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We study the efficiency of adaptive optics (AO) correction for the free-space propagation of entangled photonic
orbital-angular-momentum (OAM) qubit states to reverse moderate atmospheric turbulence distortions. We show
that AO can significantly reduce crosstalk to modes within and outside the encoding subspace and thereby
stabilize entanglement against turbulence. This method establishes a reliable quantum channel for OAM photons
in turbulence, and it enhances the threshold turbulence strength for secure quantum communication by at least a
factor 2.
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I. INTRODUCTION

Spatial excitations of the electromagnetic field carrying
orbital angular momentum (OAM) [1], often referred to as
twisted photons [2], can be used to encode high-dimensional
(entangled) quantum states [3]. Not only are these states
of fundamental interest [4], but they are also significant in
practice [5], since they can enhance the security of quantum
cryptography [6,7] in free space. However, upon transmission
across atmospheric turbulence, refractive index fluctuations
are imparted on the photons’ phase fronts, which encode
the quantum information [8]. Whereas successful classical
communication with OAM beams has been demonstrated over
143 km [9], the long-distance transmission of single OAM
photons through the atmosphere is more demanding. So far,
quantum key distribution over up to 300 m [10,11], and
entanglement distribution over 3 km [12], have been reported.
It was suggested [13] that to further push the distances of
quantum communication, one has to resort to phase front
corrections by methods of adaptive optics (AO).

Adaptive optics is a well-established scientific discipline
and technology that allows to measure and partially correct
turbulence-induced errors in astronomy, as well as in classical
free-space optical communication [14,15]. A crucial part of any
AO system is a circuit connecting the output of the wavefront
measurements with a deformable mirror composed of a finite
set of electrically controlled segments. By adapting the optical
surface of the deformable mirror, it is possible to compensate
for phase distortions introduced by turbulence. Recently, AO
has been successfully applied to reduce crosstalk of classical
OAM-multiplexed beams [16–19].

In this contribution, we evaluate the potential of AO to
mitigate entanglement degradation of photonic OAM states in
a moderately turbulent atmosphere [20–25]. The decay of en-
tanglement occurs due to turbulence-induced crosstalk among
the OAM modes encoding information. In addition, crosstalk
with OAM modes outside the encoding subspace strongly
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attenuates the detected signal strength. As we show below,
by compensating for the turbulence-induced phase errors,
AO counteracts crosstalk and thereby is able to significantly
enhance entanglement, as well as the number of received
photons.

The paper is organized as follows. In Sec. II we present our
theoretical model and the details of our numerical simulations.
Section III contains the results of this work: the protection of
entanglement of twisted photons by AO is demonstrated in Sec.
III A and the suppression of the qubit error rate is demonstrated
in Sec. III B. Section IV concludes our paper.

II. MODEL

A. Setup

Let us start with the setup considered herein, shown in Fig. 1.
In Alice’s laboratory, a biphoton is generated in a maximally
entangled (Bell) OAM qubit state, e.g.,

|�0〉 = 1√
2

(| − l0,l0〉 + |l0, − l0〉), (1)

where | ± l0〉 denotes a single-photon state of a Laguerre-
Gauss (LG) mode LG0,±l0 (r,0) [1] with radial index 0 and
azimuthal index ±l0 at z = 0 (r is the transverse coordinate).
The constituent photons thus carry an OAM of either +h̄l0
or −h̄l0 [1]. We assume a typical scenario [12] in which one
of the photons stays in Alice’s laboratory while the other is
sent to Bob via a free-space link of length L. The first photon
remains in its initial state, in contrast to the second photon,
which experiences turbulence-induced distortions.

B. Evolution of quantum states

The evolution under these distortions, for a particular real-
ization of density variations of the medium, can be described
by a unitary operator Uturb(L) [26], such that propagation of
single-photon states | ± l0〉 across a turbulent layer is given
by |ψ±l0〉 = Uturb(L)| ± l0〉. The photon at Alice’s disposal is
not affected by turbulence, and thus we act with the identity
operator 1 thereupon to obtain the biphoton output state
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FIG. 1. Sketch of the setup: An entangled photon source (EPS) in
Alice’s laboratory produces a pair of entangled twisted photons. One
photon is kept in Alice’s laboratory, while the other is sent to Bob
through a free-space channel. A Gaussian beacon (blue arrow) travels
along the same path as the twisted photon (red spiral arrow). The AO
system mitigates phase distortions of the twisted photons based on
the wavefront sensor (WFS) measurements of the beacon.

|�〉 = {1 ⊗ Uturb(L)}|�0〉, (2a)

|�̃〉 = {1 ⊗ UAOUturb(L)}|�0〉, (2b)

in the absence and in the presence of AO correction, respec-
tively. In our simulation, we evaluate the unitary operator
Uturb(L) implicitly by connecting the mode functions of the
input and output states using the extended Huygens-Fresnel
principle (see Appendix A).

Since we have no interest in the specific realizations of
turbulence, we need to perform a disorder average of the output
biphoton states over different realizations in order to obtain the
mixed state

σ = 〈|�〉〈�|〉, (3)

where 〈· · · 〉 denotes the disorder average. Finally, Bob’s
photon is projected onto the encoding subspace while Alice’s
photon is already in this subspace. We describe this procedure
by the operator 1 ⊗ �0, where �0 = | − l0〉〈−l0| + |l0〉〈l0|.
The disorder-averaged projected biphoton state thus reads

ρ = (1 ⊗ �0)σ (1 ⊗ �0)/N , (4)

where the factor N = tr{(1 ⊗ �0)σ } is required for renor-
malization. We recall that an average trace N < 1 of the
density matrix indicates losses that may render quantum
communication impossible.

In a final step, we have to evaluate the disorder-averaged
output state’s entanglement. This can be quantified via con-
currence [27],

C = max{
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4,0}, (5)

where the λi are the eigenvalues, in decreasing order, of
the matrix R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), and σy denotes the
second Pauli matrix. When AO compensation is employed, we
simply need to replace |�〉 with |�̃〉 in Eq. (3).

In the following, we present the details of the numerical
simulation of the atmospheric channel and of the adaptive
optics system.

C. Numerical simulation details

1. Multiple-phase-screen method

In our numerical simulations, we implemented the ex-
tended Huygens-Fresnel principle via a multiple-phase-screen
approach. Therein, three-dimensional turbulence is described
by equally spaced thin phase screens. Each screen introduces
random phase distortions in accordance with Kolmogorov
turbulence theory [28], and the beam experiences free diffrac-
tion in vacuum between the screens. The random phase
screens were generated using the Kolmogorov spectral density
�n(κ) = 0.033C2

nκ
−11/3, where κ is the spatial wave vector

in the transverse plane and C2
n is the turbulence phase struc-

ture constant [28,29]. Furthermore, the vacuum propagation
between the phase screens was performed with a Fresnel
propagator [30], while the phase screens were obtained by the
subharmonic method using seven subharmonic orders [31].

For the final simulations, we chose four phase screens—to
properly account for moderate scintillation—while we used a
single screen for validation of our numerical procedure (see the
next section). The number of phase screens was determined
by requiring each partial propagation step to have a Rytov
variance1 σ 2

R < 0.5 for the chosen propagation distance of
L = 500 m and a range of C2

n values. We simulated 19 values of
the turbulence strength C2

n between 1.4 × 10−15 m−2/3 (weak
turbulence) and 1.5 × 10−13 m−2/3 (moderate turbulence),
while each data point was obtained from averaging over
1000 realizations of the turbulent phase screens. Given C2

n ,
L, and k = 2π/λ, one can obtain the transverse turbulence
correlation length or Fried parameter r0 = (0.423C2

nk
2L)−3/5

[28], which fixes the turbulence strength w0/r0. In addition,
we assume a telescope diameter of 0.2 m at Bob’s receiver,
which is a reasonable aperture size available both as a lens
and a mirror telescope [12]. The large diameter ensures that
most photons are received despite diffraction and turbulence-
induced broadening and wandering of the light beam. Based on
these simulation parameters, we calculate the biphoton output
state in the ±l0 subspace from the overlap between the received
field and the nonperturbed initial OAM modes. All calculations
were carried out on a 0.4-m-wide grid with 512 × 512 points
for a wavelength of2 1064 nm and an initial beam waist of
the OAM beams of w0 = 0.03 m. Since the extent of the LG
intensity profile increases as

√
l0 + 1 with l0 (p = 0) [28], we

chose a beam waist for the beacon to be 2.45 w0. Thereby, we
ensured an overlap with the intensity profiles of all simulated
OAM modes (up to l0 = 5).

2. Single-phase-screen validation

To validate our numerical routine, we first simulated the
propagation with a single-phase screen, in which case ana-
lytical results exist [24] and agree with the earlier theoretical
[20] and experimental [23] studies of concurrence decay in
atmospheric turbulence. Figure 2 shows good agreement both

1This requirement is stricter than that of σ 2
R < 1 given in Ref. [28].

2The atmosphere is transparent [28], and there exist sources of
entangled photon pairs [32] at this wavelength. Furthermore, by
a proper rescaling of the turbulence strength and the propagation
parameters, our results can be generalized to other wavelengths.
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FIG. 2. Validation of the simulation routine with a single phase
screen: (a) concurrence and (b) trace of the final density matrix. Solid
lines correspond to analytical results, while points refer to numerical
data. Error bars in (a) are obtained via error propagation from the
standard deviation of the mean on the elements of ρ (see Appendix B).
In (b), the standard deviation of the mean is smaller than the size of
the symbols.

for the concurrence (a) and the trace (b), where solid lines
correspond to the analytical theory, and points correspond to
our numerical data.

D. Adaptive optics system

To measure and correct turbulence-induced distortions, we
propose to use an AO system that consists of a beacon laser, a
wavefront sensor, and corrective elements such as deformable
or tip-tilt mirrors. In state-of-the-art AO systems [15], the time
required to perform phase measurements and adjust the mirror
into a new position is shorter than the typical time scale
of atmospheric changes [14], which allows us to neglect
the dynamics of the atmosphere. The classical beacon beam
(typically a Gaussian laser beam [16]) is sent prior to and along
the same path as the quantum light. Therefore, we can use its
phase, ϕB(r), extracted via the wave-front sensor, to correct the
phase distortion imprinted onto the single photons. Formally,
we can express the action of AO by a unitary operator to find
the corrected single-photon state |ψ̃±l0〉 = UAOUturb(L)| ± l0〉
at Bob’s receiver. The mode function associated with this cor-
rected state is given by ψ̃±l0 (r,L) = exp{−iϕB(r)}ψ±l0 (r,L),

where ψ±l0 (r,L) is the mode function associated with the state
|ψ±l0〉.

The evaluation of the phase ϕB(r), and hence of UAO in
Eq. (2b), is based upon two ways of modeling the AO system.
The first assumes an ideal system able to sense the phase
ϕB,∞(r) of the beacon field with arbitrary resolution, and to
adapt the deformable mirror’s surface correspondingly. The
second assumes the simplest AO possible, which corrects only
for a tilt of the wavefront, with respect to the receiver plane.
In an experiment, this minimalistic scenario is achieved by a
single flat mirror that can rotate along both axes perpendicular
to the propagation direction—a so-called tip-tilt (TT) mirror.
Our calculation of the required mirror rotation, similar to a
typical experimental implementation, is based on the Fourier-
transforming properties of an ideal lens. Accordingly, a tilted
input field is transformed into a displaced focal spot. The center
of mass of the focal plane intensity thus determines the rotation
of the mirror, and thereby ϕB,TT(r) [15]. These optimal and
minimalistic AO scenarios allow us to establish an upper and a
lower bound for the performance of a real AO system hereafter.

III. RESULTS

A. State’s entanglement and trace

With the above premises, we can now assess the potential
of AO for state and entanglement transmission.

The top row of Fig. 3 displays our results for the en-
tanglement evolution under turbulence, without (a) and with
optimal (b) or minimalistic (c) AO compensation. Figure 3(a)
establishes the well-known result that the larger the initial
OAM value l0, the more robust entanglement is against (weak
and moderate) turbulence [23,24]. Figure 3(b) shows that the
ideal AO dramatically enhances the output state concurrence,
to the extent of being almost fully preserved even in moderate
turbulence. It might still be surprising that our idealized AO
cannot completely recover the initial concurrence. To under-
stand this, we need to consider that diffraction transforms phase
distortions into intensity fluctuations, so-called scintillation
[28]. It then becomes clear that phase-only AO compensation
cannot correct for such intensity distortions and is there-
fore most efficient for weak to moderate scintillation, i.e.,
for medium propagation distances and moderate turbulence
strengths.

Furthermore, ideal correction inverts the trend observed in
Fig. 3(a), providing slightly better stability to OAM modes with
smaller l0. As for tip-tilt correction, see Fig. 3(c), all curves
but those for l0 = 1 collapse approximately onto one line
for w0/r0 � 1.5. Both of these observations from (b) and (c)
suggest that AO is less effective for higher-order OAM modes.
We believe that this is due to the different beam geometries
of the OAM modes and of the Gaussian mode beacon laser,
respectively. The OAM modes have ringlike intensity patterns
with vanishing intensity at the optical vortex—where the
Gaussian beacon has its maximum intensity. Furthermore,
OAM modes have a broader intensity profile that increases
with

√
l0 + 1 [8], while the Gaussian beacon’s intensity is

essentially localized within a fixed area leading to a decreasing
overlap of the beacon and the OAM beam with increasing
l0. To reduce this effect, we have chosen a 2.45 times larger
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FIG. 3. Concurrence C (5) (a)–(c) and trace N (d)–(f) of the disorder-averaged and projected biphoton output state ρ plotted against the
effective turbulence strength w0/r0 for different degrees of adaptive optics compensation: (a), (d) without compensation, (b), (e) ideal, and
(c), (f) tip-tilt AO. Note the different scale of the y axis in (b). Error bars in (a)–(c) are obtained via error propagation from the standard deviation
of the mean on the elements of ρ (see Appendix B). In (d)–(f) the standard deviation of the mean is smaller than the size of the symbols.

beam waist for the beacon than w0 in all of our presented
results to ensure an overlap with all modes up to l0 = 5. A
more quantitative analysis of these geometry-induced effects
requires further optimization of the beacon parameters and a
more detailed adaptive optics system design, which is beyond
the scope of our present contribution.

The bottom row of Fig. 3 quantifies the loss of the trace N
of the averaged output state’s density matrix as a consequence
of the turbulence-induced crosstalk with OAM modes different
from ±l0 [34]. We find that both ideal (e) and tip-tilt (f) AO
lead to a noteworthy enhancement of the trace as compared
to the uncompensated case (d). Consequently, the number of
photons lost due to scattering outside the encoding subspace
can be reduced, which increases the signal-to-noise ratio.
For example, at w0/r0 = 1, tip-tilt compensation increases
the trace by a factor between 2 and 4, and ideal AO even
achieves factors between 5 and 13, depending on l0. Inter-
estingly, higher-order OAM modes exhibit a stronger trace
enhancement as compared to lower-order modes, both for
ideal and tip-tilt AO. Consequently, the number of detectable
photons is increased also in higher-order OAM modes, which
are more sensitive to crosstalk. AO could thus enable studies
of entanglement transmission in state spaces larger than those
demonstrated to date.

Let us finally discuss why the efficiency of AO is different
for the state’s entanglement as compared to its trace. As already
mentioned, turbulence causes not only phase fluctuations
but also intensity fluctuations, which cannot be compensated
by AO. Residual intensity fluctuations lead to crosstalk and
population of OAM modes inside and outside the encoding
subspace, respectively, even in the case of ideal AO correction.

The low residual crosstalk between the modes ±l0 results in a
weak reduction of concurrence. In contrast, small populations
in each of the modes outside the encoding subspace result in a
relatively large cumulative effect on the trace of the final state.
Additionally, the finite receiver aperture could enhance photon
losses.

B. Qubit error rate

We finally address an application of our findings in the
context of quantum cryptography, where the security of the
communication channel is of particular importance. To judge
whether an eavesdropper may have gained enough informa-
tion to render communication insecure, Alice and Bob can
evaluate the quantum bit error rate (QBER) on a subset
of their measurements [33]. In the case of entangled OAM
states, intermodal crosstalk is a source of detection errors
contributing to the QBER. Other, OAM-unrelated, effects, such
as detector efficiency and noise statistics, can also contribute
to the QBER of the communication channel [33]. We restrict
our calculations here to the detection error rate R caused by
crosstalk,

R = 1

N 〈|〈+l0|Uturb| − l0〉|2 + |〈−l0|Uturb| + l0〉|2〉. (6)

It is well known [33] that the QBER and thus R has to remain
below 11% for secure communication.

Figure 4 shows the dependence of R on the turbulence
strength, in the absence of AO (a), for ideal AO (b), and
for tip-tilt AO (c). Without AO, R quickly prevents secure
communication. With tip-tilt correction, the security threshold
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FIG. 4. Cross-talk-induced detection error contribution R, see Eq. (6), to the quantum bit error rate as a function of w0/r0: (a) without
turbulence compensation, (b) with an ideal, and (c) with tip-tilt AO. Dashed horizontal lines in (a,c) indicate the security threshold of 11% [33]
[note the different scale of the y axis in (b)]. Error bars represent the standard deviation of the mean.

can be shifted to approximately two times larger turbulence
strengths. A dramatic improvement is achieved by ideal AO,
with R < 1%, such that secure communication can be achieved
in the entire range of turbulence strengths considered here,
provided all other contributions to QBER remain small enough.

IV. CONCLUSION

In summary, we studied the efficiency of adaptive optics
in preventing the loss of entanglement and of the norm of
OAM qubit states in atmospheric turbulence. Whereas without
AO compensation both concurrence and trace rapidly decay
with increasing turbulence strength, even minimalistic (tip-tilt)
correction allows for an enhancement of the latter quantities
by a factor of 2 to 4. These results suggest that state-of-the-art
AO systems [35], able to correct higher-order aberrations of
the wavefront, bear the potential to enhance these factors still
further—up to the almost complete restoration of entanglement
and an increase of the trace by a factor between 5 and 13, in
the ideal case.

While technically more involved in theory as well as in
experiment, there is no fundamental obstacle to port the
method described here to higher-dimensional OAM-entangled
states. Furthermore, we believe that with higher-dimensional
states we can push quantum communication protocols based
on OAM states to longer propagation distances and worse
turbulence condition, since the security threshold increases
upon increasing the dimensionality of the states [33]. Likewise,
our results imply that AO methods hold some promise to
improve the fidelity of other quantum-information protocols
that suffer from mode distortions by uncontrolled errors [36].
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APPENDIX A: DERIVATION OF THE OUTPUT
DENSITY MATRIX

We employ the extended Huygens-Fresnel principle [16,28]
to describe field propagation across a turbulent medium.
According to this principle, the mode function of the output,

single-photon, state |ψ±l0〉 = Uturb(L)| ± l0〉 is expressed by
an integral,

ψ±l0 (r,L) =
∫

d2r ′h(r,r′,L)LG0±l0 (r′,0), (A1)

where h(r,r′,L) = 〈r,L|Uturb(L)|r′,0〉 is the spatial response
function, which incorporates scattering-in-turbulence and
diffraction effects.

On the other hand, the single-photon state |ψ±l0〉 can be
expanded in the OAM basis as

|ψ±l0〉 =
∑
pl

g
±l0
pl |pl〉, (A2)

where |pl〉 denotes a single-photon state of an LGpl mode, and
the coefficients g

±l0
pl are given by the overlap integral,

g
±l0
pl =

∫
d2r ψ±l0 (r,L)LG∗

pl(r,L). (A3)

In our numerical calculations, the integral in the above equation
is replaced by a finite sum over the pixels in our calculation
grid. The biphoton output state in Eq. (2a), postselected in the
encoding subspace, can be expressed in the OAM basis as

(1 ⊗ �0)|�〉 = 1√
2

(a|l0,l0〉 + b| − l0,l0〉

+c|l0, − l0〉 + d| − l0, − l0〉), (A4)

where the expansion coefficients read

a := 〈l0|Uturb(L)| − l0〉 = g
−l0
0l0

, (A5a)

b := 〈l0|Uturb(L)|l0〉 = g
l0
0l0

, (A5b)

c := 〈−l0|Uturb(L)| − l0〉 = g
−l0
0−l0

, (A5c)

d := 〈−l0|Uturb(L)|l0〉 = g
l0
0−l0

. (A5d)

By definition, b and c are the survival amplitudes, whereas
a and d are the crosstalk amplitudes [24]. In terms of these
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quantities, the average density matrix in Eq. (3) is given by

ρ = 1

N

⎛
⎜⎜⎜⎝

〈|a|2〉 〈a∗b〉 〈a∗c〉 〈a∗d〉
〈a∗b〉 〈|b|2〉 〈b∗c〉 〈b∗d〉
〈c∗a〉 〈c∗b〉 〈|c|2〉 〈c∗d〉
〈d∗a〉 〈d∗b〉 〈d∗c〉 〈|d|2〉

⎞
⎟⎟⎟⎠, (A6)

with the normalization constant N = 〈|a|2 + |b|2 + |c|2 +
|d|2〉. Using Eqs. (A5a)–(A5d), we can also write the QBER
in Eq. (6) as

R = 〈|a|2 + |d|2〉/N . (A7)

All previous expressions concerned wave propagation without
the AO compensation, but they can easily be adapted to the case
when AO correction of the phase front is present. Indeed, the
mode function for the AO-compensated states |ψ̃±l0〉 is given
by

ψ̃±l0 (r,L) = e−iϕB (r)ψ±l0 (r,L), (A8)

where ϕB(r) is either ϕB,∞(r) (ideal phase correction)
or ϕB,TT(r) (tip-tilt correction). Furthermore, the AO-
compensated state reads

|ψ̃±l0〉 =
∑
pl

g̃
±l0
pl |pl〉, (A9)

with

g̃
±l0
pl =

∫
d2r ψ±l0 (r,L)LG∗

pl(r,L)e−iϕB (r). (A10)

Analogously, when we expand the biphoton state |�̃〉 [see
Eq. (2b)] in the OAM basis, we arrive at equations similar
to Eqs. (A4)–(A7).

APPENDIX B: ERROR ON CONCURRENCE

Here we discuss the method to obtain the errors of concur-
rence through the propagation of the statistical errors of the
output density matrix. Our derivation below follows closely
that in Ref. [37], except that we used perturbation theory
for non-Hermitian matrices (see below). First of all, we used
the Bloch representation of the density matrix, which renders
matrix elements (and consequently errors) thereof real. In the

Bloch representation, the density matrix reads

ρ =
3∑

i,j=0

Bijσi ⊗ σj , (B1)

where Bij = tr(ρ σi ⊗ σj ) are the Bloch coefficients, σ0 is the
2 × 2 identity matrix, and σ1,2,3 are the three Pauli matrices.
Wootters’ concurrence is a function of the eigenvalues of the
non-Hermitian matrix R given by

R = ρ̄(σy ⊗ σy)ρ̄∗(σy ⊗ σy), (B2)

which can be expressed in the Bloch representation as

R =
3∑

ijkl=0

BijBkl(σi ⊗ σj )(σy ⊗ σy)(σk ⊗ σl)
∗(σy ⊗ σy),

=
3∑

ijkl=0

BijBkl�ijkl, (B3)

where the four-index tensor �ijkl = (σiσyσ
∗
k σy) ⊗

(σjσyσ
∗
l σy). We calculated the error on concurrence by

propagating the error on the Bloch coefficients �Bij , which
was calculated as a standard deviation of the mean, assuming
Bij to be statistically independent.

Using standard error propagation in Eq. (5), we expressed
the error on concurrence as

(�C)2 =
4∑

i=1

(
∂C

∂λi

)2

(�λi)
2 =

4∑
i=1

(
1

2

�λi√
λi

)2

, (B4)

where �λi are the errors on the eigenvalues of the matrixR. To
calculate the errors �λi , we first found the error on the matrix
R as

�R =
3∑

mn=0

∂R

∂Bmn

�Bmn,

=
3∑

klmn=0

(Bkl�mnkl + Bkl�klmn)�Bmn. (B5)

Finally, we used perturbation theory for non-Hermitian matri-
ces [38] to calculate the errors on the eigenvalues as

�λi = W
†
i �RVi, (B6)

where Wi (Vi) are the left (right) eigenvectors of R.

[1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Phys. Rev. A 45, 8185 (1992).

[2] G. Molina-Terriza, J. P. Torres, and L. Torner, Nat. Phys. 3, 305
(2007).

[3] M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow,
and A. Zeilinger, Proc. Natl. Acad. Sci. USA 111, 6243 (2014).

[4] The Angular Momentum of Light, edited by D. L. Andrews
and M. Babiker (Cambridge University Press, Cambridge, UK,
2012).

[5] M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan,
B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett,
D. J. Gauthier, and R. W. Boyd, New J. Phys. 17, 033033
(2015).

[6] H. Bechmann-Pasquinucci and A. Peres, Phys. Rev. Lett. 85,
3313 (2000).

[7] M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64,
012306 (2001).

[8] C. Paterson, Phys. Rev. Lett. 94, 153901 (2005).
[9] M. Krenn, J. Handsteiner, M. Fink, R. Fickler, R. Ursin, M.

Malik, and A. Zeilinger, Proc. Natl. Acad. Sci. USA 113, 13648
(2016).

[10] G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L.
Marrucci, F. Sciarrino, and P. Villoresi, Phys. Rev. Lett. 113,
060503 (2014).

[11] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque,
K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C.

012321-6

https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1038/nphys607
https://doi.org/10.1038/nphys607
https://doi.org/10.1038/nphys607
https://doi.org/10.1038/nphys607
https://doi.org/10.1073/pnas.1402365111
https://doi.org/10.1073/pnas.1402365111
https://doi.org/10.1073/pnas.1402365111
https://doi.org/10.1073/pnas.1402365111
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevLett.94.153901
https://doi.org/10.1103/PhysRevLett.94.153901
https://doi.org/10.1103/PhysRevLett.94.153901
https://doi.org/10.1103/PhysRevLett.94.153901
https://doi.org/10.1073/pnas.1612023113
https://doi.org/10.1073/pnas.1612023113
https://doi.org/10.1073/pnas.1612023113
https://doi.org/10.1073/pnas.1612023113
https://doi.org/10.1103/PhysRevLett.113.060503
https://doi.org/10.1103/PhysRevLett.113.060503
https://doi.org/10.1103/PhysRevLett.113.060503
https://doi.org/10.1103/PhysRevLett.113.060503


PROTECTING THE ENTANGLEMENT OF TWISTED … PHYSICAL REVIEW A 97, 012321 (2018)

Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, Optica 4,
1006 (2017).

[12] M. Krenn, J. Handsteiner, M. Fink, R. Fickler, and
A. Zeilinger, Proc. Natl. Acad. Sci. USA 112, 14197
(2015).

[13] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis,
D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer,
T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte,
N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A.
Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A.
B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner,
G. Xie, B. McMorran, and A. M. Weiner, J. Opt. 19, 013001
(2017).

[14] P. Milonni, Am. J. Phys. 67, 476 (1999).
[15] R. Tyson, Principles of Adaptive Optics, 3rd ed. (CRC, Boca

Raton, FL, 2011).
[16] Y. Ren, G. Xie, H. Huang, C. Bao, Y. Yan, N. Ahmed, M. P. J.

Lavery, B. I. Erkmen, S. Dolinar, M. Tur, M. A. Neifeld, M. J.
Padgett, R. W. Boyd, J. H. Shapiro, and A. E. Willner, Opt. Lett.
39, 2845 (2014).

[17] Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M.
P. J. Lavery, M. Tur, M. A. Neifeld, R. W. Boyd, J. H. Shapiro,
and A. E. Willner, Optica 1, 376 (2014).

[18] B. Rodenburg, M. Mirhosseini, M. Malik, O. S. Magaña-Loaiza,
M. Yanakas, L. Maher, N. K. Steinhoff, G. A. Tyler, and R. W.
Boyd, New J. Phys. 16, 033020 (2014).

[19] M. Li, M. Cvijetic, Y. Takashima, and Z. Yu, Opt. Express 22,
31337 (2014).

[20] B. J. Smith and M. G. Raymer, Phys. Rev. A 74, 062104
(2006).

[21] C. Gopaul and R. Andrews, New J. Phys. 9, 94 (2007).

[22] B.-J. Pors, C. H. Monken, E. R. Eliel, and J. P. Woerdman, Opt.
Express 19, 6671 (2011).

[23] A. Hamadou Ibrahim, F. S. Roux, M. McLaren, T. Konrad, and
A. Forbes, Phys. Rev. A 88, 012312 (2013).

[24] N. D. Leonhard, V. N. Shatokhin, and A. Buchleitner, Phys. Rev.
A 91, 012345 (2015).

[25] F. S. Roux, T. Wellens, and V. N. Shatokhin, Phys. Rev. A 92,
012326 (2015).

[26] F. S. Roux, J. Phys. A 47, 195302 (2014).
[27] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[28] L. C. Andrews and R. L. Phillips, Laser Beam Propagation

through Random Media, 2nd ed. (SPIE, Bellingham, WA, 2005).
[29] J. D. Schmidt, Numerical Simulation of Optical Wave Propaga-

tion with Examples in MATLAB (SPIE, Bellingham, WA, 2010).
[30] J. L. Bakx, Appl. Opt. 41, 4897 (2002).
[31] R. G. Lane, A. Glindemann, and J. C. Dainty, Waves Rand.

Media 2, 209 (1992).
[32] S. Magnitskiy, D. Frolovtsev, V. Firsov, P. Gostev, I. Protsenko,

and M. Saygin, J. Russ. Laser Res. 36, 618 (2015).
[33] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys.

74, 145 (2002).
[34] J. A. Anguita, M. A. Neifeld, and B. V. Vasic, Appl. Opt. 47,

2414 (2008).
[35] C. Petit, N. Védrenne, M. Velluet, V. Michau, G. Artaud, E.

Samain, and M. Toyoshima, Opt. Eng. 55, 111611 (2016).
[36] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Phys.

Rev. Lett. 118, 210503 (2017).
[37] A. H. Ibrahim, Ph.D. thesis, School of Chemistry and Physics,

University of KwaZulu-Natal, Durban, 2013.
[38] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys.

Rev. A 64, 052312 (2001).

012321-7

https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1073/pnas.1517574112
https://doi.org/10.1073/pnas.1517574112
https://doi.org/10.1073/pnas.1517574112
https://doi.org/10.1073/pnas.1517574112
https://doi.org/10.1088/2040-8978/19/1/013001
https://doi.org/10.1088/2040-8978/19/1/013001
https://doi.org/10.1088/2040-8978/19/1/013001
https://doi.org/10.1088/2040-8978/19/1/013001
https://doi.org/10.1119/1.19310
https://doi.org/10.1119/1.19310
https://doi.org/10.1119/1.19310
https://doi.org/10.1119/1.19310
https://doi.org/10.1364/OL.39.002845
https://doi.org/10.1364/OL.39.002845
https://doi.org/10.1364/OL.39.002845
https://doi.org/10.1364/OL.39.002845
https://doi.org/10.1364/OPTICA.1.000376
https://doi.org/10.1364/OPTICA.1.000376
https://doi.org/10.1364/OPTICA.1.000376
https://doi.org/10.1364/OPTICA.1.000376
https://doi.org/10.1088/1367-2630/16/3/033020
https://doi.org/10.1088/1367-2630/16/3/033020
https://doi.org/10.1088/1367-2630/16/3/033020
https://doi.org/10.1088/1367-2630/16/3/033020
https://doi.org/10.1364/OE.22.031337
https://doi.org/10.1364/OE.22.031337
https://doi.org/10.1364/OE.22.031337
https://doi.org/10.1364/OE.22.031337
https://doi.org/10.1103/PhysRevA.74.062104
https://doi.org/10.1103/PhysRevA.74.062104
https://doi.org/10.1103/PhysRevA.74.062104
https://doi.org/10.1103/PhysRevA.74.062104
https://doi.org/10.1088/1367-2630/9/4/094
https://doi.org/10.1088/1367-2630/9/4/094
https://doi.org/10.1088/1367-2630/9/4/094
https://doi.org/10.1088/1367-2630/9/4/094
https://doi.org/10.1364/OE.19.006671
https://doi.org/10.1364/OE.19.006671
https://doi.org/10.1364/OE.19.006671
https://doi.org/10.1364/OE.19.006671
https://doi.org/10.1103/PhysRevA.88.012312
https://doi.org/10.1103/PhysRevA.88.012312
https://doi.org/10.1103/PhysRevA.88.012312
https://doi.org/10.1103/PhysRevA.88.012312
https://doi.org/10.1103/PhysRevA.91.012345
https://doi.org/10.1103/PhysRevA.91.012345
https://doi.org/10.1103/PhysRevA.91.012345
https://doi.org/10.1103/PhysRevA.91.012345
https://doi.org/10.1103/PhysRevA.92.012326
https://doi.org/10.1103/PhysRevA.92.012326
https://doi.org/10.1103/PhysRevA.92.012326
https://doi.org/10.1103/PhysRevA.92.012326
https://doi.org/10.1088/1751-8113/47/19/195302
https://doi.org/10.1088/1751-8113/47/19/195302
https://doi.org/10.1088/1751-8113/47/19/195302
https://doi.org/10.1088/1751-8113/47/19/195302
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1103/PhysRevLett.80.2245
https://doi.org/10.1364/AO.41.004897
https://doi.org/10.1364/AO.41.004897
https://doi.org/10.1364/AO.41.004897
https://doi.org/10.1364/AO.41.004897
https://doi.org/10.1088/0959-7174/2/3/003
https://doi.org/10.1088/0959-7174/2/3/003
https://doi.org/10.1088/0959-7174/2/3/003
https://doi.org/10.1088/0959-7174/2/3/003
https://doi.org/10.1007/s10946-015-9540-x
https://doi.org/10.1007/s10946-015-9540-x
https://doi.org/10.1007/s10946-015-9540-x
https://doi.org/10.1007/s10946-015-9540-x
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1103/RevModPhys.74.145
https://doi.org/10.1364/AO.47.002414
https://doi.org/10.1364/AO.47.002414
https://doi.org/10.1364/AO.47.002414
https://doi.org/10.1364/AO.47.002414
https://doi.org/10.1117/1.OE.55.11.111611
https://doi.org/10.1117/1.OE.55.11.111611
https://doi.org/10.1117/1.OE.55.11.111611
https://doi.org/10.1117/1.OE.55.11.111611
https://doi.org/10.1103/PhysRevLett.118.210503
https://doi.org/10.1103/PhysRevLett.118.210503
https://doi.org/10.1103/PhysRevLett.118.210503
https://doi.org/10.1103/PhysRevLett.118.210503
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312
https://doi.org/10.1103/PhysRevA.64.052312



