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Emergence of entanglement with temperature and time in factorization-surface states

Titas Chanda,1 Tamoghna Das,1 Debasis Sadhukhan,1 Amit Kumar Pal,1,2 Aditi Sen(De),1 and Ujjwal Sen1

1Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211019, India
2Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom

(Received 6 July 2017; published 16 January 2018)

There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing
vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such
states can become useful for quantum protocols when the temperature of the system is increased, and when the
system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution
driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional
anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the
thermal states, corresponding to the factorization points in the space of the system parameters, revives once or
twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven
out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement
is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that
creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath,
interacting with the system through that spin-pair via a repetitive quantum interaction.
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I. INTRODUCTION

Quantum phase transitions—the qualitative change of the
zero-temperature state driven by the system parameters—of
interacting quantum spin models is one of the most striking
quantum mechanical features, which cannot be seen in classical
spin systems [1]. Over the years, several physical quantities
and experimental methods have been developed for detection
and classification of these transitions [2]. For example, in the
last decade, the trends of quantum correlation measures, in
the form of entanglement [3], of the zero-temperature states
of a given quantum spin model are found to be an effective
tool for identifying its quantum phase transitions [4,5]. It is
also observed that these quantum many-body systems often
possess highly entangled quantum states, which can be used to
implement quantum circuits [6], and to perform quantum infor-
mation processing tasks, such as quantum state transmission
[7]. Moreover, a number of available solid state materials [8],
along with cold-atomic substrates [9–12], nuclear magnetic
resonance [13], and superconducting qubits [14,15] mimic
these quantum spin models. Consequently, it has been possible
to engineer these models in a controlled way with currently
available technology.

Up to now, most of the studies in the direction of char-
acterizing quantum many-body systems using entanglement
are restricted to analyze either (i) the entanglement of the
zero-temperature states to obtain the indication of quantum
phases, or (ii) the behavior of thermal entanglement at a finite
temperature, or (iii) the dynamics of entanglement starting with
an entangled state to find out its sustainability at large time.
In this paper, we investigate the thermalization and dynamics
of entanglement in a quantum spin model, with unentangled
zero-temperature states as initial states. Such zero-temperature
states, called the factorized states are product states across all
bipartitions, having vanishing bipartite as well as multipartite
entanglement for specific values of the system parameters, also

known as the factorization points [16–18], and are considered
to be unprofitable for quantum information protocols that use
entanglement as a resource [3]. Given a many-body system,
it is therefore important to identify factorization points in the
system parameter space, which may also form lines, surfaces,
or volumes. At the same time, finding a recipe for creating
entanglement in these regions, and its neighboring regions,
is crucial where tuning to other values of system parameters
is not possible. In particular, if the zero-temperature state
is separable or possesses a very low value of entanglement
for the system parameters lying in the neighborhood of the
factorization points, it is not guaranteed that the canonical
equilibrium state (CES), after interacting with the global heat
bath, can also have vanishing entanglement for all values of
temperature (cf. [18–20]). Furthermore, in the case of closed as
well as open system dynamics, it is not a priori clear whether
generation of entanglement in the evolved state from an initial
unentangled state is possible. In this paper, we address both
of these questions, and answer them affirmatively.

Paradigmatic one-dimensional quantum spin systems that
encounter such product states at zero temperature are (i) the
anisotropic XY model with a transverse magnetic field that is
uniform on all the spins (UXY model) [21–24], and (ii) the
same with an additional transverse magnetic field having an al-
ternating direction depending on the lattice sites (ATXY model)
[18,24–26]. Note here that the UXY model [model (i)] is a spe-
cial case of the ATXY model [model (ii)] and in this paper, we
concentrate on both of the models, for which the thermal and
time-evolved states can be analytically obtained by successive
applications of Jordan-Wigner and Fourier transformations
[18,24]. For specific values of the anisotropy parameter and
the relative strengths of the uniform and alternating transverse
magnetic fields, the ground state of this model is known to be
doubly degenerate and factorizable along two hyperbolic lines,
known as the factorization lines (FL) [18].
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Starting from a zero-temperature factorized state of the
ATXY model, we investigate the thermal as well as dynamical
properties of entanglement under two different scenarios. (a)
The first situation is when a CES of a given spin Hamiltonian
undergoes a closed unitary evolution due to a disturbance in the
system parameters that drives the system out of equilibrium.
(b) The second case deals with a system that is exposed to an
external thermal bath acting as an environment. Specifically,
fixing system parameters on the factorization surface, we
observe that entanglement of a thermal state undergoes a
double revival and collapse over varying temperature when
the value of the anisotropy parameter of the one-dimensional
ATXY model is chosen in the appropriate range. We comment
on how the zero-entanglement region over the phase plane
of the model develops entanglement with an increase in
temperature as well as under a time evolution of the system,
and demonstrate that the results are not modified if one con-
siders a finite-sized system, achievable by current technology
[14,27] instead of a quantum spin chain in the thermodynamic
limit.

We show that for lower values of the relative strength of
the uniform transverse field, the entanglement generated in the
evolved states starting from the factorized state may oscillate at
first, and then saturate at a nonzero value at the long time limit.
In contrast, for high values of the field strength, the oscillation
of entanglement dies out comparatively quicker than the former
case, and entanglement vanishes as time increases. In the
case of higher values of the anisotropy parameter, the initial
oscillation of the generated entanglement for higher values
of the uniform magnetic field sustains longer. It turns out
that in closed evolution, entanglement can only be preserved
for a long time when the system is close to the UXY model.
We also consider the open system dynamics of the model by
studying the evolution of the system in contact with external
heat baths at a different temperature, which interact with the
system through a set of chosen spins via a repetitive quantum
interaction [28,29]. Interestingly, the open system dynamics
is found to distinguish between the spin in the system that
is directly connected to the external heat bath and the spin
having no interaction with the bath. In particular, thermal and
temporal entanglement generation over factorized states favors
those spin pairs in the spin chain which is in contact with
the thermal bath, having moderate temperature. Moreover, we
show that in the case of open system dynamics, for all values
of the uniform field, lower values of anisotropy parameters
are profitable in terms of longer sustenance of the generated
entanglement. The advantages of our results become prominent
in a situation where one is forced to prepare a physical system
in a parameter regime that corresponds to a state having almost
vanishing entanglement.

The paper is organized as follows. A brief overview of
the quantum spin model under consideration, its phase dia-
gram, and the specifications of the factorized states at zero
temperature is provided in Sec. II. The emergence of thermal
entanglement in quantum states corresponding to factorization
points in the parameter space of the system is discussed in
Sec. III. Section IV reports the dynamical properties of the
thermally emergent entanglement at factorization points, under
closed unitary evolution as well as open system dynamics.
Finally, Sec. V has concluding remarks.

II. THE MODEL

To investigate the thermal and dynamical behavior of
entanglement emerging over factorized states, we choose a
one-dimensional (1D) quantum spin model consisting of N

spin- 1
2 particles. The Hamiltonian of the model is given by

[18,24,25]

ĤS(t) = 1

4

N∑
i=1

J
{
(1 + γ )σ̂ x

i σ̂ x
i+1 + (1 − γ )σ̂ y

i σ̂
y

i+1

}

+ 1

2

N∑
i=1

hi(t)σ̂
z
i , (1)

where J is the strength of the exchange interaction, γ ( �= 0)
is the x − y anisotropy, and {σ̂ α

i ; α = x,y,z} are the Pauli
spin matrices corresponding to the spin located at the site i.
Here, hi(t) = h1(t) + (−1)ih2(t) is the site-dependent external
magnetic field, having two components, h1(t) and h2(t), which
are, respectively, the strength of a transverse magnetic field
in the +z direction, and that of a transverse magnetic field
in the direction +z or −z, depending on whether the site is
even, or odd. We consider periodic boundary condition, i.e.,
σ̂N+1 ≡ σ̂1 throughout this paper, and choose the time-
dependent magnetic field to be of the form,

h1(t) =
{
h1, t � 0
0, t > 0 , h2(t) =

{
h2, t � 0
0, t > 0 . (2)

The implications of the specific form of the magnetic field will
be clear in subsequent discussions.

In the thermodynamic limit (N → ∞), by successively
applying Jordan-Wigner and Fourier transformations [18], the
Hamiltonian in Eq. (1) can be rewritten in the momentum space
as ĤS(t) = ∑N/4

p=1 Ĥp(t), where

Ĥp(t) = J cos φp(â†
pb̂p + a

†
−pb̂−p + b̂†pâp + b̂

†
−pâ−p)

− iJ γ sin φp(â†
pb̂

†
−p + âpb−p − â

†
−pb̂†p − â−pap)

+ [h1(t) + h2(t)](b̂†pb̂p + b̂
†
−pb̂−p)

+ [h1(t) − h2(t)](â†
pâp + â

†
−pâ−p) − 2h1(t), (3)

with â
†
p and b̂

†
p given by

â
†
2j+1 =

√
2

N

N/4∑
p=−N/4

exp (i(2j + 1)φp)â†
p,

b̂
†
2j =

√
2

N

N/4∑
p=−N/4

exp (i(2j )φp)b̂†p. (4)

Here, â
†
2j+1 and b̂

†
2j are the spinless fermionic operators cor-

responding to the odd and even sublattices, and φp = 2πp/N .
Therefore, the diagonalization of ĤS(t) can be achieved by the
diagonalization of Ĥp with a proper choice of the basis.

Diagonalization of ĤS(t) allows one to compute the CES
and the time-evolved state (TES) while considering the dynam-
ics of the model in the form of a closed system. The CES of the
ATXY model at time t is given by ρ̂eq(t) = Z−1 exp(−βSĤS(t)),
with Z = Tr[exp(−βSĤS(t))] being the partition function,
βS = (kBTS)−1, TS being the absolute temperature of the
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FIG. 1. Phase boundaries and factorization lines on the phase
plane of the ATXY model. (a) Phase boundaries corresponding to
PM-I ↔ AFM [Eq. (6)] and PM-II ↔ AFM [Eq. (7)], for γ = 0.8,
are represented by dashed and dotted lines on the (λ1,λ2) plane.
The factorization line [Eq. (8)] is represented by the continuous
line on the (λ1,λ2) plane. (b) Factorization lines corresponding to
different values of λ2 are marked on (λ1,γ ) plane. The dashed and the
short-dashed lines represent the ATXY model, while the continuous
line corresponds to the UXY model (λ2 = 0). All the axes in both
figures are dimensionless.

system, and kB the Boltzmann constant. We consider a situation
where the system is brought to a canonical thermal equilibrium
with a heat bath at temperature TS before the beginning of the
dynamics, which we label as t = 0. At t > 0, the system starts
evolving due to the disturbance caused by switching off the
magnetic fields, as given in Eq. (2). The evolution is governed
by the Schrödinger equation corresponding to the Hamiltonian
in Eq. (1), providing the TES, ρ̂(t), at any intermediate time t ,
given by

ρ̂(t) = e−iĤS (t>0)t/h̄ρ̂eq(t = 0) eiĤS (t>0)t/h̄, (5)

which can be used to compute time variation of different
physical quantities. From ρ̂(t), one can obtain any reduced
TES, ρ̂
(t), corresponding to a subsystem 
 of the system
by tracing out the rest of the parts, denoted by 
, so that
ρ̂
(t) = Tr
[ρ̂(t)]. Using ρ̂
(t), dynamics of relevant physical
quantities corresponding to the subsystem 
 can be deter-
mined. Throughout this paper, we consider a nearest-neighbor
(NN) even-odd spin pair as the subsystem 
, and the rest of
the spins in the spin chain as 
. Dimensional analysis suggests
that for the Hamiltonian ĤS , time t in Eq. (5) is in the unit of
h̄/J , and βS is in the unit of 1/J . We therefore redefine the
dimensionless quantities βS and t as βS → JβS and t → tJ/h̄,
respectively, and use them throughout the paper.

The ATXY model has a rich phase diagram, consisting of
antiferromagnetic (AFM) and two paramagnetic (PM) (PM-I
and PM-II) phases [30], as depicted in Fig. 1(a) using λk =
hk/J , k = 1,2 as the system parameters in the range λk ∈
[−3,3] [18,24,25]. In the thermodynamic limit, the boundaries
between different phases in the ATXY model are given by

λ2
1 = λ2

2 + 1 (PM-I ↔ AFM), (6)

and
λ2

2 = λ2
1 + γ 2 (PM-II ↔ AFM), (7)

which are also depicted in Fig. 1(a). Note that the phase
diagram is considered in a static picture at t = 0, where the
system has not started evolving in time. With h2(t) = 0, Eq. (1)
reduces to the UXY model, and the PM-II phase is absent in
this model.

Apart from the phase boundaries, the variation of bipartite
as well as multipartite entanglement suggests the existence
of doubly degenerate fully separable ground states, called the
factorized ground states, in the AFM phase for specific values
of λ1,2 and γ . For the ATXY model, irrespective of the system
size, the factorized ground states correspond to a factorization
surface (FS), given by [18]

λ2
1 = λ2

2 + (1 − γ 2). (8)

In Fig. 1(a), a cross section of the FS is exhibited on the
(λ1,λ2) plane by the FLs denoted by continuous lines, in the
AFM phase for γ = 0.8, while in Fig. 1(b), different FLs
corresponding to different values of λ2 are depicted on the
(λ1,γ ) plane. Besides indicating the phase boundaries, the NN
entanglement can also efficiently indicate the FL on the (λ1,λ2)
plane [18]. We will show that entanglement emerges over the
FS with increasing temperature, and under time evolution in
the succeeding section.

III. THERMAL EMERGENCE OF ENTANGLEMENT
FROM THE FACTORIZATION SURFACE

In this section, we study the static behavior of entangle-
ment in the CES over the FS [Eq. (8)] in the ATXY model.
Assuming the system to be a closed one, there are two extreme
situations—(i) the zero-temperature state (i.e., at βS = ∞),
which is fully separable on the FS, and (ii) the state at infinite
temperature (βS = 0), which is maximally mixed, and hence
with vanishing entanglement, irrespective of the values of
the system parameters. For very low (βS ≈ ∞) or very high
(βS ≈ 0) temperature, entanglement in the CES may still be
vanishingly small due to the continuity of entanglement with
the system temperature βS . However, finding the exact region
where states possess a finite amount of entanglement with
increasing temperature requires careful and rigorous analysis,
which will be presented here.

Apart from these two extreme cases, thermal mixing of
the entangled eigenstates of higher energies with the fully
separable zero-temperature state of the Hamiltonian takes
place at a moderate value of βS . We demonstrate here that
such mixing may lead to generation of entanglement over
the FS at finite system temperature. In order to do so, we
note that the density matrix corresponding to the NN spin
pair in CES in the case of the ATXY model can be obtained
analytically in terms of single-site magnetizations, mα

e(o) =
Tr(σ̂ α

e(o)ρ̂eq(t)), α = x,y,z, and two-spin correlation functions,

T
αβ
eo = Tr(σ̂ α

e ⊗ σ̂
β
o ρ̂eq(t)), α,β = x,y,z. Here, the subscripts

“e” and “o” represent the even and odd sites, respectively.
However, it can be shown that the single-site magnetizations,
mx

e(o) and m
y

e(o) both vanish, and the two-spin correlation

functions, T
αβ
eo = 0 for α �= β in the case of CES. Therefore,

the two-spin density matrix corresponding to a NN spin pair
“eo” corresponding to the CES is given by [18]

ρ̂eo
eq = 1

4

[
Ie ⊗ Io + mz

eσ̂
z
e ⊗ Io + mz

oIe ⊗ σ̂ z
o

+
∑

α=x,y,z

T αα
eo σ̂ α

e ⊗ σ̂ α
o

]
, (9)
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FIG. 2. Emergence of entanglement in thermal state corresponding to Hamiltonian parameters on the factorization surface. (a) Variation of
LN as a function of βS for different values of γ , with λ2 = 1 and λ1 being fixed by the condition of the factorization line given in Eq. (8). The
variation shows two successive revivals of entanglement, separated by a complete collapse, on the βS axes. The second revival of entanglement
at βS = β

R2
S is separated from the complete collapse of LN at βS = β

C1
S by a finite difference, which increases with the values of γ in the range

γ � 0.45. For γ = 0.35, β
R1,2
S and β

C1,2
S are marked with vertical lines. Moreover, for γ = 0.25, we find L(2)

m > L(1)
m . (b) Variation of L as a

function of βS and γ , for λ2 = 1, with λ1 being fixed by Eq. (8). Different shades in the figure represent different values of LN. (c) Map of
the L = 0 region (shaded region) on the (λ1,βS) plane, with γ = 0.6, and λ2 = 1.0. (Inset) Variation of LN as a function of λ1 for specimen
values of βS . Note that for βS = 100, i.e., for sufficiently low temperature, the zero-entanglement region on the λ1 axes is effectively a point,
corresponding to the factorization point for fixed values of γ and λ2, satisfying Eq. (8). All quantities plotted are dimensionless.

where Ie(o) is the identity matrix in the Hilbert space of the
qubit “e” (“o”). At a specific t , determining the values of mz

e,o

and T αα
eo , α = x,y,z at a finite system temperature βS , ρ̂eo

eq can
be computed.

We now choose logarithmic negativity (LN) [33,34] as the
measure of bipartite entanglement present in an even-odd pair
of NN spins. For a bipartite stateρAB shared between the parties
A and B is defined as L(ρAB) = log2(2N + 1), where the
negativity N is the sum of the absolute values of the negative
eigenvalues of the partially transposed state, ρ

TA

AB (or ρ
TB

AB), of
ρAB with partial transposition being taken with respect to A (or
B). We use ρ̂eo

eq at t = 0 to compute the LN in a NN even-odd
spin pair as a function of the system temperature as well as the
system parameters. In Fig. 2, the generation of entanglement
over the factorization points is demonstrated by studying the
pattern of LN with respect to βS (0 � βS � 250) for different
values of λ2 and γ , where λ1 is fixed by Eq. (8). The choice of
the range of βS is made from the observation that entanglement
of the CES with βS = 250 faithfully mimics that of the zero-
temperature state. Furthermore, we observe that Fig. 2 reveals
some interesting physics related to the theory of entanglement
with the variation of the anisotropy parameter γ , apart from
establishing the primary goal of generating entanglement over
the factorization points. Careful examination of Figs. 2(a) and
2(b) leads to the following observations:

(1) We first consider small values of γ , i.e., when 0 < γ �
0.45.

(a) Starting from a state having vanishing entanglement at
βS � 250, LN revives at βR1

S and reaches a local maximum,
denoted by L(1)

m . It then decreases and finally collapses with
the increase of temperature at βS = β

C1
S . Interestingly, LN

again revives at a higher temperature (βS = β
R2
S < β

R1
S ),

and reaches another local maximum value L(2)
m . Finally

LN collapses at β
C2
S for high values of the temperature

as expected. Apart from reestablishing nonmonotonicity of
entanglement with variation of system temperature, it shows
a double-humped nature of entanglement with the variation

of βS , which is rare. Note here that it is independent of the
values of λ1 and λ2, satisfying Eq. (8). An example of such
behavior of LN is depicted in Fig. 2(a) for λ2 = 1.
(b) Moreover, we find that for certain values of (λ2,γ ),
L(2)

m > L(1)
m [see Fig. 2(a)] even when βS corresponding to

L(2)
m is lower compared to the case of L(1)

m .
(2) For higher values of γ , with the increase of the value

of γ , the difference between β
R2
S and β

C2
S decreases, and even-

tually the double-humped feature of the variation of LN with
βS changes into one with a single maximum, as illustrated in
Fig. 2(b). Further, we observe by using numerical simulations
of the Heisenberg, XXZ and XYZ models that double revivals
of entanglement with temperature do not occur although single
revival of the same can be obtained (see, e.g., [19]).

Up to now, we have discussed how creation of NN en-
tanglement is possible by varying temperature in the CES.
Next, we study how the zero-entanglement region spreads
over the phase plane of the ATXY model with the increase
in temperature. In order to investigate this, we consider the
L = 0 region on the (λ1,βS) plane with a fixed value of γ ,
where the value of λ2 can be fixed, for example, at λ2 = 1.
For a high value of βS , the L = 0 region on the (λ1,βS) plane
corresponds to a specific point on the FS, which is a function of
(λ1,λ2), and γ . However, with decreasing βS , the L = 0 point
transforms into a river on the (λ1,βS) plane, each point in which
corresponds to a thermal state of vanishing entanglement [see
Fig. 2(c)]. The river widens and flows deeper into the AFM
region with decreasing βS before meeting a sea of points on
the (λ1,βS) plane corresponding to L = 0 at βS → 0. This
analysis indicates that the zero-entanglement region always
remains in the AFM region on the (λ1,λ2) plane and shifts
deep inside the AFM region with the increase of temperature,
making entanglement generation possible over the FL and its
neighborhoods. The inset in Fig. 2(c) shows the magnified view
of the variation of LN with λ1 for different values of βS , when
LN approaches to zero. It is evident from the figure that with
decreasing βS , the zero-entanglement region on the λ1 axes
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widens, as also pointed out in the above discussion. Such a
spreading of the vanishing entanglement region in the AFM
phase can also be illustrated by other values of γ and (λ1,λ2).

IV. DYNAMICS OF EMERGENT ENTANGLEMENT

We now discuss the dynamical behavior of entanglement,
under closed as well as open system dynamics, where in the
latter case, the initial state of the system is prepared to be a
separable one, obtained by choosing parameters from the FS
with a very low system temperature.

A. Closed evolution

Similar to the CES, the density matrix corresponding to an
even-odd NN spin pair of the time-evolved state of the ATXY
model with arbitrary N , in the case of closed system evolution,
can be obtained analytically using the single-site magnetiza-
tions and two-site spin correlation functions. However, unlike
the CES, T

xy
eo and T

yx
eo do not vanish in the present case, and

the density matrix corresponding to the NN even-odd spin pair
is given by [18]

ρ̂eo(t) = 1

4

[
Ie ⊗ Io + mz

eσ̂
z
e ⊗ Io + mz

oIe ⊗ σ̂ z
o

+
∑

α=x,y,z

T αα
eo σ̂ α

e ⊗ σ̂ α
o + T xy

eo σ̂ x
e ⊗ σ̂ y

o

+T yx
eo σ̂ y

e ⊗ σ̂ x
o

]
, (10)

where mz
e(o) = Tr(σ̂ z

e(o)ρ̂(t)), T
αβ
eo = Tr(σ̂ α

e ⊗ σ̂
β
o ρ̂(t)), α,β =

x,y,z can be computed analytically using the fermionic op-
erators [18]. In our calculations, the initial state is chosen to
be the CES with high βS and with other parameters satisfying
Eq. (8), having vanishing entanglement.

With initial states that are not factorized, it was shown
that NN entanglement under time-dependent magnetic field
as given in Eq. (2) oscillates and saturates to a positive value
[18]. However, this is not the case if the dynamics starts from
the separable state. Specifically, for t > 0, in the NN spin pair,
entanglement is created for high values of γ , irrespective of λ1.
It then oscillates between zero and nonzero values during the
initial phase of the dynamics. However, the oscillation quickly
dies out and the LN vanishes for relatively high values of λ1,
while for lower values of λ1, the oscillation sustains longer,
and the value of LN even saturates to a nonzero value at large
t . Such an analysis on (λ1,λ2,γ ) space reveals that survival
of LN for a long time, can only be obtained when the model
is close to the UXY model, i.e., λ2 = 0, λ1 �= 0, γ > 0. It is
also visible from the insets of Figs. 3(a) and 3(b), where the
variations of LN are plotted as a function of t only, for different
values of λ1 and a fixed value of γ . Also, for higher values of
γ , initial oscillation of entanglement for higher values of λ1

sustains longer, as depicted in Figs. 3(a) and 3(b).
We now investigate how the landscape of thermally emer-

gent entanglement on the (βS,γ ) plane evolves with time
under closed evolution. In order to do so, in Fig. 4, we map
the regions of L �= 0 (white region) on the (βS,γ )- plane at

FIG. 3. Propagation of thermal entanglement after starting off
from the factorization line under closed unitary evolution. The
variation of LN as a function of t and λ1 with (a) γ = 0.6, and (b)
γ = 0.8, where λ2 is fixed by Eq. (8). (Insets) Variation of LN as a
function of t for different values of λ1. The axes in all the figures are
dimensionless.

different instances of time, where the values of λ2 are fixed,
and the values of λ1 are determined from Eq. (8). The double-
humped entanglement pattern for γ � 0.45, as discussed in
Sec. III, sustains only during the short-time dynamics. With
increasing t , this feature disappears rather quickly (during
t � 2), while regions ofL �= 0 may emerge on the (βS,γ ) plane
(for example, t = 2,10) at specific time instances. Moreover,
Fig. 4 reveals a clear distinction between the UXY and ATXY
model provided the initial state is chosen from the factorization
surface. Specifically, we observe that for sufficiently high t

(such as t = 10,40), there exists substantial regions withL �= 0
on the (βS,γ ) plane for the UXY model, while in case of the
ATXY model, such L �= 0 region almost does not exist, i.e., L
vanishes almost everywhere, except small regions at very high
(�0.95), or very low (�0.02) values of γ and low value of the
initial system temperature βS .

We point out here that all the results discussed above
correspond to the system described by the Hamiltonian ĤS in
the thermodynamic limit. However, in the succeeding section,
when we consider the system to be exposed to an environment,
we can only address this question for finite system size. Before
proceeding towards this, it is important to consider how the fea-
tures of the closed dynamics changes, when the system consists
of a finite number, N , of spins. In the finite-sized system, FS
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FIG. 4. Frozen-time snapshots of theL �= 0 regions on the (βS,γ )
plane. The shaded regions in the figures represent the regions on the
(βS,γ ) plane where L = 0 while the white regions represent L �= 0.
The left column of figures correspond to the UXY model (λ2 = 0),
while the right column is for the ATXY model (λ2 = 1). The snapshots
are taken at t = 0,2,10 and 40. The value of λ1 is fixed by Eq. (8)
for all the points on the (βS,γ ) plane. All quantities plotted are
dimensionless.

remains unchanged, while the phase boundaries change only
negligibly, so that the Eqs. (6) and (7) can be considered as the
effective phase boundaries in the finite-size scenario. The dou-
ble revival of entanglement with varyingβS over the FL at t = 0
is absent for small system sizes, and there is a single L �= 0
region on the (βS,γ ) plane. However, for N � 10, a second re-
gion of nonzero LN at lower values of βS , and consequently the
double revival appears. The region ofL �= 0 at low values of βS

starts growing with the increase of the system size. An example
of double revival in the case of N = 10 is depicted in Fig. 5.
However, we observe that at large time (t � 10), the regions of
nonvanishing entanglement on the (βS,γ ) plane, and the oscil-
latory behavior of LN on the (t,λ1) plane for different values
of γ qualitatively match with those in the case of N → ∞.

B. Open system dynamics

We now focus on the dynamics of the quantum spin model,
described by the Hamiltonian ĤS , in contact with a thermal

FIG. 5. Snapshots of the L �= 0 regions on the (βS,γ ) plane at
t = 0 for a finite-size system, specifically for N = 10. The shaded
regions in the figures represent the regions on the (βS,γ ) plane where
L = 0. The left figure corresponds to the UXY model (λ2 = 0), while
the right one is for the ATXY model (λ2 = 1). The value of λ1 is fixed
by Eq. (8) on the (βS,γ ) plane. The horizontal lines in the figures
represent the model with γ = 0.5, where a double revival of LN
takes place with varying βS [compare with Fig. 2(a)], mimicking the
behavior of entanglement of the model in the thermodynamic limit.
All quantities plotted are dimensionless.

bath acting as an environment to the system. As the bath, we
consider a collection of identical and decoupled spins [28,29],
each at an inverse temperature βE = 1/(kBTE) and described
by the Hamiltonian ĤE = Bσ̂ z

E , with B being the energy of one
qubit. The interaction of the reservoir with the system is such
that during a very small time interval δt , only one spin from the
collection interacts with a “chosen” spin in the system, labeled
as the “door,” via the interaction Hamiltonian given by

Ĥint = k1/2δt−1/2
(
σ̂ x

d σ̂ x
E + σ̂

y

d σ̂
y

E

)
, (11)

where k has the dimension of (energy2× time), and the
subscript “d” indicates the door spin. In each such small time
interval of duration δt , one spin from the collection interacts
with the system via one “door” spin, thereby giving rise to a
repetitive interaction between the bath and the system [28,29].
In a more general “multidoor” scenario, a number of inde-
pendent environments may interact with a number of chosen
spins in the system. In such a case, the interaction Hamiltonian
is of the form Ĥint = k1/2δt−1/2 ∑Nd

l=1(σ̂ x
dl
σ̂ x

E + σ̂
y

dl
σ̂

y

E), where
Nd is the number of doors. The quantum master equation that
dictates the dynamics of the system for a single door is given
by

˙̂ρS = − i

h̄
[ĤS,ρ̂S] + D(ρ̂S), (12)

where

D(ρ̂S) = 2k

h̄2ZE

Nd∑
l=1

1∑
i=0

e(−1)iβEB
[
2η̂i+1

dl
ρ̂S η̂

i
dl

−{η̂i
dl
η̂i+1

dl
,ρ̂S}

]
,

(13)

with ZE = Tr[exp −βEĤE], and η̂α
dl

= σ̂ x
dl

+ (−1)ασ̂
y

dl

[29,35]. Another dimensional analysis suggests that for
the Hamiltonian ĤS and with D(.) given in Eq. (13), time
t in Eq. (12) is in the unit of h̄/J , and k is in the unit of
h̄J . We therefore redefine the dimensionless quantities k and
t as k → k/h̄J and t → tJ/h̄, respectively, and use them
throughout the paper. For the purpose of our calculation,
we set the dimensionless quantity k = 1. Note here that the
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i = 0 terms in Eq. (13) represent the dissipation process with
rate Z−1

E exp(βEB), while the terms with i = 1 are for the
absorption process with rate Z−1

E exp(−βEB). In the case
of high values of βEB(βEB � 5), the rate of the absorption
process becomes negligible, and the dynamical term in
Eq. (13) represents that of an amplitude-damping channel
under Markovian approximation [36]. Unless otherwise stated,
we keep βEB = 10 for all our calculations throughout this
paper, and hence neglected the i = 1 term.

We determine ρ̂S as a function of t by numerically solving
Eq. (12) for specific values of N , and then trace out all the
spins except a NN even-odd pair to obtain the reduced state
corresponding to the chosen pair. This reduced state can, in
turn, be used to compute the NN LN as a function of t .
We assume that the system is initially prepared in a thermal
equilibrium state, ρ̂eq(t = 0), with a heat bath at a very low
temperature at t = 0, at which point the repetitive quantum
interaction is turned on. Evidently, the initial state, and thereby
the dynamics depends on the choice of the parameters of HS at
t = 0, given by {γ,λ1,λ2,βS}. Choice of the values of system
parameters from different phases of the model gives rise to a
rich variety of dynamics.

We demonstrate the results considering the single-door
scenario (Nd = 1) and a spin chain of size N under periodic
boundary condition. Without loss of generality, let us label the
spins of the system as {1,2, . . . ,N}, where we assume that
the first spin interacts with the bath via the door. For ease of
discussion, let us divide the set of spins in the system into two
mutually disjoint sets. The first set S1 consists of all the NN
spin pairs each of which contains at least one door spin, while
the second set S2 is constituted of all the NN spin pairs none of
which contains a door spin. Clearly,S1 consists of two NN spin
pairs, i.e., S1 ≡ {(1,2),(N,1)}, while S2 is constituted of the
rest of the NN spin pairs, S2 ≡ {(i,i + 1); 2 � i � N − 1}.
We begin our discussion with the latter set, and take the NN spin
pair, say, (2,3) as an example in the case of a spin chain with
N = 10. In the same spirit as in the case of the closed dynamics,
we choose the values of the system parameters according to
the FS. The environment temperature, βE(=10), is moderately
high compared to the value of βS , set at βS = 80, which can
faithfully mimic the low-temperature (βS → ∞) properties of
the model at N = 10. Interestingly, for a fixed value of γ , LN
is found to be generated over a very small region on the (t,λ1)
plane (0.75 � λ1 � 0.9; 0 � t � 10), while the values of λ2

are fixed by Eq. (8). Also, the value of the NN LN generated
over the spin pair (2,3) is L � 8 × 10−2. This suggests that
the amount and duration of entanglement generation is very
small for the spin pairs belonging to S2 if the system parameter
values corresponding to the initial state of the open system
dynamics is chosen according to Eq. (8). Note here that the FL
is encompassed completely in the AFM phase of the model.

The situation becomes drastically different in the case of
S1. Figures 6(a) and 6(b) depict the variation of the LN for the
spin pair (1,2), which is the same as (N,1) due to periodicity,
as a function of time and λ1 with (a) γ = 0.6 and (b) γ = 0.8.
The values of λ2 are fixed by the factorization condition, and
the values of βS and βE are the same as those used in the former
case. It is clear from the figures that considerable entanglement
is generated during the dynamics, with the maximum value ofL
increasing with increasing γ . LN corresponding to the spin pair

FIG. 6. Open system dynamics of entanglement under repetitive
quantum interaction after starting off from the factorization line. The
variation of LN as a function of t and λ1 with (a) γ = 0.6, and
(b) γ = 0.8. The variations of LN as a function of t for different values
of λ1 are given in (c) for γ = 0.6 and (d) for γ = 0.8. Entanglement
generation under closed vs open dynamics can be made by comparing
insets of Figs. 3(a) and 3(b) and Figs. 6(c) and 6(d) in above figures.
Although in a closed unitary evolution, entanglement can be preserved
for a long time while it is not possible in an open dynamics considered
in this paper. All quantities plotted are dimensionless.

(1,2) sustains for a longer time compared to the former case of
S2. The duration in which L �= 0 decreases with increasing γ ,
as can be seen from the figures, indicating a trade-off between
the generation of higher values of entanglement and the length
of the time interval in which L �= 0. A clearer picture can be
obtained from Figs. 6(c) and 6(d), where the variation of LN as
a function of time, corresponding to two specific values of λ1

for each value of γ is shown. Also, note that with a fixed value
of γ , entanglement oscillates at first, and then decays to zero
irrespective of the values of λ1. This behavior is in contrast with
the same in the case of closed dynamics, where entanglement
is found to saturate at a nonzero value for lower values of λ1.
Moreover, we observe that with the increase of N , the decay
rate of entanglement becomes slower although the qualitative
behavior of entanglement with time remains unaltered.

We point out here that by using CES with nonzero en-
tanglement corresponding to the system parameter values not
belonging to the FL, and chosen from the PM-I, PM-II, and
AFM phases as initial states, NN LN can remain invariant with
time for a finite duration—a phenomenon known as the freezing
of entanglement [35]. Interestingly, freezing of entanglement
is observed only in the NN spin pairs belonging to S2, while
the dynamics of NN LN corresponding to the spin pairs
belonging to S1 is highly oscillatory. Note here that similar
to the freezing of entanglement, generation of entanglement
during open system dynamics, where the system parameters are
chosen from the FS, clearly distinguishes between the two sets
of spin pairs, S1 and S2. However, in contrast to the freezing of
entanglement, the spin pairs belonging to S1 provides a more
beneficial situation in terms of emergence of NN entanglement
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over initially unentangled states by the action of environmental
noise, as discussed above.

All of the results regarding open dynamics of the system
discussed so far correspond to a high value of βS (=80),
and a relatively low value of βEB(=10). We conclude the
discussion on open system dynamics by pointing out that for
fixed βEB = 10, the qualitative features of all the above results
remain unchanged even with a varying βS except when the
system temperature is high (βS � 10). In that case, almost no
entanglement is generated throughout the dynamics, irrespec-
tive of the sets S1 and S2, when the initial state is factorized.
Also, for fixed βS = 80, one can explore lower values of βEB,
where the absorption terms in the quantum master equation
become nonvanishing. However, the qualitative features of
the dynamics of NN LN corresponding to the spin pairs
belonging to the sets S1 and S2 remain unchanged. Moreover,
similar observations are found when the system-environment
interaction is considered in the multidoor scenario.

We conclude by mentioning that the noise model used
in the above discussions is a local one of dissipative type.
However, one can also consider a nondissipative noise, such
as the local dephasing, instead of a dissipative one using
the same formalism. We find that generation of entanglement
during the open system dynamics of the model, with the initial
state corresponding to the system parameters satisfying FS, is
possible for nondissipative noises like the dephasing noise also.

V. CONCLUSION

In certain quantum many-body systems, system parameters,
chosen in a specific way, lead to a zero-temperature state that is
the product across any bipartition, known as a factorized state.
In the entanglement resource theory, where entanglement is
used as a resource for different quantum information process-
ing schemes, such states are useless. At the same time, spin
models have turned out to be appropriate physical systems for
realizing quantum information protocols which can be realized
in the laboratory. One possibility of avoiding such factorized
states is to create the system far from the factorized region.
If such control over the system preparation is missing, we
can ask whether entanglement can be generated by tuning the
system temperature, or by considering the closed and open
dynamics of the system, in quantum states that correspond to
the factorization points. It is important to note at this point
that reaching absolute zero temperature is hard compared to
the preparation of a system with moderate temperature. Also,
evolution of a system with time, under the closed setup, or
in contact with an environment, can be a natural choice for
quantum information processing.

For such investigation, we choose a one-dimensional
anisotropic quantum XY model in the presence of a uniform
and an alternating transverse magnetic field. For fixed values
of the anisotropy parameter, the factorization points of this
model are known to form two lines [18] on the plane of relative
strengths of the uniform and transverse magnetic fields and the
zero-temperature states are unentangled over these lines. We
show that by increasing the temperature of the system in the
canonical equilibrium state, double revival of entanglement
happens when the value of the anisotropy parameter is chosen
in an appropriate range. Although the nonmonotonic behavior
of entanglement with the equilibrium temperature in quantum
spin models, and the single revival of thermal entanglement
with increasing temperature were known [18,19], the existence
of a double revival of thermal entanglement is counterintuitive,
and has not been reported earlier. Interestingly, such double-
humped behavior of entanglement occurs when one starts from
the thermal state corresponding to the factorization line.

We also show that under closed unitary evolution of the
system driven out of equilibrium by a sudden change in the
system parameters, namely, the magnetic fields, considerable
entanglement is generated during the dynamics. The initial
state is separable, prepared by choosing system parameters
from the FS. The results indicate that a low value of uniform
magnetic field in the ATXY model is favorable for sustaining
generated entanglement in the long time limit, while the
entanglement oscillates and dies out rapidly for high value of
the uniform magnetic field. On the other hand, when the
system interacts with an external thermal bath via a repetitive
quantum interaction, entanglement of certain nearest-neighbor
spin pairs persists for all values of the uniform field when the
value of the anisotropy parameter is low, but dies out quickly
when the anisotropy is increased. The open system dynamics
also distinguishes between the spin pairs that have a direct
connection with the external bath and the spin pairs that have
not. Counterintuitively, entanglement in the spin pair which is
in contact with a thermal bath has high value and long duration
compared to the spin pairs which do not interact with the bath.
Moreover, we find that duration of nonvanishing entanglement
and the amount of entanglement in this scenario has comple-
mentary relation. Such generation of entanglement is also pos-
sible for other environments like the ones resulting in local de-
phasing noise, etc. Apart from the entanglement creation, such
study reveals the variation of entanglement due to the interplay
between system parameters, temperatures, and environments.
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that the dimer order parameter [32] in this phase vanishes and it
is indeed paramagnetic in nature. However, such a finding does
not affect the results obtained in this paper as well as the other
results in [18,24,25].
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