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Hypergraph states, a generalization of graph states, constitute a large class of quantum states with intriguing non-
local properties, and they have promising applications in quantum information science and technology. In this pa-
per, we study some features of an independently proposed generalization of hypergraph states to qudit hypergraph
states, i.e., each vertex in the generalized hypergraph (multi-hypergraph) represents a d-level system instead of a
two-level one. It is shown that multi-hypergraphs and d-level hypergraph states have a one-to-one correspondence,
and the structure of a multi-hypergraph exhibits the entanglement property of the corresponding quantum state. We
discuss their relationship with some well-known state classes, e.g., real equally weighted states and stabilizer states.
The Bell nonlocality, an important resource in fulfilling many quantum information tasks, is also investigated.
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I. INTRODUCTION

In quantum information science and technology, graph
states constitute an almost unique family of states for their
appealing properties and applications [1–11]. They can be
used to implement one-way quantum computation [1] and
construct quantum codes [5–7]. Moreover, they can be used to
characterize many kinds of widely used entangled states, such
as cluster states [12], the Greenberger-Horne-Zeilinger (GHZ)
states [13], and more generally, stabilizer states [14,15]. To
make quantum states of suitable physical systems describable
in the framework as that of graph states, Ref. [16] introduced
an axiomatic method. Later, Refs. [17,18] generalized this
approach and introduced a new class of quantum states named
hypergraph states.

Like graph states, given a hypergraph, one can define an
associated qubit hypergraph state, i.e., hypergraphs can be
encoded into quantum states [17,18]. Besides this feature,
every qubit hypergraph state corresponds to a stabilizer group
[14,15]. However, generally speaking, the stabilizers are no
longer products of local operators [18]. As a new class of
quantum states, they possess many new properties, e.g., local
unitary symmetries [19–22], entanglement properties [22–25],
and nonlocal properties [22,26–28]. Besides these fundamental
properties, these states also have many applications. Qubit
hypergraph states are real equally weighted states [29,30],
which have important applications in Grover [31] and Deutsch-
Jozsa [32] algorithms. Recently, Ref. [33] has shown that,
if one has a black box that can tell whether an input qubit
hypergraph state is a product state, he or she can solve the
NP-complete SAT problem efficiently [34]. Fully connected
k-uniform qubit hypergraph states, a generalization of GHZ
states, are applicable in Heisenberg-limited quantum metrol-
ogy with more robustness to noise and particle losses [18,28].
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Superior to one-way quantum computation based on graph
states, measurement-based quantum computation with qubit
hypergraph states is nonadaptive, making the measurement
scheme simpler [35].

In this paper, by employing the concept of multi-hypergraph
[36], we encode the multi-hypergraphs into multiqudit quan-
tum states. (The so-called qudit hypergraph states were re-
cently introduced in Ref. [37] in a way different from ours.
The paper focuses on the stochastic local operations and clas-
sical communication (SLOCC) classification of these quantum
states.) By investigating the encoding map, we discuss the
relationship between the connectivity of the multi-hypergraph
and the entanglement of the corresponding quantum state. We
study the relationship between these quantum states and some
well-known state classes, and we show the similarities and
differences from the qubit case. The Bell nonlocality, a useful
resource in quantum computation and quantum high-precision
measurement, is also studied. Furthermore, a systematic ap-
proach for experimental detection is provided.

The paper is organized as follows: In Sec. II, we give
some preliminary knowledge of hypergraph and qubit hy-
pergraph states, and we explain related terminologies. We
then generalize these concepts to represent a larger class
of quantum states, which we call qudit hypergraph states,
using a similar formalism. We show how the notion of a
hypergraph should be modified when each vertex represents
a qudit instead of a qubit. In Sec. III, we discuss the rela-
tion between multi-hypergraphs and qudit hypergraph states,
mainly about the characteristics of the encoding map, and the
relationship between the connectivity of a multi-hypergraph
and the entanglement property of its corresponding quantum
state. In Sec. IV, we discuss the relationship among qudit
hypergraph states and some well-known state classes, such as
real equally weighted states, qudit graph states, and stabilizer
states. In Sec. V, we investigate the Bell nonlocality [38,39] of
N -uniform qudit hypergraph states, and we propose a general
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FIG. 1. Examples of hypergraphs. (a) A common hypergraph
with E = {∅,{1},{2,3},{1,2,3}} (the red circle in the left rep-
resents an empty hyperedge). The corresponding qubit hyper-
graph state is |ψ〉 = (−|000〉 − |001〉 − |010〉 + |011〉 + |100〉 +
|101〉 + |110〉 + |111〉)/√8, whose stabilizer group is generated by
X1C∅C{2,3}, X2C{3}C{1,3}, and X3C{2}C{1,2}. (b) Hypergraph with E =
{{1,2,3},{2,3,4}}. As the cardinalities of the hyperedges are both 3,
this hypergraph is a three-uniform hypergraph, a generalization of
a conventional graph. (c) A hypergraph with E = {{1,2},{2,3}}. Be-
cause the hyperedges are both of cardinality 2, this hypergraph reduces
to a conventional graph and the corresponding qubit hypergraph state
becomes a conventional graph state.

detection scheme for illustrating the Bell nonlocality of general
qudit hypergraph states. Conclusions are drawn in Sec. VI.

II. MULTI-HYPERGRAPHS AND QUDIT
HYPERGRAPH STATES

In this section, we will introduce some preliminary knowl-
edge of hypergraphs and qubit hypergraph states, and propose
our main generalization of these concepts. Some important
properties of qubit hypergraph states and qudit hypergraph
states will be discussed.

A. Preliminary: Hypergraphs and qubit hypergraph states

A hypergraph H is composed of a set of vertices V and a
set of hyperedges E [17,18,28], i.e., H = (V,E). (For simpli-
fication, in this subsection, H represents such a hypergraph.)
Suppose that the vertices are labeled as 1,2, . . . ,N . Then V =
{1,2, . . . ,N}. Unlike the edges defined in standard graphs, hy-
peredges in hypergraphs may connect more (or less) than two
vertices, i.e., elements in E have a form e = {k1,k2, . . . ,k|e|},
where k1,k2, . . . ,k|e| are the vertices connected by e, and |e|,
the cardinality of e, ranges from 0 to N . If all the hyperedges
in H are of the same cardinality k, then H is called k-uniform
[18]. Standard graphs are in fact two-uniform hypergraphs.
Some examples of hypergraphs are shown in Fig. 1.

Hypergraphs can be encoded into a class of quantum
states named qubit hypergraph states, in which every vertex
represents a two-level quantum system whose computational
basis is {|0〉,|1〉}. The operator corresponding to the hyperedge
e = {k1, . . . ,k|e|} is defined as

Ce =

⎧⎪⎨
⎪⎩

−1, |e| = 0,

Z, |e| = 1,∑1

ik1 ,...,ik|e| =0
(−1)ik1 ···ik|e| �̂ik1 ···ik|e| , |e| � 2,

(1)

where �̂ik1 ···ik|e| = |ik1 · · · ik|e| 〉〈ik1 · · · ik|e| | and ik1 , . . . ,ik|e| de-
notes the value of the vertices k1, . . . ,k|e|, respectively. The

qubit hypergraph state corresponding to H is

|H 〉 =
∏
e∈E

Ce|+〉⊗N, (2)

where |+〉 = (|0〉 + |1〉)/√2. The state |H 〉 can be interpreted
as applying a series of Ce operations to |+〉⊗N . As all the
Ce’s are commutative with respect to each other, the order
of the operations makes no difference, and a hypergraph
corresponds to a definite qubit hypergraph state (see Fig. 1
for the examples).

As with graph states, qubit hypergraph states can also be
characterized within the framework of stabilizers. Define a set
of operators

gk =
(∏

e∈E

Ce

)
Xk

(∏
e′∈E

Ce′

)†

= Xk

∏
{e|k∈e,e∈E}

Ce\{k}, (3)

where Xk is the Pauli-X operator of the kth vertex. Then (see
Fig. 1 for the examples)

gk|H 〉 = |H 〉. (4)

Because

[gk,gk′] =
(∏

e∈E

Ce

)
[Xk,Xk′ ]

(∏
e′∈E

Ce′

)†

= 0, (5)

the set {gk|k ∈ V } can generate an Abelian cyclic group called
the stabilizer group of |H 〉. Either {gk|k ∈ V } or the stabilizer
group can determine a qubit hypergraph state up to a phase
factor [18,40].

Qubit hypergraph states have interesting properties and
important applications. The formalism offers a systematically
pictorial representation of the real equally weighted states,
which is a vivid way of demonstrating entanglement [18]. The
entanglement and Bell nonlocality cause this class of quantum
states to have a broad range of applications in quantum
computation and quantum metrology [22,28].

B. Multi-hypergraphs and qudit hypergraph states

A multi-hypergraph, whose hyperedge can have a multiplic-
ity larger than 1, is a generalization of a hypergraph (see Fig. 2
for examples). A multi-hypergraph whose vertices represent d-
level quantum systems can be denoted as Hd = (V,E), where
V = {1,2, . . . ,N} is the set of vertices, and E is a multiset of
the hyperedges. The times an element e occurs in E is called
multiplicity of e and is denoted as me (me ∈ {1,2, . . . ,d − 1})
[11,16]. For the e that satisfies e ∈ 2V (2V denotes the power
set of V , which constitutes all the subsets of V ) and e /∈ E,
its multiplicity me is defined to be 0. With this generalization,
every Hd is associated with a definite multiplicity function e →
me, here e ∈ 2V and me ∈ {0,1, . . . ,d − 1}. In the following, if
not particularly specified,Hd refers to such a multi-hypergraph,
and the multiplicity of e is denoted as me.

Now we define qudit hypergraph states corresponding
to Hd . Suppose the computational basis of each vertex
is {|0〉,|1〉, . . . ,|d − 1〉}. Then in this basis the generalized
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FIG. 2. Examples of multi-hypergraphs. Hyperedges with dif-
ferent multiplicities are drawn in different colors. (a) A common
multi-hypergraph with E = {∅,{1},{2,3},{1,2,3},{1,2,3}}, i.e., m∅ =
1,m{1} = 1,m{2,3} = 1,m{1,2,3} = 2, otherwiseme = 0. (The red circle
in the left represents an empty hyperedge.) Suppose each vertex
represents a qutrit, then the corresponding quantum state is |H3〉 =∑2

i1,i2,i3=0 ω
1+i1+i1i2+2i1i2i3
3 |i1i2i3〉/

√
27, where ω3 = ei2π/3. The sta-

bilizer group is generated by X1C
†
∅(C†

{2,3})
2, X2C

†
{3}(C

†
{1,3})

2, and

X3C
†
{2}(C

†
{1,2})

2. (b) An N -vertex multi-hypergraph with m{1,2,...,N} =
3 (otherwise, me = 0). This multi-hypergraph is symmetric in the
permutation of vertices. When encoding this multi-hypergraph into
a quantum state, each vertex represents a quantum system whose
dimension is larger than 3. (c) A multi-hypergraph with E =
{{1,2},{1,2},{2,3}}. Because all the hyperedges in E are of cardinality
2, this multi-hypergraph is in fact a conventional multigraph that can
be encoded into qudit graph states.

Pauli-X and Pauli-Z operators are [8–11]

X =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠,

Z =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 ωd 0 · · · 0
0 0 ω2

d · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1
d

⎞
⎟⎟⎟⎟⎟⎠, (6)

in which ωd = ei2π/d and XZ = ωdZX (Manin’s quantum
plane algebra [41]). The operator corresponding to the hyper-
edge e = {k1,k2, . . . ,k|e|} is defined as

Ce =

⎧⎪⎪⎨
⎪⎪⎩

ωd, |e| = 0,

Z, |e| = 1,∑d−1

ik1 ,...,ik|e| =0
ω

ik1 ···ik|e|
d �̂ik1 ···ik|e| , |e| � 2,

(7)

where �̂ik1 ···ik|e| = |ik1 · · · ik|e| 〉〈ik1 · · · ik|e| | and ik1 , . . . ,ik|e| de-
note the possible values of the vertices k1, . . . ,k|e| (in the
computational basis), respectively. The unitary operators X,
Z, and Ce satisfy

Xk = I ⇐⇒ k = 0 (mod d),

Zk = I ⇐⇒ k = 0 (mod d),

Ck
e = I ⇐⇒ k = 0 (mod d). (8)

Denoting that |+〉d = ∑d−1
k=0 |k〉/√d , then the d-level hyper-

graph state corresponding to Hd can be defined as

|Hd〉 =
∏
e∈2V

Cme

e |+〉⊗N
d . (9)

Here the condition “e ∈ 2V ” is equivalent to “e ∈ E” because
C0

e = I (∀ e ∈ 2V ). For simplicity, in the following we will not
express it explicitly.

A qudit hypergraph state is also associated with a stabilizer
group through which it can be determined up to a phase factor.
For Hd = (V,E), define

gk =
(∏

Cme

e

)
Xk

(∏
C

me′
e′

)†
= Xk

∏
e:k∈e

(
C

†
e\{k}

)
me . (10)

Then

gk |Hd 〉 = |Hd 〉 (11)

and

[gk,gk′] =
(∏

Cme

e

)
[Xk,Xk′ ]

(∏
C

me′
e′

)†
= 0. (12)

Note that the form of gk in Eq. (10) is different from that in
Eq. (3). The reason is that when d = 2, ∀ e, Ce is Hermitian,
while for general d this property cannot always hold. The
set {gk|k ∈ V } generates a cyclic Abelian group named the
stabilizer group of |Hd〉. Generally speaking, like those of
qubit hypergraph states [22], the stabilizers of qudit hypergraph
states are also nonlocal operators.

III. RELATION BETWEEN MULTI-HYPERGRAPHS AND
QUDIT HYPERGRAPH STATES: CORRESPONDENCE AND

ENTANGLEMENT PROPERTY

In this section, we will discuss the relation between multi-
hypergraphs and qudit hypergraph states. Theorem 1 shows
that the map from {Hd |Hd = (V,E)} to {|Hd〉 |Hd = (V,E)},
where Hd is mapped to |Hd〉, is a bijection. Theorem 2 demon-
strates that the connectivity of a multi-hypergraph is closely
related to the entanglement property of the corresponding
quantum state. To prove these two theorems, we shall prove
several lemmas first.

Lemma 1. Divide the hyperedge e = {1,2, . . . ,n} into the
control part eC = {1,2, . . . ,m} and the target part eT = {m +
1,m + 2, . . . ,n}. Then

Ce =
d−1∑

i1,...,im=0

|i1 · · · im〉〈i1 · · · im|Ci1···im
eT

. (13)

Proof. From the definition in Eq. (7),

Ce =
d−1∑

i1,...,in=0

ω
i1···in
d �̂i1···in ,

CeC
=

d−1∑
i1,...,im=0

ω
i1···im
d �̂i1···im ,

CeT
=

d−1∑
im+1,...,in=0

ω
im+1···in
d �̂im+1···in . (14)
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Because

d−1∑
im+1,...,in=0

ω
i1···in
d �̂i1···in

=
d−1∑

im+1,...,in=0

ω
i1···in
d �̂i1···im�̂im+1···in

= �̂i1···im
d−1∑

im+1,...,in=0

(
ω

im+1···in
d

)i1···im
�̂im+1···in

= �̂i1···imCi1···im
eT

, (15)

Ce =
d−1∑

i1,...,in=0

ω
i1···in
d �̂i1···in

=
d−1∑

i1,...,im=0

d−1∑
im+1,...,in=0

ω
i1···in
d �̂i1···in

=
d−1∑

i1,...,im=0

�̂i1···imCi1···im
eT

, (16)

which is exactly the conclusion in Lemma 1. �
Lemma 1 demonstrates that a hyperedge operation can

be interpreted as a controlled operation: the products of the
vertices in C determine the operations imposed on the target
part T . In fact, one can choose an arbitrary subset of e as
the control part, and the remaining part as the target, which
originates from the symmetry of Ce.

Lemma 2. Consider a system composed of A and B,
whose associated Hilbert spaces are HA and HB , respectively.
Suppose {|1〉,|2〉, . . . ,|n〉} is an orthonormal basis of HA and
|ψ1〉,|ψ2〉, . . . ,|ψn〉 are normalized vectors in HB . The vector

|1〉|ψ1〉 + |2〉|ψ2〉 + · · · + |n〉|ψn〉 (17)

is a product state if and only if all the |ψj 〉s (1 � j � n) are
parallel.

Proof. (i)“If.” If all the |ψj 〉s are parallel, then each |ψj 〉
has a form eiφj |ψ0〉. So

|1〉|ψ1〉 + |2〉|ψ2〉 + · · · + |n〉|ψn〉 =
⎛
⎝ n∑

j=1

eiφj |j 〉
⎞
⎠|ψ0〉,

(18)

which is a product state.
(ii)“Only if.” Suppose the total system is in a product

state. B remains the same physical state no matter what
measurement is made to A and whatever the result is. By im-
plementing the von Neumann measurement {Mj = |j 〉〈j ||j ∈
{1,2, . . . ,n}} to A, part B will collapse to one of the states in
{|ψ1〉,|ψ2〉, . . . ,|ψn〉}. So all the |ψj 〉’s are physically equiva-
lent, i.e., they are parallel. �

Lemma 3. Qudit hypergraph state |Hd〉 equals |+〉⊗N
d if and

only if E = ∅.
Proof. (i)“If.” If E = ∅, by definition for all e ∈ 2V , me = 0,

so |Hd〉 = |+〉⊗N
d .

(ii)“Only if.” The stabilizer group of |Hd〉 is generated by
{Xk

∏
e:k∈e

(C†
e\{k})

me |k ∈ V } while that of |+〉⊗N
d is generated by

{Xk|k ∈ V }.
If ∏

e

Cme

e |+〉⊗N
d = |+〉⊗N

d , (19)

the two-qudit hypergraph states will have the same stabilizer
group, leading to

Xk

∏
e:k∈e

(
C

†
e\{k}

)
me = Xk

∏
j 
=k

X
pj

j , (20)

where k ∈ V and pj ∈ {0,1, . . . ,d − 1}. The factor∏
e:k∈e

(C†
e\{k})

me is always diagonal in the computational

basis, while
∏
j 
=k

X
pj

j is diagonal only if pj = 0 (∀ j 
= k). That

is to say, to make Eq. (20) hold,∏
e:k∈e

(
C

†
e\{k}

)
me =

∏
j 
=k

X0
j = I, (21)

thus (notice that Ce\{k} is unitary)∏
e:k∈e

C
me

e\{k}|+〉⊗N−1
d = |+〉⊗N−1

d . (22)

Implementing the above procedure several times, generally,
one arrives at∏

e:k1,...,kn∈e

C
me

e\{k1,...,kn}|+〉⊗N−n
d = |+〉⊗N−n

d . (23)

When n = N − 1, Eq. (23) becomes

C
m{k1 ,k2 ,...,kN−1}
∅ C

m{k1 ,k2 ,...,kN }
{kN } |+〉d = |+〉d , (24)

indicating that

m{k1,k2,...,kN−1} = m{k1,k2,...,kN } = 0, (25)

because all the ki (i ∈ {1,2, . . . ,N}) are arbitrarily arranged in
order for all the e that satisfy |e| = N or N − 1, me = 0.

When n = N − 2, Eq. (23) becomes∏
e:k1,...,kN−2∈e

C
me

e\{k1,...,kN−2}|+〉⊗2
d = |+〉⊗2

d . (26)

The product involves all the hyperedges containing
{k1, . . . ,kN−2}, i.e., the cardinalities of these hyperedges
are larger than or equal to N − 2. As is shown in the previous
paragraph, hyperedges whose cardinalities are larger than
N − 2 must have 0 multiplicity, thus contributing to identity
factors. So Eq. (26) can be reduced to

C
m{k1 ,k2 ,...,kN−2}
∅ |+〉⊗2

d = |+〉⊗2
d , (27)

indicating that m{k1,k2,...,kN−2} = 0. Generally, if |e| = N − 2,
me = 0. Similarly, for all the e that satisfy |e| = N − 3,N −
2, . . . ,0, me = 0. So if |Hd〉 = |+〉⊗N

d , me = 0 (∀ e ∈ 2V ), i.e.,
E = ∅. �

With these lemmas, we can prove the following theorems.
Theorem 1. Suppose H ′

d = (V,E′) and Hd = (V,E). Then
|H ′

d〉 = |Hd〉 if and only if E′ = E.
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Proof. (i)“If.” By definition, in terms of representing d-level
hypergraph states, a multi-hypergraph corresponds to a unique
d-level hypergraph state.

(ii)“Only if.” For e ∈ 2V , denote its multiplicity correspond-

ing to H ′
d as m′

e. Then |H ′
d〉 = ∏

e

C
m′

e
e |+〉⊗N

d . If |H ′
d〉 = |Hd〉,

|+〉⊗N
d =

∏
e

C
m′

e−me

e |+〉⊗N
d . (28)

According to Lemma 3, this equation holds if and only if for
all e, m′

e − me = 0, i.e., E′ = E. �
Theorem 1 indicates that distinct multi-hypergraphs corre-

spond to distinct quantum states, assuming that the systems are
both N -qudit systems. An important entanglement property of
qudit hypergraph states is revealed in the following theorem.

Theorem 2. If one part of a multi-hypergraph is connected
with the other part, then these two corresponding subsystems
are entangled.

Proof. Suppose Hd = (V,E). Divide V into two parts,
where one is called the control part (C = {c1,c2, . . . ,c|C|}) and
the other is called the target (T = {t1,t2, . . . ,t|T |}), satisfying
C ∪ T = V and C ∩ T = ∅. Accordingly, we can define three
sub-multisets of E, i.e., EC , ET , and �. EC (ET ) constitutes all
the elements in E that are subsets of C (T ); � consists of all the
elements in E that contains vertices in C and T simultaneously.
If � 
= ∅, C and T are connected through hyperedges in �.

Define the multi-hypergraphs HC
d = (C,EC) and HT

d =
(T ,ET ). Then

|Hd〉 = C
−m∅
∅

∏
ε∈�

Cmε

ε |HC
d 〉|HT

d 〉, (29)

where |HC
d 〉 = ∏

e′∈EC
C

me′
e′ |+〉⊗|C|

d and |HT
d 〉 =∏

e′′∈ET
C

me′′
e′′ |+〉⊗|T |

d (notice that the multiplicity of each
hyperedge in EC , ET , and � is the same as the one in E).
Expanding |HC

d 〉 in the computational basis explicitly, one has

|HC
d 〉 = 1

√
d

|C|

d−1∑
ic1 ,...,ic|C| =0

e
iφ(ic1 ,...,ic|C| )|ic1 · · · ic|C| 〉. (30)

According to Lemma 1, all the Ce’s in Eq. (29) can be expressed
in a form like Eq. (13), so

|Hd〉 = C
m∅
∅√
d

|C|

d−1∑
ic1 ,...,ic|C| =0

|ic1 · · · ic|C| 〉′f̂ (ic1 , . . . ,ic|C| )
∣∣HT

d

〉
,

(31)

where |ic1 · · · ic|C| 〉′ = e
iφ(ic1 ,...,ic|C| )|ic1 · · · ic|C| 〉 and

f̂ (ic1 , . . . ,ic|C| ) is some composite hyperedge transformation.
If |Hd〉 is a product state, all f̂ (ic1 ,ic2 , . . . ,ic|C| )|HT

d 〉
(∀ic1 , . . . ,ic|C| ∈ {0,1, . . . ,d − 1}) must be parallel (Lemma 2),
i.e.,

f̂ (ic1 , . . . ,ic|C| )|HT
d 〉 = e

iδ(ic1 ,...,ic|C| )f̂ (0, . . . ,0)|HT
d 〉

= e
iδ(ic1 ,...,ic|C| )

∣∣HT
d

〉
. (32)

Divide every ε in � into cε and tε , where cε = ε ∩ C and
tε = ε ∩ T . Then (Lemma 1)

f̂ (1, . . . ,1)
∣∣HT

d

〉 =
∏
ε∈�

C
mε

tε

∣∣HT
d

〉
. (33)

So ∏
ε∈�

C
mε

tε

∣∣HT
d

〉 = eiδ(1,...,1)
∣∣HT

d

〉 = Cz
∅
∣∣HT

d

〉
, (34)

where z ∈ {0,1, . . . ,d − 1}, thus

Cd−z
∅

∏
ε∈�

C
mε

tε
|+〉⊗|T |

d = |+〉⊗|T |
d . (35)

This equation cannot be true because of Lemma 3. So |Hd〉
cannot be a product state in a form like |ψ〉C |φ〉T , i.e., the two
parts are entangled. �

Theorem 2 offers us an ability to knowing the entanglement
structure of a qudit hypergraph state by reading the connectivity
property of the multi-hypergraph. With the result in this
theorem, we have the following two corollaries.

Corollary 1. If a multi-hypergraph Hd is connected, then
|Hd〉 is genuinely entangled.

Proof. If Hd is connected, divide it into two arbitrary parts.
Then the two parts are connected through some hyperedges.
According to Theorem 2, these two parts are entangled. As the
division is arbitrary, |Hd〉 is non-biseparable, i.e., it is genuinely
entangled. �

Corollary 2. Suppose an unconnected multi-hypergraph Hd

is composed of several blocks (H (i)
d ) that are not connected to

each other, and each one is a connected multi-hypergraph or
possesses only one vertex. Then each |H (i)

d 〉 that possesses
more than one vertex is a genuinely entangled state, and
different blocks are not entangled with each other.

Proof. Different blocks are not connected to each other,
so they are not entangled [see the definition in Eq. (9)]. For
connected H

(i)
d , because |H (i)

d 〉 is also a qudit hypergraph state,
it is genuinely entangled (Corollary 1). �

Corollary 1 and Corollary 2 enable the multi-hypergraph
to be a useful tool for visualizing the entanglement of its
corresponding qudit hypergraph state.

IV. RELATIONSHIP AMONG QUDIT HYPERGRAPH
STATES AND SOME WELL-KNOWN STATE CLASSES

In this section, we will discuss the relationships among
qudit hypergraph states and some well-known state classes,
i.e., generalized real equally weighted states, qudit graph states,
and stabilizer states.

A. Qudit hypergraph states and generalized
real equally weighted states

The real equally weighted states are the quantum states in
which all the coefficients in the computational basis are real and
with equal absolute value. For example, real equally weighted
states describing N -qubit systems can all be represented in the
form

|ψ(f,N )〉 = 1

2N/2

1∑
i1,...,iN =0

(−1)f (i1,...,iN ) |i1 · · · iN 〉 , (36)
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FIG. 3. Relationship between “qudit hypergraph states” and “gen-
eralized real equally weighted states.” (a) When d = 2, “qudit
hypergraph states” reduce to qubit hypergraph states, “generalized
real equally weighted states” reduce to real equally weighted states,
and the two sets are equivalent. (b) When d > 2, qudit hypergraph
states form a proper subset of generalized real equally weighted states.

where f (i1, . . . ,iN ) ∈ Z2. By interpreting −1 as ω2, the
generalized real equally weighted states (GREWSs) can be
expressed as

|ψ(f,N )〉d = 1

dN/2

d−1∑
i1,...,iN=0

ω
f (i1,...,iN )
d |i1 · · · iN 〉 , (37)

in which f (i1, . . . ,iN ) ∈ Zd .
It has been demonstrated in the literature that qubit hy-

pergraph states are equivalent to real equally weighted states
[17,18]. For the qudit case, it would be interesting to investigate
whether a similar relationship exists. From the definition
of qudit hypergraph states, we can see that every N -qudit
hypergraph state can be expressed in the form of Eq. (37),
i.e., all qudit hypergraph states are GREWSs. For specific N

and d, the total number of GREWSs is ddN

, while in total there
are only d2N

qudit hypergraph states (there are d2N

such multi-
hypergraphs in total, and Theorem 1 shows that the states and
multi-hypergraphs have a one-to-one correspondence). Only if
d = 2 is ddN = d2N

, otherwise ddN

> d2N

. This indicates that
if d > 2, the set of qudit hypergraph states is a proper subset
of GREWSs. This relationship is different from the qubit case
(see Fig. 3).

B. Relationship among qudit hypergraph states, qudit graph
states, and stabilizer states

A qudit hypergraph state is a generalization of a qudit graph
state, so qudit graph states form a subclass of qudit hypergraph
states. According to Theorem 1, two qudit hypergraph states
are equal only if their corresponding multi-hypergraphs are the
same. Generally speaking, a multi-hypergraph can have hyper-
edges with cardinalities larger than 2, which is different from
that of multigraphs. Therefore, in general, a qudit hypergraph
state is not a qudit graph state.

Stabilizer states of N -qudit systems are the common eigen-
states with eigenvalue 1 of N independent elements in the Pauli
group G(d)

N [42–44], where G(d)
N is the N -fold product of G(d),

andG(d) = {ωa
dX

bZc|a,b,c ∈ Zd} [X and Z are the qudit Pauli
operators defined by Eq. (6)]. According to this definition,
qudit graph states are all stabilizer states because there are N

FIG. 4. Relationship among qudit hypergraph states (A), qudit
graph states (B), and stabilizer states (C). B is a proper subset of
A ∩ C, because there are qudit hypergraph states that are qudit graph
states acted upon by single-vertex hyperedge operations and zero-
vertex hyperedge operations, i.e., they are stabilizer states but not
qudit graph states.

independent stabilizers that can be expressed in the form gk =
Xk

∏
n:{k,n}∈E

Z
d−m{k,n}
n , i.e., gk ∈ G(d)

N (k ∈ {1,2, . . . ,N}). As for

the relationship between qudit hypergraph states and stabilizer
states, we illustrate the result in the following proposition.

Proposition 1. A qudit hypergraph state is a stabilizer state
if and only if the cardinalities of the hyperedges are all no more
than 2.

Proof. The stabilizer group of |Hd〉 is generated by {gk =
Xk

∏
e:k∈e

C
d−me

e\{k} |k = 1,2, . . . ,N}. If the cardinalities of the hy-

peredges are all no more than 2, then ∀e,k, Ce\{k} is ωd or a Z

operator. Thus in this case, |Hd〉 must be a stabilizer state. If
some hyperedge in Hd has cardinality larger than 2 (suppose
the vertex k is included by such a hyperedge), then gk /∈ G(d)

N .
The reason is as follows. If gk ∈ GN , then X−1

k gk ∈ GN . Define
a new qudit hypergraph state |Hd (k)〉 = ∏

e:k∈e

C
d−me

e\{k} |+〉⊗N
d .

Then it must be a product state. If a hyperedge e satisfies |e| >

2, Hd (k) possesses a hyperedge e\{k} satisfying |e\{k}| � 2,
which means that some vertices in Hd (k) are connected by
e\{k}. According to Theorem 2, such a qudit hypergraph state
cannot be a product state, which is contrary to |Hd (k)〉 being a
product state. So only if the cardinalities of all the hyperedges
are no more than 2 can |Hd〉 be a stabilizer state. �

According to Proposition 1, a qudit hypergraph state that is
also a stabilizer state at the same time may not be a qudit graph
state (see Fig. 4). It may also be a qudit graph state operated
by some generalized local Pauli operations.

To summarize, the relationship among qudit hypergraph
states, qudit graph states, and stabilizer states can be expressed
in Fig. 4, which is very similar to the qubit case studied in
Ref. [17].

V. BELL NONLOCALITY OF QUDIT HYPERGRAPH
STATES AND THE EXPERIMENTAL DETECTION

The exhibition of nonlocality by graph states and qubit
hypergraph states is very important and even necessary in
many quantum information tasks. Behind such an investigation
is the challenging problem of the nonlocality of multipartite
entangled states in quantum information theory. It has been
proven that all entangled pure states are nonlocal, no matter
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how many particles there are and how many dimensions each
particle contains [45,46]. In particular, a scheme of nonlocality
exhibition was provided in an operational manner in Ref. [45].
Suppose there are N particles. The idea is that by projecting
arbitrary N − 2 particles to a product state, the remaining
two particles can be measured to violate the Clauser-Horne-
Shimony-Holt (CHSH) inequality [47]. Below, we discuss how
it works in the scenario of qudit-hypergraph states.

A. Nonlocality exhibition by the CHSH inequality

For simplicity, we examine a multi-hypergraph HN,d,m =
(V,E), in which V = {1,2, . . . ,N} and E = {V,V, . . . ,V }
with |E| = m. The corresponding quantum state is

|HN,d,m〉 = Cm
V |+〉⊗N

d

= 1√
dN

d−1∑
i1,...,iN=0

ω
mi1···iN
d |i1 · · · iN 〉. (38)

Without losing generality, consider the case in which the Bell
nonlocality of |HN,d,m〉 can be exhibited by vertices 1 and 2
with the assistance of vertices 3,4, . . . ,N [48]. The assistance
can be done by projecting the vertices to their respective
|+〉d . After this operation, the state of the remaining system
(composed of vertices 1 and 2) becomes

∣∣H (2)
N,d,m

〉 = N

dN−1

d−1∑
i1,i2=0


i1i2 |i1i2〉, (39)

where N is the normalization factor, 
i1i2 =∑d−1
i3,...,iN=0 ω

mi1i2···iN
d forming the d × d matrix 
. We state that

the remaining two vertices are entangled. The proof can be
done through analyzing the rank of 
. If |H (2)

N,d,m〉 is separable,
then the rank of 
 would be 1. However, the upper-left 2 × 2
submatrix (i1,i2 ∈ {0,1}) of 



̃ =

⎛
⎜⎜⎝

dN−2 dN−2

dN−2
d−1∑

i3,...,iN =0

ωmi3···iN

⎞
⎟⎟⎠ (40)

has a nonzero determinant, therefore rank (
) � 2 [49], indi-
cating that the remaining two vertices are entangled.

To analyze the entanglement property and Bell nonlocality,
it is convenient to transform |H (2)

N,d,m〉 to its Schmidt form,

∣∣H (2)
N,d,m

〉 =
d−1∑
μ=0

cμ|μ〉1|μ〉2, (41)

where cμ are the Schmidt coefficients, and |μ〉1 and |μ〉2
are the Schmidt bases for vertex 1 and 2, respectively. The
entanglement of |H (2)

N,d,m〉 implies that there is more than 1
nontrivial term on the right-hand side of Eq. (41). Thus, we
can measure vertex 1 on the settings S1 = σz and T1 = σx ,
and vertex 2 on the settings S2 = σz cos 2t + σx sin 2t and
T2 = σz cos 2t − σx sin 2t , where σz = |0〉〈0| − |1〉〈1|, σx =
|0〉〈1| + |1〉〈0| on respective basis |μ〉1 and |μ〉2, and tan 2t =
2c0c1. The measurement results will disclose the nonlocality
by violating the following CHSH inequality [45]:

C = |E(
S1S2||+〉⊗N−2

d

) + E
(
S1T2||+〉⊗N−2

d

)
+E

(
T1S2||+〉⊗N−2

d

) − E
(
T1T2||+〉⊗N−2

d

)| � 2. (42)

C
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FIG. 5. Violation of the CHSH inequality for various combina-
tions of d and N in our measurement scheme, where d is the dimension
of each vertex (notice that d is assumed to be prime) and N is
the number of vertices in the multi-hypergraph. The data points are
connected for revealing the monotonicity of C with respect to N (d).

More precisely, the left-hand side of the above inequality

can achieve 2
√

1 + 4c2
0c

2
1/(c2

0 + c2
1)

2
, such that the bound 2

is violated.

B. The prime-dimensional case

When the dimension of the qudits is prime (d ∈ P), 
i1i2

has a simple analytic form


i1i2 =
{

dN−2, i1 = 0 ∨ i2 = 0,

dN−2 − d(d − 1)N−3, i1 
= 0 ∧ i2 
= 0.

(43)

In this case, the Schmidt form of |H (2)
N,d,m〉 is

∣∣H (2)
N,d,m

〉 = x+ |0〉1 |0〉2 + x− |1〉1 |1〉2√
x2+ + x2−

, (44)

where

x± = λ ±
√

λ2 + 4(d − λ)

2
(45)

and

|0〉k = 1

N+

(
(x+ − λ + 1) |0〉 +

d−1∑
i=1

|i〉
)

,

|1〉k = 1

N−

(
(x− − λ + 1) |0〉 +

d−1∑
i=1

|i〉
)

, (46)

with N± =
√

(x± − λ + 1)2 + d − 1, k ∈ {1,2}, and λ = d −
(d − 1)N−2/dN−3. The Schmidt number of |H (2)

N,d,m〉 is 2, which
indicates that the entanglement of vertices 1 and 2 is equivalent
to the entanglement of two qubits. The results in the previous
paragraph can be applied here directly except that here tan 2t =
2x+x−/(x2

+ + x2
−). Explicitly, in this case the left-hand side of

Eq. (42) can violate the CHSH inequality by an amount of

2
√

1 + 4x2+x2−/(x2+ + x2−)
2
.

Figure 5 reveals the violation of the CHSH inequality for
various combinations of d (d ∈ P) and N in this measure-
ment scheme. Here, C is always greater than 2, indicating
that this measurement scheme can reveal the nonclassical
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correlation between the vertices. When d is fixed and N is
large [see Fig. 5(a)], the matrix elements of the normalized

 are nearly equal, i.e., the normalized quantum state of
the remaining vertices is approximately |+〉⊗2

d , thus C ap-
proaches 2 when N goes to infinity. When N is fixed and d

increases [see Fig. 5(b)], |H (2)
N,d,m〉 approaches (|0〉∑d−1

i=1 |i〉 +∑d−1
i=1 |i〉 |0〉)/√2(d − 1), which is equivalent to a two-qubit

maximally entangled state, thus C approaches 2
√

2 when d

goes to infinity.

C. Discussion

Remarkably, the above scheme of exhibiting the nonlocality
of multipartite quantum systems is potentially applicable in the
current use of qudit hypergraph states and conventional qubit
graph states. In fact, it can be, and in some cases has been, used
in practice with current technology. In the case of entanglement
verification, it involves only two measurement settings at
each side, where the measurement settings of assistant qudits
never change. Besides, the CHSH inequality can always reveal
the “strong” nonlocality in the sense that the entanglement
between two arbitrary faraway qudits can be revealed, as long
as the two are connected by other vertices and edges. All these
features make the above scheme rather experimentally friendly.

For example, the entanglement verification of cluster states
(a special class of graph states) generated by cold-atom lattices
is necessary work for future use in quantum computing.
However, the detection of entanglement in large-scale cluster
states is always a challenging problem [50]. From a practical
perspective, the CHSH scheme discussed in this section can
also be used as an entanglement witness for cluster states,
especially for the long-distance entanglement. That is, one
can always choose two interested particles (connected by other
particles with C-phase operations), and test the entanglement
correlation between them, no matter how far the two particles
are.

Another example is its application in quantum networks
[51,52], in which thousands of users complete a quantum-
information task via a multipartite entangled state. A typical
task is the so-called third-man quantum cryptography in which
generation of a cryptographic key is controlled by a third
operator who decides whether to activate the key generation
[53]. Therefore, the scheme we discussed offers exactly an
operational way to analyze the security of the third-man
quantum cryptography.

An important problem in qudit hypergraph states we did not
discuss is genuine multipartite entanglement. In particular, the
relationship between the classification of multipartite entangle-
ment and the property of hypergraphs deserves to be studied in
depth, and the triple entanglement case has been discussed
in [37]. As an analog, the concept of genuine multipartite
nonlocality was also put forward in [37]. However, despite its
significance in the theoretical study, its applications in quantum
information processing need further study.

VI. CONCLUSIONS

In this work, we have proposed a large class of quantum
states, called qudit hypergraph states, in which every vertex of
the multi-hypergraph represents a d-level quantum system. We

have investigated the operational definition of these states and
studied their stabilizers, which possess potential applications
in quantum codes and quantum computation.

The multi-hypergraphs and qudit hypergraph states have a
one-to-one correspondence, and the entanglement of the qudit
hypergraph states can be directly illustrated by the structure of
their corresponding multi-hypergraphs. If a multi-hypergraph
(or part of it) is connected, the corresponding quantum system
(the quantum system corresponding to the connected part)
is genuinely entangled. Such entanglement leads to potential
exhibition of Bell nonlocality. As an example, we showed how
to obtain the violation of Bell inequality in N -uniform qudit
hypergraph states. The method is also applicable to other qudit
hypergraph states and general N -qudit quantum states.

We also study the relationship among qudit hypergraph
states and some important state classes. As for the real equally
weighted states, we generalize them to the qudit case. It
is shown that only in the two-level case are the two state
classes (“generalized real equally weighted states” and “qudit
hypergraph states”) the same; otherwise, qudit hypergraph
states are a subclass of “generalized real equally weighted
states.” The relationship among qudit hypergraph states, qudit
graph states, and stabilizer states is discussed. Our results
demonstrate that qudit graph states are a common subclass
of qudit hypergraph states and stabilizer states. What is more,
the union of these two state classes contains more than qudit
graph states, which is very similar to the qubit case.

Nevertheless, much work is still needed to be done for
the potential properties and applications of qudit hypergraph
states. It is known that the set of qubit hypergraph states is
the same as the set of real equally weighted states, which
is a class of quantum states having important applications in
quantum algorithms. Qudit hypergraph states form a subclass
of generalized real equally weighted states. In this sense,
it is highly probable that qudit hypergraph states also have
important applications in quantum algorithms. It has been
shown in the literature that the unique entanglement form
and Bell nonlocality of qubit hypergraph states have impor-
tant applications in quantum metrology and novel quantum
computation schemes. It is worthy of further study to see
whether the qudit hypergraph states have similar applications.
In this paper, we have focused on the simplest definition of
entanglement (a quantum state is entangled if it cannot be
written as a tensor product of two state vectors), while in
fact there is much more comprehensive content in the study
of multipartite entanglement, for example equivalent classes
of multipartite entanglement. The discussion of such issues in
the context of qudit hypergraph states is not only interesting
by itself but also essential for future applications.

Note added. Recently, we became aware of a paper that
proposed qudit hypergraph states in a different manner and
discussed their SLOCC and LU classification [37].

ACKNOWLEDGMENTS

We thank Ying Liu, Yuan-Yuan Zhao, and Yu-Lin Zheng for
the helpful discussions, and Frank E. S. Steinhoff for his nice
comments. F.L.X. and Z.B.C. were supported by the National
Natural Science Foundation of China (Grant No. 61125502)
and the CAS. Y.Z.Z., W.F.C., and K.C. were supported by

012323-8



QUDIT HYPERGRAPH STATES AND THEIR PROPERTIES PHYSICAL REVIEW A 97, 012323 (2018)

the National Natural Science Foundation of China (Grant No.
11575174) and the CAS.

APPENDIX: DERIVATION OF EQ. (10)

If k /∈ e, CeXkC
†
e = Xk .

If k ∈ e, for simplicity of discussion, assume that k = 1 and
e = {1, . . . ,n}, then Ce = ∑d−1

i1=0 �̂i1C
i1
e\{1} (Lemma 1), thus

CeX1C
†
e

=
d−1∑

i1,j1=0

�̂i1 (|0〉〈1| + |1〉〈2| + · · · + |d − 1〉〈0|)�̂j1C
i1−j1
e\{1}

= |0〉〈1|C−1
e\{1} + |1〉〈2|C−1

e\{1} + · · · + |d − 1〉〈0|C−1
e\{1}

= X1C
−1
e\{1} = X1C

†
e\{1}. (A1)

Generally, CeXkC
†
e = XkC

†
e\{k}.

Let Xk pass over all Ce. Then we have

(∏
e∈E

Cme

e

)
Xk

(∏
e′∈E

C
me′
e′

)†

= Xk

∏
e:k∈e

(
C

†
e\{k}

)
me , (A2)

which is exactly what is demonstrated in Eq. (10).
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