean lattices in which all edges of the lattice have the same length. The lattices are named by listing the number of
sides of the shapes surrounding each vertex, with repeated shapes indicated with an exponent. For example, (34,6) means that every vertex is
surrounded by four triangles and one hexagon. Members of the network, capable of storing photons with quantum memories, are represented
by •. The source stations (not indicated) are placed at the midpoint of each edge between neighboring nodes; see Fig. 6.
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FIG. 8. Four different bow-tie lattices in which all edges of the
lattice have the same length: (a) bow-tie I, (b) bow-tie II, (c) bow-tie
III, and (d) bow-tie IV. Members of the network, capable of storing
photons with quantum memories, are represented by •. The source
stations (not indicated) are placed at the midpoint of each edge
between neighboring nodes; see Fig. 6.

be answered using percolation theory (see, e.g., Ref. [45]),
specifically bond percolation theory [46].

In bond percolation theory, any two neighboring nodes
of a given graph are either connected with probability p

or disconnected with probability 1 − p. One of the central
questions of percolation theory is whether there exists a giant
cluster of connected nodes in the graph such that a path
connects one end of the graph to the other. It turns out that there
is a critical probability pc above which such a cluster always
exists. In general, the critical probability can be determined
numerically (see, e.g., Refs. [47] and [48]), while for certain
classes of graphs the critical probability can be determined
analytically (see, e.g., Refs. [49] and [50]).

Now, for the network architectures considered here, we
deem two neighboring nodes to be connected if they share the
entangled state �+, i.e., if the transmission of the entangled
pair of photons in the state �+ from the source station at the
midpoint of the edge connecting the two nodes succeeds. The
probability that any two neighboring nodes are connected is
therefore η2. Since all members of the network have quantum
memories, unlike the protocol in Sec. II A, once the connection
has been established they are not forced to measure immedi-
ately upon receiving the photons and therefore can hold on to
their half of the entangled pair of photons for later processing.
As illustrated in Fig. 9 for the (36) Archimedean lattice, a path
between two (potentially distant) nodes of interest (indicated in
blue) constitutes a chain of connected pairs of nodes (indicated
in magenta) between the two given nodes. If there exists a path
between two nodes of interest, then entanglement swapping
operations performed at the intermediate nodes along the path
can be used to establish entanglement between the two nodes.
Now, it is possible that, at any given time, sources firing
throughout the network can lead to multiple paths between
the two nodes of interest, and even paths between multiple

A

B

FIG. 9. In this quantum network based on the (36) Archimedean
lattice there exists a path, i.e., a chain of successfully entangled
nodes (indicated in magenta), between the two distant nodes A

and B (indicated in blue). Through entanglement swapping at the
intermediate nodes along the path, A and B can share entanglement.
Due to the probabilistic nature of entanglement generation in our
architecture, at any given time, sources firing throughout the network
can lead to paths between multiple different pairs of nodes. Some of
these other paths are indicated in green.

different pairs of nodes. These other paths are indicated in
green in Fig. 9, and in general they can allow for simultaneous
sharing of entanglement between multiple different pairs of
nodes in the network.

We define the critical transmissivity ηc for a given graph
as the transmissivity of the pure-loss bosonic channel above
which there exists a giant cluster of connected nodes in
the corresponding network such that entanglement can be
established between one end of the network and the other by
entanglement swapping at intermediate nodes. Given that, in
our noise model, entanglement is established along an edge
between neighboring nodes with probability η2, the critical
transmissivity ηc for a given graph is simply the square root of
the critical probability pbond

c for bond percolation [51], i.e.,

ηc =
√

pbond
c . (25)

We deem the network robust against photon loss whenever
η � ηc.

Now, suppose that in addition to the probability η2 of
establishing entanglement between neighboring nodes along
the edges of the graph the fiber optic cable connecting the
neighboring nodes malfunctions with probability q. Then,
the overall probability of establishing entanglement between
neighboring nodes along an edge is η2(1 − q). By comparing
this probability with pbond

c , one can find values of η and q

such that a giant cluster of entangled nodes exists in the
network despite failures of the fiber optic cables. Specifically,
the condition

η2(1 − q) � pbond
c (26)

defines the region of robustness of the network as the values of
η and q for the which the inequality (26) is satisfied.

It may also happen that at any given time some fraction
of the workstations malfunctions. If we suppose that each
workstation is well functioning with probability r and mal-
functions with probability 1 − r , then the question of whether
a giant cluster of entangled nodes exists in the network can
be answered using site percolation theory. As opposed to
bond percolation theory, in site percolation nodes are either
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TABLE I. Bond percolation critical probabilities for the bow-tie
lattices in Fig. 8 as determined in Ref. [50] along with the critical
transmissivity as given by (25). Site percolation critical probabilities
for these lattices are unknown except for the bow-tie I lattice.

Bow-tie lattice pbond
c rc = psite

c ηc

I 0.404518 0.5475 [52] 0.636017
II 0.672929 Unknown 0.820322
III 0.625457 Unknown 0.790858
IV 0.595482 Unknown 0.771674

present with probability p or absent with probability 1 − p.
The critical site percolation probability psite

c is defined as the
value above which a giant cluster of connected nodes exists
in the network. The critical value rc of r above which there
exists a giant cluster of entangled nodes is therefore simply
rc = psite

c , assuming η = 1 and q = 0. Tables I and II list the
critical probabilities for bond and site percolation, as well as
the critical transmissivities, for the bow-tie and Archimedean
lattices, respectively.

The critical transmissivity ηc and the critical site probability
rc are figures of merit for characterizing the robustness of a
network. Networks with lower values of ηc and rc are more
fail-safe than those with higher values, because networks with
lower values of ηc and rc contain a giant cluster of entangled
nodes despite the high probability of photon loss and/or high
probability of workstation failure. Among the bow-tie and
Archimedean lattices shown above, we find by examining
Tables I and II that the triangular (36) Archimedean lattice
has the lowest bond percolation critical probability, which is
0.347 296, with ηc = 0.589 318. This value of the transmissiv-
ity is of practical interest [56]. The triangular lattice also has
the lowest site percolation critical probability, which is 1

2 .

B. Inhomogeneous network topology

The results above can be generalized to the case when not all
of the lengths of the edges of the graph are the same. This gen-
eralization corresponds to different entanglement-generation
probabilities along the edges, and the question of whether a
large cluster of connected nodes exists in the network can

TABLE II. Bond and site percolation critical probabilities for the
Archimedean lattices in Fig. 7 along with the critical transmissivity
as given by (25).

Archimedean lattice pbond
c rc = psite

c ηc

(3,122) 0.740421 [53] 0.807904 [47] 0.860477
(4,6,12) 0.693733 [53] 0.747806 [47] 0.832906
(4,82) 0.676802 [53] 0.729724 [47] 0.822679
(63) 0.652703 [54] 0.697043 [47] 0.807900
(3,6,3,6) 0.524404 [55] 0.652703 [54] 0.724157
(3,4,6,4) 0.524832 [53] 0.621819 [47] 0.724452
(44) 1

2 0.592746 [55] 0.707106
(34,6) 0.434306 [53] 0.579498 [47] 0.659018
(33,42) 0.419641 [53] 0.550213 [47] 0.647797
(32,4,3,4) 0.414137 [53] 0.550806 [47] 0.643534
(36) 0.347296 [54] 1

2 0.589318

p2

p1

p3

p1 p2

p3

p1

p2

p4 p1

p2p3

p5

(a) (b) (c) (d)

FIG. 10. Unit-cell and inhomogeneous bond percolation connec-
tion probabilities for (a) the square (44) Archimedean lattice, (b)
the triangular (36) Archimedean lattice, (c) the honeycomb (63)
Archimedean lattice, and (d) the bow-tie I lattice.

be answered using inhomogeneous bond percolation theory.
In inhomogeneous bond percolation on regular lattices, each
edge of the unit cell comprising the lattice has a different
connection probability with a neighboring node. Instead of a
critical probability, one obtains in this case a critical surface
defining the region of the different probabilities in which a
large cluster of connected nodes exists.

Exact critical surfaces exist for the square (44), triangular
(36), and honeycomb (63) Archimedean lattices [54], while
approximate or conjectured exact critical surfaces exist for
many of the other Archimedean lattices [57–59]. Conjectured
critical surfaces for the bow-tie lattices can be found in
Refs. [58] and [60].

Figure 10 shows the unit cells for the square, triangular,
honeycomb, and bow-tie I lattices along with their inhomo-
geneous bond percolation edge connection probabilities. The
associated bond percolation critical surfaces are as follows:

Square(44) [54] p1 + p2 = 1, (27)

Triangular(36) [54] p1 + p2 + p3 − p1p2p3 = 1, (28)

Honeycomb(63) [54] p1p2 + p1p3+p2p3 − p1p2p3 = 1,

(29)

Bow-tie I [58] p5 + p1p2 + p1p3 + p1p4 + p2p3 + p2p4

+p3p4 − p1p2p3 − p1p2p4 − p1p3p4 − p2p3p4

−p1p2p5 + p3p4p5 − p1p2p3p4p5 = 1. (30)

Here, pi = η2
i := e−α�i , where �i is the length of the edge

along which the probability of establishing entanglement is η2
i .

These critical surfaces can be used to determine, for a given α,
critical values of the lengths of the edges for the existence of
a large cluster of entangled nodes in the network.

Though increasing the lengths of the some of the edges
in the unit cell can allow for entanglement distribution over
longer distances, doing so will generally increase the critical
transmissivity, as one might expect. For example, suppose we
take a right isosceles triangle as the unit cell of the triangular
lattice, so that the length of the two equal sides is � and
the length of the hypotenuse is

√
2�. Then p1 = p2 ≡ p and

p3 = p
√

2, and by (28) the critical probability pc of the graph
satisfies 2pc + p

√
2

c − p2+√
2

c = 1, leading to pc ≈ 0.388 510,
which is larger than the bond percolation probability on the
regular triangular lattice of 0.347 296. This suggests that
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networks based on homogeneous lattices are more robust than
those based on inhomogeneous lattices.

IV. DISCUSSION

In Sec. II A, we presented a two-dimensional quantum
network architecture consisting of source stations producing
entangled photon pairs and measurement terminals performing
entanglement swapping Bell measurements without the use of
quantum memories. We then used this network architecture to
present a protocol for simultaneous entanglement generation
among members of two groups X and Y at opposite ends
of the network in which the intermediate source stations and
measurement terminals all act independently of each other. As
discussed in Sec. II D, this protocol is robust against failures of
many of these intermediate nodes. To enhance the robustness
of the protocol, the protocol can be modified so that the
intermediate nodes do not act independently. For example,
the source stations can, upon learning of the failures of the
neighboring source stations, modify the configuration of their
entanglement generation to one of the three different ways
shown in Fig. 1. Similarly, the measurement terminals can
measure in the different orientations as shown in Fig. 3 based
on the failures of the neighboring measurement terminals. This
adaptive approach could allow for paths that would otherwise
be disallowed due to the failures to be redirected through
active nodes and thus remain viable for sharing entanglement
between the X and Y branches. Such a strategy, based on using
the knowledge of neighboring nodes, has also been shown to
improve the average entanglement yield, see Ref. [61].

More generally, the network architecture of Sec. II A can be
modified so that the intermediate measurement terminals are
also members of the network and all members have quantum
memories. In this case, individual members can act as routers
by selectively measuring in the different orientations as shown
in Fig. 3. The source stations can also generate entanglement
in all three different ways as shown in Fig. 1. These generaliza-
tions will increase the number of paths between any two nodes
in the network. Members of the network can then, by acting
cooperatively, exploit this multitude of paths in the network
to generate entanglement between any two members of the
network. By making full use of the network architecture in
this way, the members of the network can execute a variety
of different protocols, not just the one presented in Sec. II A.
These considerations also apply to the network architectures
presented in Sec. III. The directing of entanglement swapping,
in the intermediate workstations through different paths, to
generate entanglement between the members of a network is
called entanglement routing. For general discussions on entan-
glement routing, see, e.g., Refs. [43,61,62]. We emphasize that
though the number of paths through any given network may be
high, in any single run of a protocol only a certain fraction of
these paths might actually be available to distribute entangle-
ment. The number of paths available will depend on the number
of photons distributed to the nodes during the protocol.

The network architectures presented here can also be used
for the distribution of entanglement between atoms [63–66]
via the interaction of the photons resulting from transitions in
the states of the atom. For example, the network architecture in

Sec. II A can be “inverted” so that the source stations in Fig. 2
are replaced by measurement terminals and the measurement
terminals are replaced by quantum memories holding matter
qubits that act as photon sources when the atoms in the memory
undergo state transitions. This inverted network architecture
can be used, for example, to perform quantum clock synchro-
nization [11,13] and other quantum information processing
tasks requiring matter entanglement.

For future work, it would be interesting to adapt the network
architectures we have considered in this work to the generation
of multipartite entangled states [67–69], such as multipartite
Greenberger-Horne-Zeilinger (GHZ) states or more generally,
graph states [70].
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APPENDIX: BELL MEASUREMENT CALCULATION

For any a3,b3 ∈ {0,1}, consider the following inner product:

B̄1B̄2

〈
�a3,b3

∣∣(∣∣�a1,b1

〉
B1B̄1

⊗ ∣∣�a2,b2

〉
B2B̄2

)
(A1)

=B̄1B̄2

〈
�a3,b3

∣∣((σa1
x σ b1

z ⊗ 1
)∣∣�+〉B1B̄1

⊗ (
σa2

x σ b2
z ⊗ 1

)|�+〉B2B̄2

)
= (

σa1
x σ b1

z ⊗ σa2
x σ b2

z

)
B̄1B̄2

〈
�a3,b3

∣∣(|�+〉B1B̄1
⊗ |�+〉B2B̄2

)
= (

σa1
x σ b1

z ⊗ σa2
x σ b2

z

)
1
2

∣∣�a3,b3

〉
B1B2

. (A2)

To obtain the last equality, we used the fact that

B̄1B̄2

〈
�a3,b3

∣∣(|�+〉B1B̄1
⊗ |�+〉B2B̄2

) = 1
2

∣∣�a3,b3

〉
B1B2

(A3)

for all a3,b3 ∈ {0,1} (up to a possible irrelevant global phase),
which is the known result from standard entanglement swap-
ping [2,17]. We now use the following facts about the Pauli-x
and Pauli-z operators to simplify (A2):

σa
z σ b

x = (−1)1⊕a⊕bσ b
x σ a

z ,

σ a
x σ b

x = σa⊕b
x , (A4)

σa
z σ b

z = σa⊕b
z ,

for all a,b ∈ {0,1}, where ⊕ denotes addition modulo 2.
Therefore, up to possible global phases, we have that

(
σa1

x σ b1
z ⊗ σa2

x σ b2
z

)
1
2

∣∣�a3,b3

〉
B1B2

(A5)

= 1
2

(
σa1⊕a3

x σ b1⊕b3
z ⊗ σa2

x σ b2
z

)|�+〉B1B2 (A6)

= 1
2

(
σa1⊕a3

x σ b1⊕b3
z ⊗ σa2

x σ b2
z σx

)|�+〉B1B2 . (A7)
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To obtain the last equality we used the fact that |�+〉= (1⊗σx)
|�+〉. Now, for any square operator M , it holds that

(1 ⊗ M)|�+〉 = (MT ⊗ 1)|�+〉. (A8)

Using this, along with the identities (A4) and σ T
x = σx and

σ T
z = σz, we obtain up to a possible global phase

1
2

(
σa1⊕a3

x σ b1⊕b3
z ⊗ σa2

x σ b2
z σx

)|�+〉B1B2 (A9)

= 1
2

(
σa1⊕a3

x σ b1⊕b3
z σxσ

b2
z σ a2

x ⊗ 1
)|�+〉B1B2 (A10)

= 1
2

(
σa1⊕a3⊕a2

x σ b1⊕b3⊕b2
z ⊗ 1

)|�+〉B1B2 . (A11)

Therefore, up to a possible global phase,

B̄1B̄2

〈
�a3,b3

∣∣(∣∣�a1,b1

〉
B1B̄1

⊗ ∣∣�a2,b2

〉
B2B̄2

)
= 1

2 |�a1⊕a2⊕a3,b1⊕b2⊕b3〉, (A12)

which tells us that each outcome of the Bell measurement
occurs with probability 1

4 and that the corresponding postmea-
surement state is a Bell state.
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