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Ultimate entanglement robustness of two-qubit states against general local noises
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We study the problem of optimal preparation of a bipartite entangled state, which remains entangled the longest
time under action of local qubit noises. We show that for unital noises, such a state is always maximally entangled,
whereas for nonunital noises, it is not. We develop a decomposition technique relating nonunital and unital qubit
channels, based on which we find the explicit form of the ultimately robust state for general local noises. We
illustrate our findings by amplitude damping processes at finite temperature, for which the ultimately robust state
remains entangled up to two times longer than conventional maximally entangled states.
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I. INTRODUCTION

Quantum communication is one of the most developed
subfields in the practical realization of quantum information
protocols [1]. Dense coding [2], quantum teleportation [3],
remote state preparation [4], and some cryptographic schemes
[5–7] are based on the phenomenon of entanglement. Entan-
glement is also widely used in other quantum information
applications [8]. When two laboratories A and B are taken into
account, by entangled state we understand a density operator
�AB (unit trace positive-semidefinite operator acting on some
Hilbert space H), which does not belong to a closure of
separable states of the form �AB = ∑

k pk�
A
k ⊗ �B

k , pk � 0,∑
k pk = 1 [9]. Entangled states cannot be created by local

operations and classical communication from factorized states
[10], so entanglement between noninteracting laboratories A

and B can only be created via sending parts of a locally
prepared initial entangled state �AB

in to A and B, respectively
(transmission of an entangled state can also be a stage in a
more involved process such as entanglement swapping [11]).
Since A and B are supposed to be far apart, transmission of
the entangled state is carried out by means of local quantum
channels �AB = �A

1 ⊗ �B
2 ; see Fig. 1. Quantum channel � :

B(H) �→ B(H) is a completely positive trace-preserving map
that describes the result of quantum system transformation
due to unavoidable interaction with environment (quantum
noise) [12–14]. The longer the quantum channels between
the entanglement source and laboratories A, B, the noisier
and less entangled becomes the output state, �AB

out = (�A
1 ⊗

�B
2 )[�AB

in ] [15–20]. The length of the quantum channels can
be included in the above description by time t quantifying
the duration of the system-environment interaction: �AB(t) =
�A

1 (t) ⊗ �B
2 (t)[�AB

in ], with �A
1 (0) and �B

2 (0) being identity
transformations (Id). Preservation of entanglement of the state
�AB(t) is the primary goal for implementing entanglement-
based protocols. In fact, if A and B are both qubit systems
and �AB(t) is entangled, then by sending the same state
�AB

in through a quantum channel �A
1 (t) ⊗ �B

2 (t) many times,
one can distill maximally entangled states �+ = |ψ+〉〈ψ+|,
|ψ+〉 = 1√

2
(|00〉 + |11〉) that are useful in entanglement-based

applications [21]. Given quantum noises �A
1 (t) and �B

2 (t),
the entanglement lifetime of the state �AB

in is defined as the
minimal time τ such that �AB(t) is separable for all t � τ .
In other words, the entanglement lifetime (also referred to
as disentangling time) is the time of entanglement sudden
death [15]. The maximal possible entanglement lifetime τ̃ =
max�AB

in
τ provides the fundamental restriction on the length of

quantum channels to A and B. The state �̃AB
in , which maximizes

entanglement lifetime, exhibits the ultimate entanglement
robustness to local noises, �A

1 (t) ⊗ �B
2 (t). If �̃AB

in is the most
robust to the loss of entanglement with respect to the dynamical
map �A

1 (t) ⊗ �B
2 (t), then separability of �A

1 (t) ⊗ �B
2 (t)[̃�AB

in ]
implies separability of �A

1 (t) ⊗ �B
2 (t)[�AB

in ] for all input states
�AB

in . Note that the output of the channel �A
1 (̃τ ) ⊗ �B

2 (̃τ ) is
separable for all possible input states, i.e., such a channel is
entanglement annihilating [22–27].

Despite the fact that entanglement of a two-qubit system
can be readily and precisely verified via the Peres-Horodecki
criterion [28,29] or concurrence [30,31], it is not that easy to re-
solve the maximin problem of entanglement lifetime τ̃ even for
a simple semigroup dynamics �A

1 (t) ⊗ �B
2 (t) = eL

A
1 t ⊗ eL

B
2 t

describing generalized amplitude damping processes [32,33].
It is also not known how to find the optimal state �̃AB

in ana-
lytically. There are three distinguished exceptions, however.
The first one is the case of one-sided noiseless evolution,
when �A

1 (t) ≡ Id, i.e., one part of the entangled system is
perfectly preserved; then the maximally entangled state �+
has ultimate robustness [34–36]. The second exception is the
case of local depolarizing noises, with �+ being ultimately
robust [37]. The third exception is the case of local unital
[38] two-qubit dynamical maps ϒ(t) ⊗ ϒ(t), for which the
maximally entangled state �+ is the most robust to the loss of
entanglement too [23]. In this paper, we extend these results
to the case of general local unital channels ϒA

1 (t) ⊗ ϒB
2 (t) and

prove that the maximally entangled state �+ is optimal for
the transmission of entanglement through such channels. It is
tempting to conclude that the maximally entangled state �+
exhibits ultimate robustness to general local two-qubit noises
�A

1 (t) ⊗ �B
2 (t); however, this is not true [39–41] and we show
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FIG. 1. Transmission of entangled state through local quantum
channels.

that explicitly in this paper. Moreover, we analytically find the
initial two-qubit state �̃, which is the most robust to a given
nonunital local two-qubit dynamical map �1(t) ⊗ �2(t). The
use of the optimal initial state for entanglement distribution
enables essential extension of the length of communication
lines, which we demonstrate by examples of generalized
amplitude damping processes.

The paper is organized as follows. In Sec. II, we consider
two-qubit local unital dynamical maps ϒ(t) ⊗ ϒ ′(t) and prove
that the ultimately robust state is necessarily maximally entan-
gled. We also find a criterion to check if the map ϒ(t) ⊗ ϒ ′(t)
is entanglement annihilating, based on which one can straight-
forwardly calculate the maximal entanglement lifetime. In
Sec. III A, we show how the results for unital dynamical maps
are related with those for nonunital ones, provided a special
decomposition is known. We find the explicit form of such a
decomposition of nonunital channels in Sec. III B. In Sec. III C,
we apply the developed theory to nonunital channels describing
the process of amplitude damping due to qubit interaction
with the environment of finite temperature. In Sec. IV, brief
conclusions are given.

II. UNITAL CHANNELS

A unital qubit channel ϒ is necessarily random unitary [42]
and, with a suitable choice of input and output bases, can be
represented in the form [43]

ϒ[X] = 1

2
tr[X]I + 1

2

3∑
i=1

λi tr[σiX]σi, (1)

whereσ1,σ2,σ3 is a conventional set of Pauli operators such that
σ3|0〉 = |0〉 and σ3|1〉 = −|1〉. The map (1) is known to be pos-
itive if −1 � λ1,λ2,λ3 � 1, completely positive if 1 ± λ3 �
|λ1 ± λ2|, and entanglement breaking if |λ1| + |λ2| + |λ3| � 1
[44]. We will associate every map ϒ with the corresponding
vector λ = (λ1,λ2,λ3)
.

Matrix representation Mij (ϒ) = 1
2 tr[σiϒ[σj ]], i, j =

0, . . . ,3, σ0 = I , of the map (1) reads

M(ϒ) =

⎛⎜⎝1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

⎞⎟⎠ = diag(1,λ
). (2)

A local unital two-qubit map ϒ ⊗ ϒ composed of identical
unital maps ϒ is known to be entanglement annihilating if
λ2

1 + λ2
2 + λ2

3 � 1 [23], with the maximally entangled state �+
having the longest entanglement lifetime. Some sufficient and
(separately) necessary conditions for entanglement annihila-

tion of the general local unital two-qubit map ϒ ⊗ ϒ ′ are listed
in Ref. [23]. We fill the gap in analysis of such maps and provide
a criterion of entanglement annihilation.

Proposition 1. Suppose ϒ and ϒ ′ are positive qubit maps.
Then the map ϒ ⊗ ϒ ′ is positive and entanglement annihilat-
ing if and only if |λi |,|λ′

i | � 1, i = 1,2,3, and λPλ′ � 1 for
all signed permutation matrices P .

Proof. Sufficiency. Due to a convex structure of separable
states, a map ϒ ⊗ ϒ ′ is entanglement annihilating if and only
if ϒ ⊗ ϒ ′[|ψ〉〈ψ |] is separable for all pure states |ψ〉. On the
other hand, any pure two-qubit state |ψ〉 can be represented
as a linear combination of Bell-like states |ϕi〉 = σi ⊗ I |ψ+〉,
i = 0, . . . ,3,

|ψ〉 =
3∑

i=0

ci |ϕi〉 = C ⊗ I |ψ+〉, (3)

where C = ∑3
i=0 ciσi . Denote �C[X] = CXC†; then the den-

sity operator of any two-qubit pure state takes the form

|ψ〉〈ψ | = �C ⊗ Id[|ψ+〉〈ψ+|]. (4)

Kraus representation of the map ϒ ′ is well known [43]
and reads ϒ ′[X] = ∑3

j=0 q ′
j σjXσj , where real parameters

{q ′
j } are uniquely expressed through parameters {λ′

j }. Since
I ⊗ σ ′

j |ψ+〉 = (σ ′
j )
 ⊗ I |ψ+〉, we get

Id ⊗ ϒ ′[|ψ+〉〈ψ+|] =
3∑

j=0

q ′
j (σ ′

j )
 ⊗ I |ψ+〉〈ψ+|(σ ′
j )
 ⊗ I

= ϒ ′ ⊗ Id[|ψ+〉〈ψ+|], (5)

where we have taken into account that (σ ′
2)
 = −σ ′

2 and
(σ ′

j )
 = σ ′
j if j = 0,1,3. Combining (4) and (5), we can

express the action of the map ϒ ⊗ ϒ ′ on any pure state as
follows:

ϒ ⊗ ϒ ′[|ψ〉〈ψ |] = (ϒ ⊗ ϒ ′) ◦ (�C ⊗ Id)[|ψ+〉〈ψ+|]
= (ϒ ◦ �C ⊗ Id) ◦ (Id ⊗ ϒ ′)[|ψ+〉〈ψ+|]
= ϒ ◦ �C ◦ ϒ ′ ⊗ Id[|ψ+〉〈ψ+|]. (6)

Therefore, the map ϒ ⊗ ϒ ′ is entanglement annihilating if
and only if the output state (6) is separable for all matrices
C. The necessary and sufficient criterion of separability of
two-qubit states provides the reduction criterion [45], which
states that the two-qubit state � is separable if and only
if R ⊗ Id[�] � 0, where the action of qubit map R reads
R[X] = tr[X]I − X. Thus, the state (6) is separable if and only
if R ◦ ϒ ◦ �C ◦ ϒ ′ ⊗ Id[|ψ+〉〈ψ+|] � 0 or, equivalently,

〈χ |(R ◦ ϒ ◦ �C ◦ ϒ ′ ⊗ Id[|ψ+〉〈ψ+|])|χ〉 � 0 (7)

for all two-qubit states |χ〉. Similarly to Eq. (4), we represent
|χ〉 = D ⊗ I |ψ+〉 and conclude that ϒ ⊗ ϒ ′ is entanglement
annihilating if and only if

〈ψ+|(�D† ◦ R ◦ ϒ ◦ �C ◦ ϒ ′ ⊗ Id[|ψ+〉〈ψ+|])|ψ+〉 � 0

(8)
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for all matrices C and D. Recalling |ψ+〉 = 1√
2

∑1
k=0 |k〉 ⊗

|k〉, Eq. (8) is equivalent to

1∑
k,l=0

〈k|(�D† ◦ R ◦ ϒ ◦ �C ◦ ϒ ′[|k〉〈l|])|l〉 � 0. (9)

The basis of matrix units Ekl = |k〉〈l| is orthonormal in
the sense of Hilbert-Schmidt inner product (X,Y ) = tr[X†Y ].
So is the basis of operators { 1√

2
σj }3

j=0, and hence Ekl =∑3
j=0 Wkl,j

1√
2
σj and

∑1
k,l=0 W ∗

kl,iWkl,j = δij . Equation (9)
takes the form

0 �
1∑

k,l=0

tr[E†
kl�D† ◦ R ◦ ϒ ◦ �C ◦ ϒ ′[Ekl]]

= 1

2

3∑
i,j=0

1∑
k,l=0

W ∗
kl,iWkl,j tr[σ †

i �D† ◦ R ◦ ϒ ◦ �C ◦ ϒ ′[σj ]]

= 1

2

3∑
i=0

tr[σi�D† ◦ R ◦ ϒ ◦ �C ◦ ϒ ′[σi]]

= tr[M(�D† ◦ R ◦ ϒ ◦ �C ◦ ϒ ′)]

= tr[M(�D†)M(R)M(ϒ)M(�C)M(ϒ ′)]

= tr[M(�D†)diag(1, − λ
)M(�C)diag(1,λ′
)]

= (1, − λ
) M(�D†)
∗ M(�C)

(
1
λ′

)
= (1, − λ
) M(�C) ∗ M(�D)

(
1
λ′

)
, (10)

where ∗ denotes the Hadamard pointwise product, i.e., (M ∗
N )ij = MijNij .

To know matrix representations of maps �C and �D , we
use singular-value decompositions,

C = UC

(√
1 + sin αC 0

0
√

1 − sin αC

)
VC, (11)

D = UD

(√
1 + sin αD 0

0
√

1 − sin αD

)
VD, (12)

which explicitly take into account that the states |ψ〉 and |χ〉
are normalized, i.e., tr[C†C] = tr[D†D] = 2. Here, UC , VC ,
UD , VD are unitary operators and 0 � αC,αD � π

2 . Therefore,

M(�C) =
(

1 0


0 QUC

)(
1 t


C

tC TC

)(
1 0

0 QVC

)
, (13)

M(�D) =
(

1 0

0 QUD

)(
1 t


D

tD TD

)(
1 0

0 QVD

)
, (14)

where QU is a 3 × 3 orthogonal matrix corresponding to chan-
nel �U , 0 = (0,0,0)
, tC(D) = (0,0, sin αC(D))
, and TC(D) =
diag(cos αC(D), cos αC(D),1).

By uC(D)1,uC(D)2,uC(D)3, denote three orthonormal columns
of the matrix QUC(D) and, by v


C(D)1,v


C(D)2,v



C(D)3, denote three

orthonormal rows of the matrix QVC(D) . Introduce the vectors

ukl = uCk ∗ uDl, vkl = vCk ∗ vDl. (15)

Then the direct calculation of the Hadamard product M(�C) ∗
M(�D) yields

M(�C) ∗ M(�D)=
(

1 sin αC sin αDv

33

sin αC sin αDu33 S

)
,

(16)

where

S = u33v

33 + cos αC[u13v


13 + u23v

23]

+ cos αD[u31v

31 + u32v


32]

+ cos αC cos αD[u11v

11 + u12 ∗ v


12 + u21v

21 + u22v


22].

(17)

By the Cauchy-Bunyakovsky-Schwarz inequality,
|(ukl)x | + |(ukl)y | + |(ukl)z| � |uCk| · |uDl| = 1 and
|(vkl)x | + |(vkl)y | + |(vkl)z| � |vCk| · |vDl| = 1. Thus, all
the vectors ukl and vkl belong to the octahedron with vertices
(±1,0,0), (0,±1,0), and (0,0,±1). Moreover, since vectors
uC(D)1,uC(D)2,uC(D)3 are mutually orthogonal, vectors ukl and
uk′l (ukl′) cannot belong to the same octant or opposite octants
if k 
= k′ (l 
= l′). Since vectors ukl and vkl linearly contribute
to the expression

(1, − λ
) M(�C) ∗ M(�D)

(
1
λ′

)
= 1 − sin αC sin αDλ
u33 + sin αC sin αDv


33λ
′ − λ
Sλ′,

(18)

the minimal value of (18) is achieved if some vectors ukl

and vkl correspond to the extreme points of the octahedron,
i.e., to vectors (±1,0,0), (0,±1,0), and (0,0,±1). Without
loss of generality, it can be assumed that u33 = v33 = (0,0,1),
which implies uk3 = u3k = 0 and vk3 = v3k = 0, k = 1,2.
Then either S = diag(± cos αC cos αD, ± cos αC cos αD,1) or

S =
(

0 ± cos αC cos αD 0
± cos αC cos αD 0 0

0 0 1

)
, where signs ± are not

correlated. Inequality (10) reduces to

0 � 1 − sin αC sin αD(λ3 − λ′
3) − λ3λ

′
3

− cos αC cos αD

{±λ1λ
′
1 ± λ2λ

′
2,±λ1λ

′
2 ± λ2λ

′
1,

(19)

which is fulfilled for all 0 � αC,αD � π
2 if

λ

(±1 0 0
0 ±1 0
0 0 1

)
λ′ � 1, λ

(
0 ±1 0

±1 0 0
0 0 1

)
λ′ � 1, and

|λi |,|λ′
i | � 1, i = 1,2,3.

It can easily be checked numerically that in the general
case of arbitrary vectors ukl and vkl , inequality (18) is fulfilled
whenever |λi |,|λ′

i | � 1, i = 1,2,3, and λPλ′ � 1 for all signed
permutation matrices P .

Necessity. Let the input state |ψ〉 = |ψ+〉; then the out-
put state ϒ ⊗ ϒ ′[|ψ+〉〈ψ+|] is separable by Peres-Horodecki
criterion if and only if 1 + λ3λ

′
3 ± (λ1λ

′
1 − λ2λ

′
2) � 0 and

1 − λ3λ
′
3 ± (λ1λ

′
1 + λ2λ

′
2) � 0. Also, the state R ◦ ϒ ⊗

ϒ ′[|ψ+〉〈ψ+|] must be separable, which corresponds to the
change λi → −λi . By permuting indices (1,2,3) of the sec-
ond qubit, we obtain that the condition λPλ′ � 1 must be
fulfilled for all signed permutation matrices P . Permuta-
tion of indices corresponds to the change of input state to

012322-3



FILIPPOV, FRIZEN, AND KOLOBOVA PHYSICAL REVIEW A 97, 012322 (2018)

the form 1√
2
(|ϕ〉 ⊗ |χ〉 + |ϕ⊥〉 ⊗ |χ⊥〉), where {|ϕ〉,|ϕ⊥〉} and

{|χ〉,|χ⊥〉} are bases of eigenvectors of some Pauli operators.
�

Corollary 1. Suppose 1 � λ1 � λ2 � λ3 � 0 and 1 � λ′
1 �

λ′
2 � λ′

3 � 0; then the local two-qubit unital map ϒ ⊗ ϒ ′
is entanglement annihilating if and only if λ
λ′ = λ1λ

′
1 +

λ2λ
′
2 + λ3λ

′
3 � 1.

Proof. It is not hard to see that λ
Pλ′ achieves maximum
among signed permutation matrices P if P = I . Then the
statement of Corollary 1 follows directly from Proposition 1.

�
In the necessity part of Proposition 1, we have noticed

that ultimate robust states to local noises ϒ(t) ⊗ ϒ ′(t) are
the states of the form 1√

2
(|ϕ〉 ⊗ |χ〉 + |ϕ⊥〉 ⊗ |χ⊥〉), where

{|ϕ〉,|ϕ⊥〉} and {|χ〉,|χ⊥〉} are bases of eigenvectors of some
Pauli operators.

Proposition 2. Suppose a local two-qubit unital noise
ϒ(t) ⊗ ϒ ′(t), with matrix representations of ϒ(t), ϒ ′(t) being
diagonal in the basis of Pauli operators σ1, σ2, σ3. Then the state
with ultimate entanglement robustness is the maximally en-
tangled state |ψϒ⊗ϒ ′ 〉 = 1√

2
(|ϕ〉 ⊗ |χ〉 + |ϕ⊥〉 ⊗ |χ⊥〉), where

{|ϕ〉,|ϕ⊥〉} and {|χ〉,|χ⊥〉} are orthogonal eigenvectors of some
Pauli operators (σ1, σ2, or σ3).

Example 1. Consider an amplitude damping process of a
two-level system (see, e.g., Ref. [12], sec. 8.3.5), when the
temperature of the environment is so high (thermal energy
kT � �E, energy-level separation) that the rate of sponta-
neous emission equals the rate of spontaneous absorbtion.
If this is the case, then Markov approximation leads to the
following master equation in the interaction picture ([13], sec.
10.1):

d�

dt
= γ

(
σ+�σ− − 1

2 {σ−σ+,�})
+γ

(
σ−�σ+ − 1

2 {σ+σ−,�}), (20)

where {·,·} denotes anticommutator, σ± = 1
2 (σ1 ± σ2), and

γ > 0 is the damping rate. Solution of this master equation
results in a unital map (1) with λ1(t) = λ2(t) = e−γ t and
λ3(t) = e−2γ t .

Suppose two qubits, each experiencing amplitude damping
in a high-temperature environment with damping rates γ and
γ ′, respectively. Then the maximally entangled state with
one excitation |ψ〉 = 1√

2
(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉) exhibits the

maximal entanglement robustness and the entanglement life-
time is determined by the equation λ1(t)λ′

1(t) + λ2(t)λ′
2(t) +

λ3(t)λ′
3(t) = 1, i.e., 2e−(γ+γ ′)t + e−2(γ+γ ′)t = 1. The maximal

entanglement lifetime equals τ̃ = ln(
√

2+1)
γ+γ ′ ≈ 0.88

γ+γ ′ .
Example 2. Suppose a pair of entangled qubits is prepared

in laboratory A; one qubit is kept in the quantum memory
cell of laboratory A and the other is sent to laboratory B.
The qubit in laboratory A is subjected to amplitude damp-
ing in a high-temperature environment with damping rates
γ , and the itinerant qubit experiences depolarization with
dissipator L = γ ′ ∑3

j=1 (σj�σj − �). Then, λ1(t) = λ2(t) =
e−γ t , λ3(t) = e−2γ t , and λ′

1(t) = λ′
2(t) = λ′

3(t) = e−γ ′t . From
Corollary 1, it follows that the state |ψ〉 = 1√

2
(|0〉 ⊗ |1〉 +

|1〉 ⊗ |0〉) is ultimately robust to entanglement loss. The

maximal entanglement lifetime τ̃ is a solution of (1 + e−γ t )2 =
1 + eγ ′t and approximately equals τ̃ ≈ 3 ln 3

4γ+3γ ′ . This shows that
entanglement is more sensitive to the decoherence rate in the
memory cell (rate of the amplitude damping process).

III. NONUNITAL CHANNELS

A. Ultimate robustness

We continue using notation �A for a completely positive
map with a single Kraus operator A, i.e., �A[X] = AXA†.
The recent result of Ref. [46] suggests that if � is a qubit map
belonging to the interior of the cone of positivity-preserving
maps, then there exist positive-definite operators A and B

acting on H2 such that the map

ϒ = �A ◦ � ◦ �B (21)

is unital. This result can be viewed as a quantum analogue
of Sinkhorn’s theorem [47]. One can always treat map ϒ as
diagonal in the basis of Pauli operators because appropriate
unitary rotations of input and output bases can be attributed
to operators B and A, respectively. Alternatively, � = �A−1 ◦
ϒ ◦ �B−1 . The latter equation is simply a decomposition of
a nonunital positive qubit map � through some unital map
ϒ . The time-dependent version of this relation for quantum
dynamical maps takes the form

�(t) = �A−1(t) ◦ ϒ(t) ◦ �B−1(t). (22)

Proposition 3. Suppose a local two-qubit noise �(t) ⊗
�′(t), where both �(t) and �′(t) adopt decompositions (22)
with nondegenerate operators A(t), B(t), A′(t), B ′(t) and
unital diagonal maps ϒ(t) and ϒ ′(t). Then, �(t) ⊗ �′(t)
is entanglement annihilating if and only if ϒ(t) ⊗ ϒ ′(t) is
entanglement annihilating. Ultimate robustness to loss of
entanglement exhibits the state of the form

|ψ�⊗�′ 〉 = B (̃τ ) ⊗ B ′ (̃τ )|ψϒ⊗ϒ ′ 〉√
〈ψϒ⊗ϒ ′ |B† (̃τ )B (̃τ ) ⊗ B ′ (̃τ )†B ′ (̃τ )|ψϒ⊗ϒ ′ 〉

,

(23)

where |ψϒ⊗ϒ ′ 〉 is given by Proposition 2 and τ̃ is the maximal
entanglement lifetime under noise ϒ(t) ⊗ ϒ ′(t).

Proof. Since �(t) ⊗ �′(t)[|ψ〉〈ψ |] = A−1(t) ⊗
A′−1(t)[ϒ(t) ⊗ ϒ ′(t)][B−1(t) ⊗ B ′−1(t)|ψ〉〈ψ |B†−1(t) ⊗
B ′†−1(t)]A†−1(t) ⊗ A′†−1(t) and both A(t) and A′(t) are
nondegenerate, then �(t) ⊗ �′(t)[|ψ〉〈ψ |] is separable if
and only if [ϒ(t) ⊗ ϒ ′(t)][B−1(t) ⊗ B ′−1(t)|ψ〉〈ψ |B†−1(t) ⊗
B ′†−1(t)] belongs to a cone of separable operators. Thus,
�(t) ⊗ �′(t)[|ψ〉〈ψ |] is separable for all |ψ〉 if and only if
[ϒ(t) ⊗ ϒ ′(t)][B−1(t) ⊗ B ′−1(t)|ψ〉〈ψ |B†−1(t) ⊗ B ′†−1(t)]
is a separable operator for all |ψ〉. As both B(t) and B ′(t)
are nondegenerate, the linear span of operators B−1(t) ⊗
B ′−1(t)|ψ〉〈ψ |B†−1(t) ⊗ B ′†−1(t) for all |ψ〉 is a cone of
positive operators. Thus, �(t) ⊗ �′(t)[|ψ〉〈ψ |] is separable
for all |ψ〉 if and only if [ϒ(t) ⊗ ϒ ′(t)][�] is separable for all
density operators �, i.e., ϒ(t) ⊗ ϒ ′(t) is entanglement
annihilating. Since �(t) ⊗ �′(t)[|ψ�⊗�′ 〉〈ψ�⊗�′ |] ∝
A−1(t) ⊗ A′−1(t)[ϒ(t) ⊗ ϒ ′(t)][|ψϒ⊗ϒ ′ 〉〈ψϒ⊗ϒ ′ |]A†−1(t) ⊗
A′†−1(t), then �(t) ⊗ �′(t)[|ψ�⊗�′ 〉〈ψ�⊗�′ |] is entangled
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if and only if the state ϒ(t) ⊗ ϒ ′(t)[|ψϒ⊗ϒ ′ 〉〈ψϒ⊗ϒ ′ |] is
entangled. Therefore, (23) exhibits ultimate robustness to loss
of entanglement if |ψϒ⊗ϒ ′ 〉 is ultimately robust to loss of
entanglement due to unital noises ϒ(t) ⊗ ϒ ′(t). �

B. Explicit decomposition of nonunital qubit maps

To utilize Proposition 3 for particular physical systems, one
needs to know explicitly the operators A and B as well as the
unital map ϒ in formula (22) for a given qubit channel �. In
what follows, we develop ideas of Ref. [46] to find such explicit
expressions.

By a suitable choice of input and output bases, one can
reduce the matrix representation of any nonunital qubit channel
� to the following form [43]:

M(�) =

⎛⎜⎝1 0 0 0
t1 λ1 0 0
t2 0 λ2 0
t3 0 0 λ3

⎞⎟⎠. (24)

Formula � = 1
2 (I + ∑3

j=1 rjσj ) establishes a one-to-
one correspondence between qubit density operators �

and real Bloch vectors r = (r1,r2,r3)
 satisfying |r| =√∑3
j=1 r2

j � 1. The Bloch vector of the density operator
�[�] is (λ1r1 + t1,λ2r2 + t2,λ3r3 + t3)
. From this geomet-
rical picture, it is not hard to see that positivity of the
map � implies

3∑
j=1

t2
j

(1 − |λj |)2
� 1. (25)

This necessary condition for positivity of � means that the
vector t has to belong to an ellipsoid with principal axes of
length 2(1 − |λj |), j = 1,2,3. If |λj | = 1, then tj = 0, and the

ratio
t2
j

(1−|λj |)2 should be treated as zero.

Following Ref. [46], we introduce operators Ã = √
S and

B̃ = (�†[S])−1/2, where the positive Hermitian operator S is
a fixed point of the map F [S] = (�{(�†[S])−1})−1 and �†

is a dual linear map such that tr[�†[X]Y ] = tr[X�[Y ]] for
all X,Y . Reference [46] shows that the map �Ã ◦ � ◦ �B̃ is
unital and positive if � belongs to the interior of the cone of
positivity-preserving maps, although matrix representation of
the map �Ã ◦ � ◦ �B̃ is not necessarily diagonal.

We develop results of Ref. [46] and find S explicitly. We fix
tr[S] = 2, denote S = I + ∑3

j=1 xjσj , and introduce a new

variable y = 1 + ∑3
j=1 tj xj . Then, S = F [S] reduces to

y − 1 = y

3∑
j=1

t2
j

λ2
j − y

, (26)

xj = ytj

λ2
j − y

, j = 1,2,3. (27)

Equation (26) is simply a quartic equation,

y4 + by3 + cy2 + dy + e = 0, (28)

with coefficients

b = t2
1 + t2

2 + t2
3 − λ2

1 − λ2
2 − λ2

3 − 1, (29)

1 yyyyyy1 2 3 0 4

1

0

FIG. 2. Graphical solution of Eq. (26). All quantities are
dimensionless.

c = λ2
1

(
1 − t2

2 − t2
3

) + λ2
2

(
1 − t2

1 − t2
3

) + λ2
3

(
1 − t2

1 − t2
2

)
+ λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (30)

d = t2
1 λ2

2λ
2
3 + λ2

1t
2
2 λ2

3 + λ2
1λ

2
2t

2
3 − λ2

1λ
2
2λ

2
3

− λ2
1λ

2
2 − λ2

2λ
2
3 − λ2

3λ
2
1, (31)

e = λ2
1λ

2
2λ

2
3, (32)

so it can be readily solved analytically, e.g., by Ferrari’s method
[48]. Let us demonstrate that if � is a positive map, then the
obtained equation has four real non-negative roots (possibly
degenerate), with the greatest one guaranteeing positivity of
operator S.

In fact, a graph of the left-hand side of Eq. (26) is a line, and
a graph of the right-hand side of Eq. (26) has (in general) three
vertical asymptotes at points y = λ2

j � 1; see Fig. 2. Thus,
Eq. (26) definitely has two real roots, y1,2 ∈ [0, max λ2

j ). The
derivative of the right-hand side of Eq. (26) equals 1 at point

y0 > max λ2
j satisfying

∑3
j=1

t2
j λ2

j

(λ2
j −y0)2 = 1. From this follows

that y0 � |λj | for all j = 1,2,3 because otherwise we en-

counter a contradiction 1 = ∑3
j=1

t2
j λ2

j

(λ2
j −y0)2 <

∑3
j=1

t2
j

(1−|λj |)2 �
1; cf. Eq. (25). Thus, y0 � |λj | and the right-hand side of

Eq. (26) equals y0 − ∑3
j=1

t2
j y2

0

(λ2
j −y0)2 � y0 − ∑3

j=1
t2
j λ2

j

(λ2
j −y0)2 =

y0 − 1. Therefore, at point y = y0, the right-hand side of
Eq. (26) is larger than or equal to the left-hand side of Eq. (26),
so Eq. (26) has two more real roots, y3,4 ∈ (max λ2

j ,1]; see
Fig. 2. Moreover, the derivative of the right-hand side of
Eq. (26) at the largest root y4 is less than or equal to 1,
which readily implies that values x1,x2,x3 corresponding to
this root satisfy

∑3
j=1 x2

j � 1, i.e., the operator S is positive
semidefinite. If � belongs to the interior of positive maps, then
S is positive.

Calculating Ã, B̃ and simplifying unitary map �Ã ◦ � ◦ �B̃

as much as possible, we obtain the following result.
Proposition 4. Suppose a nonunital qubit map �, which

belongs to the interior of the cone of positivity-preserving maps
and is defined by matrix representation (24). Let the largest

012322-5



FILIPPOV, FRIZEN, AND KOLOBOVA PHYSICAL REVIEW A 97, 012322 (2018)

real root y of quartic equation (28) define coefficients xj , j =
1,2,3, by Eq. (27). Let x =

√∑3
j=1 x2

j and ξ =
√∑3

j=1 λ2
j x

2
j ;

then operators

Ã =
√

1 + x + √
1 − x

2
I +

√
1 + x − √

1 − x

2x

3∑
j=1

xjσj ,

(33)

B̃ =
√

y + ξ + √
y − ξ

2
√

y2 − ξ 2
I −

√
y + ξ − √

y − ξ

2ξ
√

y2 − ξ 2

3∑
j=1

λjxjσj

(34)

are Hermitian and positive; the map �Ã ◦ � ◦ �B̃ is uni-
tal, positive, trace preserving, and its matrix represen-
tation reads M00(�Ã ◦ � ◦ �B̃) = 1, M0i(�Ã ◦ � ◦ �B̃) =
Mi0(�Ã ◦ � ◦ �B̃) = 0,

Mij (�Ã ◦ � ◦ �B̃) = 1 − x2√
y2 − ξ 2

{
λiδij√
1 − x2

+
[

1 − √
1 − x2

x2
√

y2 − ξ 2

− (y −
√

y2 − ξ 2)λ2
i

ξ 2
√

1 − x2y

]
xiλjxj

}
, (35)

where i,j = 1,2,3. and δij is the Kronecker delta. Conven-
tional decomposition of matrix (35),[

Mij (�Ã ◦ � ◦ �B̃)
]
i,j=1,2,3 = QŨ diag(̃λ1,̃λ2 ,̃λ3)QṼ , (36)

with orthogonal matrices QŨ and QṼ , det QŨ = det QṼ = 1,
leads to the unital map ϒ = �Ũ †Ã ◦ � ◦ �B̃Ṽ † with diagonal
matrix representation M(ϒ) = diag(1,̃λ1 ,̃λ2 ,̃λ3). Operators
A = Ũ †Ã and B = B̃Ṽ †.

Proposition 4 allows one to reduce any nonboundary qubit
channel � to a unital map ϒ with diagonal matrix representa-
tion.

The obtained result becomes particularly simple in the case
t1 = t2 = 0 because, in this case, Eq. (26) is readily solved and
matrix (35) is automatically diagonal. Thus, no diagonalization
(36) is needed, A = Ã and B = B̃.

Corollary 2. Suppose a nonboundary qubit channel � given
by matrix representation (24) with t1 = t2 = 0. If

A = 2√
(1 + t3)2 − λ2

3 +
√

(1 − t3)2 − λ2
3

×
⎛⎝√

(1 + |t3|)2 − λ2
3 0

0
√

(1 − |t3|)2 − λ2
3

⎞⎠, (37)

B =
(

1√
1+t3x3+|λ3x3| 0

0 1√
1+t3x3−|λ3x3|

)
,

x3 = −t3

1 − t2
3 + λ2

3 +
√[

(1 + t3)2 − λ2
3

][
(1 − t3)2 − λ2

3

]
1 − t2

3 − λ2
3 +

√[
(1 + t3)2 − λ2

3

][
(1 − t3)2 − λ2

3

] ,

(38)

then ϒ = �A ◦ � ◦ �B is a unital qubit channel with eigen-
values

λ̃1 = 2λ1√
(1 + λ3)2 − t2

3 +
√

(1 − λ3)2 − t2
3

, (39)

λ̃2 = 2λ2√
(1 + λ3)2 − t2

3 +
√

(1 − λ3)2 − t2
3

, (40)

λ̃3 = 4λ3[√
(1 + λ3)2 − t2

3 +
√

(1 − λ3)2 − t2
3

]2
. (41)

C. Generalized amplitude damping processes
at finite temperature

A two-level system with energy-level separation �E is
coupled with a reservoir of finite temperature T , which results
in a generalized amplitude damping process,

d�

dt
= γw(2σ+�σ− − {σ−σ+,�})

+γ (1 − w)(2σ−�σ+ − {σ+σ−,�}), (42)

where w,1 − w are the populations of ground and excited
levels in thermal equilibrium, i.e., 1−w

w
= exp(−�E

kT
). The

resulting dynamical map �(t) is nonunital, and its matrix
representation is

M(�(t)) =

⎛⎜⎝ 1 0 0 0
0 e−γ t 0 0
0 0 e−γ t 0

(2w − 1)(1 − e−2γ t ) 0 0 e−2γ t

⎞⎟⎠.

(43)

Using Corollary 2, we find the corresponding unital dynam-
ical map ϒ(t) with eigenvalues

λ̃1(t) = λ̃2(t) = e−γ t {
√

w(1 − w)(1 − e−2γ t )

+
√

[1 − w(1 − e−2γ t )][w + e−2γ t (1 − w)]}−1,

(44)

and λ̃3(t) = λ̃2
1(t) = λ̃2

2(t). The latter relation means that ϒ(t)
is simply an amplitude damping process with the infinite
temperature of the environment considered in Examples 1 and
2, although the generator of ϒ(t) is time dependent due to a
time deformation. Exploiting Eq. (38), we also find

B(t) ∝ 4
√

(1 − w)[1 − (1 − w)(1 − e−2γ t )] σ+σ−

+ 4
√

w[1 − w(1 − e−2γ t )] σ−σ+. (45)

Example 3. Suppose two identical qubits, each experiencing
amplitude damping in a reservoir with a finite temperature T

such that w,1 − w are the populations of ground and excited
levels in thermal equilibrium (the case of two memory qubits
[49]). What is the optimal preparation of the initial entangled
state, whose entanglement lifetime is the longest? Surprisingly,
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0 0.5 Γ ΤΨ� Γ Τ�
Γ t

0.1
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0.5
N

FIG. 3. Evolution of negativity under local generalized amplitude
damping noise �(t) ⊗ �(t) with w = 0.01 for the following initial
states: the maximally entangled state (red dashed curve) and the
ultimately robust state (blue solid curve). γ t is dimensionless time.
The dotted line represents a collection of negativities for states
�(t) ⊗ �(t)[|ψt 〉〈ψt |], where the interpolating initial state |ψt 〉 is
given by Eq. (50).

it is not the maximally entangled state. Using Proposition 3 and
Eq. (45), we conclude that ultimate robustness exhibits the state

|ψ�⊗�〉 =
√

(1 − w)[1 − (1 − w)(1 − e−2γ τ̃ )]

1 − (1 − 2w + 2w2)(1 − e−2γ τ̃ )
|0〉 ⊗ |1〉

+
√

w[1 − w(1 − e−2γ τ̃ )]

1 − (1 − 2w + 2w2)(1 − e−2γ τ̃ )
|1〉 ⊗ |0〉,

(46)

where τ̃ is the maximal entanglement lifetime under unital
noise ϒ(t) ⊗ ϒ(t). Using Corollary 1 and the explicit form of
eigenvalues (44), we get

τ̃ = 1

2γ
ln

4(
√

2 + 1)w(1 − w)

1+4(
√

2+1)w(1−w)−
√

1+8(
√

2+1)w(1−w)
,

(47)

which is much greater than the entanglement lifetime of the
maximally entangled state |ψ+〉,

τψ+ = 1

2γ
ln

1 + √
2w(1 − w)√

2w(1 − w)
. (48)

If w → 0, then τ̃ /τψ+ → 2, i.e., the use of the ultimately ro-
bust state allows one to prolong the entanglement lifetime twice
as compared with the entanglement lifetime of the maximally
entangled state. A comparison of entanglement dynamics for
initial states |ψ�⊗�〉 and |ψ+〉 is depicted in Fig. 3. We use
negativity N (�) = 1

2 (‖��‖1 − 1) as the entanglement measure
of the state � [50,51] (�� is the partial transpose of � with
respect to one of the qubits).

Finally, �(t) ⊗ �(t) is entanglement annihilating if and
only if

1 − e−2γ t �

√
1 + 8(

√
2 + 1)w(1 − w) − 1

4(
√

2 + 1)w(1 − w)
. (49)

This result solves the problem of characterizing entanglement
annihilation by generalized amplitude damping noises raised
in Ref. [23].

Although the state (46) is less entangled initially, it remains
entangled longer than the maximally entangled state |ψ+〉,
whose entanglement is greater in the beginning of evolution;
see Fig. 3. Thus, the state (46) is optimal for preserving
entanglement as long as possible, whereas the maximally
entangled state |ψ+〉 is optimal for a short storage of entangle-
ment. In practice, however, one may be interested in storing
entanglement for some intermediate time t0. An interpolation
between |ψ+〉 and the state (46) is the normalized state

|ψt0〉∝
{
(1−w)[1 − (1−w)(1−e−2γ τ̃ )]

} t0
2τ̃ |0〉 ⊗ |1〉

+{
w[1 − w(1 − e−2γ τ̃ )]

} t0
2τ̃ |1〉 ⊗ |0〉. (50)

One can see that the state �(t) ⊗ �(t)[|ψt0〉〈ψt0 |] has a high
degree of entanglement at time moment t0, which is illustrated
by negativity in Fig. 3. Thus, using the state (50) as the initial
state, one is able to reach a high degree of entanglement at
time t0.

In general, if a large degree of entanglement is desired at
time t0, then the interpolation for the optimally prepared state
is a modification of Eq. (23),

|ψ�⊗�′ (t0)〉 ∝ [B (̃τ ) ⊗ B ′ (̃τ )]t0/τ̃ |ψϒ⊗ϒ ′ 〉. (51)

The state (51) always differs from the maximally entangled
state |ψ+〉 if at least one of the noises�(t) and�′(t) is nonunital
and t0 > 0.

Example 4. Suppose a pair of entangled qubits, with the
first qubit experiencing generalized amplitude damping in a
memory cell (parameters w, γ ) and the second (itinerant)
qubit being affected by a depolarizing noise with rate γ ′.
Suppose it takes time t0 for the second qubit to reach another
laboratory, after which an experiment with two apart qubits
is performed. Maximal entanglement lifetime τ̃ is a solution
of [1 + λ̃1(t)]2 = 1 + eγ ′t , where λ̃1(t) is given by Eq. (44).
Since operator B is defined by Eq. (45) and operator B ′ = I

in this case, then the optimal initial state guaranteeing a high
degree of final entanglement for t0 ∈ [0,̃τ ) is

|ψt0〉∝{(1−w)[1 − (1−w)(1−e−2γ τ̃ )]} t0
4τ̃ |0〉 ⊗ |1〉

+{w[1 − w(1 − e−2γ τ̃ )]} t0
4τ̃ |1〉 ⊗ |0〉. (52)

Note that this state is different from the state (50).

IV. CONCLUSIONS

We have analyzed entanglement dynamics of two-qubit
entangled states subjected to local qubit noises of the most
general form.

If the noise is unital, then the ultimately robust state to
entanglement loss is maximally entangled. We have found a
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criterion (Proposition 1), which allows one to find the maximal
entanglement lifetime in this case.

If the noise is nonunital, then we have reduced this problem
to the previous one by developing a decomposition technique
suggested in Ref. [46]. Hereby, we have solved the prob-
lem of full characterization of local two-qubit entanglement
annihilating channels raised in Ref. [23]. Moreover, explicit
decomposition of nonunital qubit maps (22) can find further
applications in the analysis of n-tensor stable positive maps
[52,53], absolutely separating quantum maps [54], and evalu-
ation of channel capacities.

The ultimately robust state turns out to differ from the
maximally entangled one for nonunital noises. By examples
of generalized amplitude damping noises, we show that the
ultimately robust state remains entangled about twice as long
as compared with the maximally entangled one if environ-
ment temperature tends to zero. This fact shows that the
use of an ultimately robust entangled state is beneficial for
entanglement preservation. The communication length for

entanglement-based protocols can be significantly increased
by using optimal state preparation. Similarly, disentanglement
time in physically implementable systems, e.g., electron spins,
could be increased as compared to the disentanglement time
for maximally entangled initial states [55,56].

Finally, we construct an interpolation initial state, which has
a high degree of entanglement for a particular time moment t .
This state is close to the maximally entangled state if t tends
to zero and to the ultimately robust state if t approaches the
maximal entanglement lifetime.
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[50] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,
Volume of the set of separable states, Phys. Rev. A 58, 883
(1998).

[51] G. Vidal and R. F. Werner, Computable measure of entangle-
ment, Phys. Rev. A 65, 032314 (2002).

[52] A. Müller-Hermes, D. Reeb, and M. M. Wolf, Positivity of
linear maps under tensor powers, J. Math. Phys. 57, 015202
(2016).

[53] S. N. Filippov and K. Y. Magadov, Positive tensor products of
maps and n-tensor-stable positive qubit maps, J. Phys. A: Math.
Theor. 50, 055301 (2017).

[54] S. N. Filippov, K. Y. Magadov, and M. A. Jivulescu, Absolutely
separating quantum maps and channels, New J. Phys. 19, 083010
(2017).

[55] P. Mazurek, K. Roszak, R. W. Chhajlany, and P. Horodecki,
Sensitivity of entanglement decay of quantum-dot spin qubits
to the external magnetic field, Phys. Rev. A 89, 062318
(2014).
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