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Quantum key distribution (QKD) offers a way for establishing information-theoretical secure communications.
An important part of QKD technology is a high-quality random number generator for the quantum-state
preparation and for post-processing procedures. In this work, we consider a class of prepare-and-measure QKD
protocols, utilizing additional pseudorandomness in the preparation of quantum states. We study one of such
protocols and analyze its security against the intercept-resend attack. We demonstrate that, for single-photon
sources, the considered protocol gives better secret key rates than the BB84 and the asymmetric BB84 protocols.
However, the protocol strongly requires single-photon sources.

DOI: 10.1103/PhysRevA.97.012311

I. INTRODUCTION

Quantum algorithms exploit the laws of quantum mechanics
to solve problems exponentially faster than their best classical
counterparts [1]. Shor’s quantum algorithm for fast number
factoring attracted a great attention since this problem is in
the heart of public-key cryptosystems [2]. In view of Shor’s
algorithm, the only way to ensure the absolute long-term
security is to use information-theoretical secure primitives,
such as the one-time pad scheme [3–5]. However, the need
for establishing secret keys between communicating parties
invites the challenge of how to securely distribute these
keys [5].

Fortunately, together with the tool for breaking public-
key cryptographic primitives, quantum physics allows one to
establish secure communications [6]. By encoding information
in quantum states of photons, transmitting them through fiber
channels, and communication via authenticated classical chan-
nel, quantum-key-distribution (QKD) systems offer a practical
tool for private key distribution. Unlike classical cryptography,
QKD promises information-theoretical security based on the
quantum physics laws. During the last decades, great progress
in theory, experimental study, and technology of QKD has
been performed. However, QKD technology faces a number
of challenges such as distance, key generation rate, practical
security, and many others [7].

The idea behind the seminal proposal for QKD protocol,
known as BB84 protocol [8], is inspired by the conjugate
coding method [9]. The BB84 protocol employs the idea
of usage of two orthogonal polarizations states of photons.
The BB84 protocol has been widely studied, and its security
has been proven [6]. Development of novel QKD protocols,
offering ways to push the performance of QKD technology, is
on the forefront of quantum information technologies. During
the last decades, several extensions of the BB84 protocol
and alternative QKD protocols, such as E91 (proposed inde-
pendently of BB84) [10], B92 [11], six-state BB84 protocol
[12], asymmetric BB84 (we will abbreviate it as aBB84) [13],

SARG04 [14], differential-phase shift [15–17], coherent one
way [18], and also setups with continuous variables [19], have
been actively discussed.

The point we want to stress here is the fact that for the
seminal BB84 protocol and most of its variations, something
should provide the ignorance of an eavesdropper (Eve) about
the bases in which quantum states are encoded [8]. The BB84
protocol provides this condition by the random independent
choice of the bases by legitimate parties (Alice and Bob). To
this end, Alice and Bob use true random number generators
(TRNG). However, the cost is the sifting procedure: Alice
and Bob must discard the positions with incompatible basis
choices. This leads to a loss of approximately a half of the raw
key. In order to reduce the losses in the sifting procedure, the
aBB84 protocol has been proposed [13]. In this protocol, Alice
and Bob use one basis with a high probability and a conjugate
basis with a small probability. The first basis is used mainly to
establish a secret key, while the second one is used to verify
the absence of eavesdropping. We will refer to these bases
as “the signal basis” and “the test basis,” respectively. In the
asymptotic case of an infinitely large number of transmitted
quantum states, the probability of the use of the test basis
can be made arbitrarily small. Hence, the basis choices of
Alice and Bob almost always coincide and there is almost
no sifting. Nevertheless, for a finite number of transmitted
states, this probability cannot be made arbitrarily small since a
reliable statistics for the test basis should be collected for tight
estimation of the amount of eavesdropping [13,20].

In this work, we consider a class of QKD protocols,
which utilize the pseudorandomness in the preparation of
quantum states. Namely, Alice and Bob can use not random but
pseudorandom sequence of bases generated from a common
short secret key. On the one hand, their bases always coincide,
so, the suggested scheme allows one to avoid the sifting
procedure. On the other hand, for Eve, who does not know
this key, the sequence is similar to a random one and she
cannot predict it. On the basis of this idea, we study a protocol
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with pseudorandom choice of bases (abbreviated as PRB) and
analyze its security against the intercept-resend attack. The
suggested protocol is a formalization of a protocol (the floating
basis protocol) described by one of the authors [21–23]. In
this work, we assume that the sequence of logical bits is truly
random, but the sequence of bases is pseudorandom. We then
demonstrate that the PRB protocol gives higher secret key
rates than the BB84 protocol and approximately the same and
even slightly better rates as the asymmetric BB84 protocol.
However, the PRB strongly requires single-photon sources.

A general motivation for the development of new QKD
protocols is exploration of different ways of how we can exploit
the properties of quantum information to provide information
security. The idea of the protocol proposed here is a method
of combining of classical pseudorandomness with quantum
encoding of information. We should note that the known Y00
protocol [24–26] also uses pseudorandom quantum states.
It provides a randomized stream cipher with information-
theoretic security by a randomization based on quantum noise
and additional tools. Another important example of utilizing
pseudorandomness is a recently suggested mechanism for
quantum data locking [27,28].

We can treat QKD protocols utilizing pseudorandomness in
such a way. Since generators of true random numbers are not
sufficiently fast, pseudorandom number generators (PRNGs)
are used in practical setups instead [29]. It is interesting to
study how the use of pseudorandom numbers instead of true
random numbers affects the security of QKD protocols (see
Ref. [30]) and, moreover, can it be even advantageous. Here,
we assume that the sequence of logical bits is truly random, but
the sequence of bases is pseudorandom. As it was explained
above, if we are able to prove the security of such scheme,
we can make it more advantageous due to avoiding the sifting
(with the cost of an additional secret key consumption for initial
secret random seed for the PRNG in future sessions).

The paper is organized as follows. The new QKD protocol,
which we will refer to as the PRB protocol, is described in
Sec. II. Its security against the intercept-resend attack is proved
in Sec. III. We summarize the main results of our work in
Sec. V. In Sec. IV, we analyze the photon-number splitting
(PNS) attack and show that, unlike the BB84 protocol and its
modifications, the PRB protocol strongly requires a single-
photon source of light.

II. QKD PROTOCOL WITH PSEUDORANDOM BASES

Let Alice and Bob have a common preshared key

k = (k1, . . . ,kl) ∈ {0,1}l , (1)

which is the seed for the pseudorandom number generator
(PRNG), l is the key size. We use the following notation:

|ϕ〉 = cos ϕ|0〉 + sin ϕ|1〉, (2)

where {|0〉,|1〉} is the standard basis. As usual in QKD, Alice
and Bob have a quantum channel and an authenticated public
classical channel: Eve freely read the communication over this
channel, but cannot interfere in it.

The considered class of QKD protocol based on pseudoran-
domness operates as follows.

FIG. 1. Base patterns on the Poincaré sphere. The BB84 protocol
(left) uses two maximally conjugated bases with the angle π/4
between each other. For each pulse, the bases are chosen by Alice and
Bob randomly and independently, so, the sifting procedure (discarding
of positions where Alice’s and Bob’s bases are different) is required.
In the suggested protocol (right), the standard basis {|0〉,|1〉} is rotated
by an arbitrary angle (from a finite set) in not a random pseudorandom
manner. Thus, the bases of Alice and Bob always coincide and there
is no sifting.

(i) Using the common preshared key k and the PRNG,
Alice and Bob generate a common pseudorandom sequence
in the following form:

ϕ1(k), . . . ,ϕN (k), ϕi(k) ∈
{

πj

2M

}M−1

j=0

, (3)

where M = 2m for some m � 1. Schematically, such pseudo-
random rotations of the standard basis {|0〉,|1〉} are shown in
Fig. 1. We assume that l is divisible by m and denote l/m = l′.
We assume that N = 2l′ .

(ii) Using a TRNG, Alice generates the random bits as
follows:

x1, . . . ,xN . (4)

(iii) Using sequence (3) and generated random bits (4),
Alice prepares the following sequence of states:

|ϕ1(k) + x1π/2〉, . . . ,|ϕN (k) + xNπ/2〉, (5)

and sends them to Bob over the quantum channel.
(iv) Bob measures them using the following bases:

{|ϕi(k)〉,|ϕi(k) + π/2〉}, i = 1, . . . ,n. (6)

(v) Bob then writes the results of these measurements in the
binary variables yi as follows: |ϕi(k)〉 corresponds to yi = 0
and |ϕi(k) + π/2〉 corresponds to yi = 1. In the case of ideal
channel and no eavesdropping, xi = yi for all i, hence, Alice
and Bob can use their binary strings x and y as a common secret
key. Due to noise in the channel and, probably, eavesdropping,
there are some errors in these strings, and Eve potentially has
some information about them. They are, thus, called the raw
keys.

(vi) The following steps of post-processing of raw keys
coincide with those of BB84, so, we only briefly mention
them: Alice and Bob perform the error correction (using error-
correcting codes or interactive error-correction protocols; for
the last issues concerning the adaptation of error-correcting
codes for QKD, see Ref. [31]) and calculate the number of
detected errors [32]. If the number of errors exceeds a certain
threshold, which make the secret key distribution impossible,
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Alice and Bob abort the protocol. Otherwise, they perform
privacy amplification to reduce the potential Eve’s information
to a negligible level. The resulting key is called the secret key
or the final key. It is the output of our QKD protocol.

The underlying idea of the protocol is as follows. If Eve does
not know the initial secret key k, and the pseudorandom angles
ϕi are similar to truly random, then she cannot guess all the
bases correctly and her eavesdropping will cause disturbance
in Alice’s and Bob’s raw keys. Of course, a rigorous analysis is
required since it takes into account that the sequence {ϕi(k)}Ni=1
is not truly random but pseudorandom.

Remark 1: We note that every quantum-key-distillation
protocol that makes use of preshared key can be transformed
into an equally efficient protocol which needs no preshared
key [34]. However, this fact is irrelevant for our case since we
use the preshared key not on the stage of secret key distillation
from raw keys, but on the previous stage of transfer of quantum
states.

Remark 2: If M = 2, then the protocol uses two BB84
bases. In this case, the protocol can be called “BB84 with
pseudorandom sequence of bases,” while the case M > 2
can be called the “multibasis protocol.” We will see that
the multibasis version gives higher secret key rates due to
additional uncertainty for Eve.

The possibility of the use of arbitrary number of bases is
a consequence of their correlated choice by Alice and Bob;
otherwise, this would lead to an increase of the number of
positions with inconsistent bases.

Remark 3: We may ask why do Alice and Bob need QKD
if they can use a pseudorandom sequence as a “running
key” for encryption, e.g., as a key in the one-time pad. This
construction is known in classical cryptography as stream
cipher [5]. However, the stream cipher cannot provide the
information-theoretic security. Moreover, it is well known
that the information-theoretic security is never possible in
classical cryptography whenever the entropy of the initial
secret key shared by Alice and Bob is smaller than the entropy
of the message to be encrypted. The use of QKD makes
the information-theoretic security possible. Using QKD, we
obtain a long key whose entropy is close to maximal. This
key can be used, e.g., for one-time pad encryption to provide
information-theoretic security.

Also, it is worthwhile to stress that despite of the use of a
PRNG, the resulting key is truly random since the bit values
in our QKD protocol are still generated by a TRNG, while a
PRNG is used only for bases choices.

Remark 4: Our protocol can be regarded as a generalization
of BB84 without public announcement of bases proposed in
Ref. [35]. In this protocol, Alice and Bob also share an initial
short secret key k = (k1, . . . ,kl) ∈ {0,1}l , which determines
first l choices of their bases. Then, Alice and Bob repeat this se-
quence of bases an arbitrary number of times. This corresponds
to our protocol with M = 2 and ϕi(k) = πk(i−1 mod l)+1/4. The
advantage of our protocol is that the use of a good PRNG
increases the security of the protocol. For example, we use a
PRNG (see the next subsection) which generates sequences
with the period of order 2l instead of l. Also, the security
analysis in Ref. [35] is valid only for the asymptotic case
l → ∞. For example, both protocols are certainly insecure
for l = 1 (Eve correctly guesses the initial key and, hence, all

the bases with the probability 1
2 ). Thus, the security of these

protocols depends on l, but an analysis of this dependence is
lacking in Ref. [35]. Here, we provide such analysis for the
simplest intercept-resend attack. This is the most complicated
part of our analysis given in Sec. III and Appendix C.

PRNG based on the Legendre symbol

Our choice for the PRNG is the Legendre symbol PRNG
since it provides an almost uniform distribution of patterns,
which will be exploited in the security proof. The PRNG is
defined as follows.

Let L be a prime number (public value) such that L ≡ 3
(mod 4), and k ∈ [0,L − 1] be a secret key. Let us then define

ai =
⎧⎨
⎩

1, if i is a quadratic residue modulo L

and i �≡ 0 (mod L);
0, otherwise

(7)

ai(k) = ak+i . (8)

Recall that x is called a quadratic residue modulo L if
there exists an integer y such that y2 ≡ x (mod L). If i �≡ 0
(mod L), the value 2ai − 1 is called the Legendre symbol of
i. We will refer to the sequence

a1,a2, . . . (9)

as the Legendre sequence. It is periodic with the period L.
For example, one period of the sequence {ai}∞i=1 for L = 7 is
1101000.

Pseudorandom properties of Legendre sequences are known
for a long time [36]. In particular, the distribution of patterns of
Legendre sequences is known to be close to uniform [36–40]
[for details, see property (A4) from Appendix A and, as
its direct consequence, property (C14) from Appendix C].
This will be important for estimation of the number of bases
correctly guessed by Eve.

Remark 5: It is worthwhile to stress that the usual sense
of cryptographic security for PRNG is neither a necessary
nor sufficient condition for us because we have a completely
different context than in classical cryptography. In classical
cryptography, PRNG can be secure only in the computational
sense. The usual notion of cryptographically secure PRNG
means that the eavesdropper has to do an unrealistic amount
of computation to break the PRNG.

Here, as is common for QKD, we assume that Eve has
unlimited computing power and consider the information-
theoretic security. Under such an assumption, Eve can break
any PRNG whenever she observes a pseudorandom sequence
with the length greater than the length l of the initial key. But,
fortunately, in our protocol Eve does not observe the pseudo-
random sequence itself. Moreover, we will see that on the stage
of quantum-state transmission she gets no knowledge on the
pseudorandom sequence at all. Thus, we have a completely
different context than in classical cryptography.

For this reason, we do not require our PRNG to be secure
in the usual (computational) sense. Property (C14) from
Appendix C with a suitable (not large) function W (s) is the only
property we need for the proof of the security of our protocol
against the intercept-resend attack. This property means that
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the so-called pattern distribution for the PRNG is close to
uniform.

Let us specify the use of this PRNG for our protocol. In the
two-basis version of the protocol (BB84 with pseudorandom
sequence of bases), the basis for each position i is specified by
a single bit ai(k). The length of the key l is the number of bits
required to specify k, i.e., 	log2 L
. In the following, 	x
 and
�x� denote the ceiling and the floor of x (the closest integer to
x from above and from below), respectively.

In the multibasis version of the protocol, every basis is
specified by m bits or m registers. Each register has its own
PRNG based on the Legendre symbol, so that

ϕi(k) = π

2

m∑
j=1

ai(k
(j ))2−j , (10)

where k(j ) is a subkey (of length l′ = 	log2 L
) for the j th
register and the sequence (a1(k(j )),a2(k(j )), . . .) is specified by
Eq. (8). The total key (k(1), . . . ,k(m)) has the length l = l′m.

III. INTERCEPT-RESEND ATTACK

The simplest attack on BB84-like protocols is the intercept-
resend attack. Here, we describe this attack for the considered
class of QKD protocols:

(i) Eve chooses some positions 1 � i1 < · · · < in � N to
intercept, where 0 < n � N . Denote γ = n/N the fraction
of positions she intercepts. Then, for each j = 1, . . . ,n, Eve
performs the next steps.

(ii) Eve chooses an angle βij , measures the ij th qubit in the
basis {

|βij 〉,
∣∣∣∣βij + π

2

〉}
, (11)

and writes the result in the variable zij (0 or 1, respectively).
(iii) Eve sends a new qubit in the state |βij + zij π/2〉 to

Bob.
The crucial point is that the results of Eve’s measurements

alone leak no information about the bases and, hence, about
the initial secret key (the seed for the PRNG) k. This follows
from the fact that the quantum state of a qubit for unknown x

is independent on ϕ:

1

2
|ϕ〉
∣∣∣∣ϕ + 1

2

〉∣∣∣∣ϕ + π

2

〉〈
ϕ + π

2

∣∣∣∣ = 1

2
I, (12)

where I is the identity operator.
Thus, on the stage of quantum-state transmission, Eve

chooses the angle βij with no information on the key and has
to guess the bases or the initial key. Since it is unlikely that
she correctly guesses all bases, we arrive at the keystone of the
security of QKD: eavesdropping causes disturbance. Rigorous
estimations of the number of bases that Eve can correctly guess
is the main part of security proof.

From the other side, we assume that, after the accomplish-
ment of all stages of the protocol and, moreover, after the trans-
mission of the encrypted message, Eve is able to determine the
initial key. Thus, a posteriori, she gets knowledge of the correct
bases. In Appendix B we show that Eve needs of order l bits
to intercept to guess the initial key if she knows the encrypted
message (“known plain-text attack”).

In our analysis, we assume that N and n are so large that we
can neglect the statistical fluctuations since our aim is to give
general analysis of the protocol, not the ultimate formulas for
the practical applications.

A. BB84 with pseudorandom sequence of bases

For a transparent analysis, we first consider the protocol
BB84 with pseudorandom bases. In this case, the basis choice
is specified by a single bitai . Let the upper bound on the number
of bases correctly guessed by Eve for a given γ be ncorrect(γ ).
Respectively, nincorrect(γ ) = n − ncorrect(γ ) is the lower bound
on the number of incorrect guesses. Recall that we assume that
Eve eventually gets knowledge of the initial key k, hence, for
each position, she knows whether she has correctly guessed
the basis in this position or not. Consequently, the quantum bit
error rate (QBER) (q) and the Eve’s mean information on a
raw key bit are as follows:

q(γ ) = 1

2

nincorrect(γ )

N
, (13)

IE(γ ) = ncorrect(γ )

N
. (14)

The legitimate parties have the measured (or estimated) value
of QBER. If we replace the left-hand side of Eq. (13) by this
value, we can find the inverse function as follows:

γ = γ (q). (15)

This is an estimation of the fraction of qubits intercepted by
Eve for a given QBER. Then, one has

IE(q) = ncorrect(γ (q))
N

. (16)

From the other side, Bob’s mean information on a bit of the
Alice’s raw key is

IB(q) = 1 − h(q). (17)

Here,

h(p) = −p log2 p − (1 − p) log2(1 − p) (18)

is the binary entropy function, 0 � h(p) � 1. However, to fully
exploit this information, Alice and Bob require error-correcting
scheme that achieves the theoretical (Shannon) limit, in which
h(q) bits of information about raw keys are revealed over the
public channel. Practically, f (q)h(q) bits are revealed, where
f (q) � 1 is the efficiency of the error-correction scheme. Thus,
the “effective” Bob’s mean information on a bit of the Alice’s
raw key is

IB(q) = 1 − f (q)h(q). (19)

Then, the secret key rate (per transmitted qubit, also called
secret fraction) has the following form [6,41]:

R(q) = IB(q) − IE(q) = 1 − f (q)h(q) − IE(q). (20)

Eve can try to guess the elements of the sequence {ai} as
it were a truly random sequence. In this case, she correctly
guesses approximately

ncorrect ≈ n

2
= γN

2
(21)
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of the bases. Thus,

q(γ ) = γ

4
, γ (q) = 4q, IE(q) = 2q, (22)

and the secret fraction is as follows:

R(q) = IB(q) − IE(q) = 1 − f (q)h(q) − 2q. (23)

But, Eve can exploit the fact that the sequence {ai} is not
random, but pseudorandom and contains some regularities.
The estimation of ncorrect(γ ) for this case is rather involved
and is given in Appendix C. Here, we give a summary of the
analysis and results of Appendix C.

The analysis of pseudorandom sequences is an important
part of classical cryptography. But, in classical cryptography
it is usually assumed that Eve has a limited computing power
and cannot use the brutal force attack. Here, we assume that
Eve has an unlimited computing power, which is common for
quantum cryptography. Suppose that Eve succeeded to guess a
subsetK1 ⊂ Kwhich contains the actual key k. In other words,
it is unlikely that she correctly guesses the key k for large l (the
probability is 1/|K| ∼ 2−l), but she can guess that k belongs to
a certain subset K1. The probability of such success is equal to
|K1|/|K|. Then, she can choose not arbitrary n = γN positions
to attack, but special positions. Namely, positions i such that
the bits ai(k′) coincide with each other for most k′ ∈ K1 are
preferable. Following this way of thinking, we arrive at the
optimization problem. If |K1| is less or comparable to l, we
are able to solve it explicitly. This is done in Theorem 1 and
adopted for practical situation in Corollary 1. In this case,
we can use explicit formula (C15). If |K1| is large, then we
can still use formula (C15), but it gives too pessimistic (for
Alice and Bob) estimate of ncorrect(γ ). A tighter bound can
be obtained if we numerically solve the linear programming
problem given in formula (C18) (Corollary 2). The linear
programming problems are known to have efficient algorithms
of solutions.

Of course, ncorrect(γ ) increases as |K1| decreases (Eve
adopted her attack to a tighter set of keys). However, the
probability that k ∈ K1 is |K1|/|K|, i.e., small whenever
|K1| is small. Thus, both estimates (C15) and (C18) are
dependent on the additional parameter ε = |K1|/|K|, i.e.,
ncorrect = ncorrect(γ,ε). The parameter ε can be called the failure
probability: the probability that Eve will succeed to guess a
more tight set containing the actual key, other words, that
she will be more lucky than we expect. The emergence of
such (in)security parameter is common for QKD security
proofs [20].

In short, we use Eq. (C15) (explicit formula) or Eq. (C18)
(linear programming problem which gives a tighter bound) to
estimate ncorrect(γ,ε) from above for given failure probability
ε. These estimations can be substituted to Eq. (13) to find the
function q(γ ) and then to Eq. (20) to obtain (numerically) the
secret fraction.

It turns out that Eve can guess more elements of pseudo-
random sequence than those of truly random sequence (see
the end of Appendix C). By this reason, the BB84 protocol
with pseudorandom sequence of bases gives higher secret key
rates than the usual BB84 protocol (because of the absence
of sifting), but lower secret key rates than the asymmetric
BB84 protocol. Thus, we do not consider the BB84 protocol

with pseudorandom sequence of bases as a real alternative to
aBB84 and switch to the multibasis case. In the multibasis
case, the larger number of bases that Eve can correctly guess
for the pseudorandom sequence is compensated by additional
uncertainty for Eve caused by the use of many (instead of
two) bases. In Sec. III C, we will compare the results of the
multibasis PRB protocol with BB84 and aBB84 and show that
the multibasis protocol can give slightly better results than the
aBB84 protocol.

B. Multibasis case

Here, we investigate the intercept-resend attack for the
multibasis version of the protocol. Denote the difference
between the Eve’s guess of the ith angle ϕE

i and the actual angle
ϕi(k) as �i and let (b(1)

i , . . . ,b
(m)
i ) be its binary expansion:

�i = ϕE
i − ϕi(k) = π

2

m∑
j=1

b
(j )
i 2−j . (24)

For each register j , the upper bound of the number of bits b
(j )
i

correctly guessed by Eve is ncorrect(γ ) given by either Eq. (C15)
or Eq. (C18) from Appendix C [i.e., now, ncorrect(γ ) denotes
the number of correctly guessed bits in a single register].
Denote T ⊂ {1, . . . ,N} the set of pulses intercepted by Eve:
|T | = n = γN . Let us pick a position from T at random. For
each register, consider the event that the corresponding bit is
correctly guessed. The probability of this event is (at most)
ncorrect(γ )/(γN ). Since the keys for different registers are
chosen independently, these events are independent. Therefore,
one has

Pr

[
�i = πt

2M

]
≡ pt (γ )

=
m−1∏
j=0

Pr
[
b

(j )
i = �2−j t� mod 2

]

=
(

ncorrect
(
γ, ε

m

)
γN

)#0(t)(
nincorrect

(
γ, ε

m

)
γN

)#1(t)

, (25)

where #0(t) and #1(t) are the numbers of 0’s and 1’s in the
binary expansion of t . Note the argument ε/m of the function
nincorrect: If the probability that Eve correctly guesses more
then a given number of bits in a single register is not greater than
ε/m, then the probability that Eve correctly guesses more than
a given number of bits in each of m registers is not greater
than ε.

Remark 6: For Eve, the correct guessing of the highest-
order bit b

(1)
i in the binary expansion (24) is of the most

importance. Thus, her optimal strategy is to chose positions
to intercept which maximize the number of correctly guessed
elements in the sequence for the first register (b(1)

1 ,b
(1)
2 , . . .).

The maximal number of correct guesses is bounded from above
as ncorrect(γ,ε). Since Eve adjusts attack to optimize the number
of correct guesses in the first register, she is not so good in the
number of correct guesses in further registers. But, in favor
of Eve, we bounded the number of correct guesses for other
registers from above also by the same quantity ncorrect(γ,ε).
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Now, let us derive formulas for QBER and Eve’s mean
information on a raw key bit. For simplicity, let us drop the
subscript i. Denote x ∈ {0,1} the bit value transmitted by Alice,
y,z ∈ {0,1} the results of Bob’s and Eve’s measurements. We
then have

p(z|x,�) = cos2

[
� + π

2
(x − z)

]
,

p(y|z,�) = cos2

[
� + π

2
(z − y)

]
, (26)

p(y �= x|�) = p(y �= x|z = x,�)p(z = x|�)

+p(y �= x|z �= x,�)p(z �= x|�)

= 1
2 sin2(2�) = 1

4 [1 − cos(4�)], (27)

p(y �= x) =
M−1∑
j=0

pj (γ )p

(
y �= x|� = πj

2M

)

= 1

4

M−1∑
j=0

pj (γ )

[
1 − cos

(
2πj

M

)]
, (28)

where p(y �= x) is the probability of error in Alice’s and Bob’s
bit for an intercepted position.

To obtain the QBER value, one has to multiply this quantity
on the fraction of intercepted positions:

q = γp(y �= x) = γ

4

M−1∑
j=0

pj (γ )

[
1 − cos

(
2πj

M

)]
. (29)

The Eve’s information on an intercepted raw key bit x is as
follows:

I
intercepted
E (γ ) = 1 −

M−1∑
j=0

pj (γ )h

[
cos2

(
πj

2M

)]
. (30)

The mean Eve’s information on a raw key bit then has the
following form:

IE(γ ) = γ I
intercepted
E (γ ). (31)

From Eq. (29) we can find the inverse function γ (q), which
expresses the fraction of intercepted positions γ dependent on
the measured value of QBER q. Then, we have

IE(q) = γ (q)

⎧⎨
⎩1 −

M−1∑
j=0

pj (γ (q))h
[

cos2

(
πj

2M

)]⎫⎬
⎭. (32)

To calculate the secret fraction, (32) should be substituted
into (20).

It is useful to calculate the Eve’s information in case N →
∞ (also, l′ → ∞ since N = 2l′). In this case, ncorrect(γ )/n = 1

2
[see the Remark 9 in Appendix C and Eq. (A4) in Appendix A].
Then, we arrive at the following expression:

q = γ

⎡
⎣1

4
− 1

M

M−1∑
j=0

cos

(
2πj

M

)⎤⎦ = γ

4
. (33)

3 4 5 6 7 8 9
M

0.45

0.46

0.47

0.48

0.49

M

FIG. 2. Function ζ (M).

The mean Eve’s information is then

IE(q) = 4q

⎧⎨
⎩1 − 1

M

M−1∑
j=0

h

[
cos2

(
πj

2M

)]⎫⎬
⎭ ≡ 4qζ (M),

(34)

where ζ (M) is a decreasing function of M:

lim
M→∞

ζ (M) ≈ 0.4427. (35)

The function ζ (M) is shown in Fig. 2. Since ζ (M) < 0.5 for
M > 2, the multibasis version protocol has advantage over the
BB84 with pseudorandom sequence of bases.

Finally, we arrive at the following expression for the secret
fraction:

R = 1 − f (q)h(q) − IE(q) = 1 − f (q)h(q) − 4qζ (M).

(36)

C. Numerical comparison

We compare the secret key rates per bit of the raw key (secret
fractions) for the multibasis PRB protocol [Eqs. (20) and (32)]
with those for the BB84 protocol and the asymmetric BB84.
The secret key rate per bit of the raw key R(q) for the BB84
protocol is given by the following expression:

R(q) = 1
2 [1 − f (q)h(q) − 2q], (37)

where the factor 1
2 is due to sifting of a half of positions.

We consider the following variation of the asymmetric
BB84 protocol. For each pulse, Alice and Bob choose inde-
pendently the basis {|0〉,|π/2〉} (“the signal basis”) with the
probability 1 − p or the basis {|π/4〉,|3π/4〉} (“the test basis”)
with the probability p. The first basis is used to establish the
secret key, while the second one is used to detect the eaves-
dropping. The sifting rate is, thus, on average, 1 − (1 − p)2.
Alice and Bob announce the bit values for positions encoded
using the test basis and calculate the QBER in the test basis q×.
Also, after the error-correction step, they calculate the QBER
in the signal basis q+ [see Sec. II, step (iv) of the protocol]. We
compare the performances of QKD protocols in the case of the
absence of actual eavesdropping, where the QBER is caused
only by natural noise, then, on average, q+ = q× = q.
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The mean Eve’s information per bit of the sifted key is
2q. But now, for small p, we cannot neglect the statistical
fluctuations. Use the formula from Ref. [42] to treat statistical
fluctuations:

R(q) = (1 − p)2[1 − f (q)h(q) − 2(q + θ )], (38a)

where θ is a minimal positive number such that

√
N+ + N×√

q(1 − q)N+N×
2−(N++N×)ξ (θ) � ε, (38b)

ξ (θ ) = (q + θ − vθ ) − vh(q) − (1 − v)h(q + θ ). (38c)

Here, ε is the failure probability, N+ and N× are the numbers
of positions where both Alice and Bob have chosen the signal
basis and the test basis, respectively, and v = N×/(N× + N+).

Thus, a smaller p leads to lower sifting, but also to higher
statistical fluctuations of the potential Eve’s information that
we have to take into account. In the calculations, we optimized
(38) over p for each value of q.

In the calculations, we use the following parameters: L =
N = 1010 − 33, l′ = log2 L ≈ 16, m = 10 (M = 1024 bases).
To obtain function γ (q) in Eq. (32), we have used formula
(C18) with the failure probability ε ≈ 10−6 (more precisely,
ε/m = S/L for S = 1000). The parameter s in Eq. (C18)
was set to s = 12. The number of pulses sent by Alice for
all protocols is equal to L. The number of pulses received by
Bob is Nr = N if the quantum channel is lossless. For a lossy
channel we have taken a realistic loss rate Nr/N = 0.001.
The failure probability for aBB84 in (38) was also taken as
ε ≈ 10−6. ForN+ andN× in Eq. (38), we use the average values
N+ = (1 − p)2Nr and N× = p2Nr. The results are given in
Fig. 3.

It is clearly seen that the PRB protocol gives twice as large
secret fraction as the BB84 protocol (due to the absence of
sifting). In PRB, the larger number of bases that Eve can
correctly guess for the pseudorandom sequence is compensated
by additional uncertainty for Eve caused by the use of many
(instead of two) bases. This results in approximately the same
secret fractions for PRB and asymmetric BB84 for the lossless
channels. However, if the channel is lossy, Alice and Bob have
to increase p and, hence, sifting rate, to collect large enough
statistics for the test basis. In this case, we can see that PRB
gives slightly better results.

Note that the losses do not decrease the secret fraction for
the PRB protocol since the estimate of the number of bases
correctly guessed by Eve is dependent on L and not on Nr.
Moreover, if optimal positions to attack are lost (see the end
of Sec. III A for general comments on the optimal Eve’s attack
on the PRB protocol and Appendix C for rigorous analysis),
the losses even weaken Eve’s attack.

Remark 7: Let us discuss the initial key consumption for
the considered protocols. It is well known that the BB84
protocol (both symmetric and asymmetric versions of it)
require short initial secret key for authentication purposes,
which cannot be reused. Thus, a part of the generated key
should be consumed for authentication in the next run of
a QKD protocol. This is also true for our protocol. But,
additionally, our protocol consumes the key for the seed for

PRB

aBB84, no losses

aBB84, losses

BB84

0 5 10 15
QBER

0.2

0.4

0.6

0.8

1.0
R

a f 1

0 5 10 15
QBER

0.2

0.4

0.6

0.8

1.0
R

b f 1.22

FIG. 3. Secret key rates (per bit of the raw key, before sifting)
of the presented pseudorandom bases (PRB) protocol, the BB84
protocol, and the asymmetric BB84 (aBB84) protocol with and
without losses in the quantum channel, when the efficiency of error
correction achieves the theoretical limit f = 1 (a) and for practically
achievable efficiency f = 1.22 (b). It can be seen that the considered
protocol gives better secret key rates than the BB84 protocol and
approximately the same rates as the asymmetric BB84 protocol.

PRNG in the next run since this seed also cannot be reused.
Thus, for an honest comparison of our protocol with BB84,
we should compare the “net generation rates,” i.e., secret key
generation rates minus key secret key consumption rates. Let
us ignore the key consumption for the authentication because
there is no difference in the authentication procedures for the
BB84 and PRB protocols. Moreover, PRB has less data to
authenticate since there is no announcement of bases. If we
ignore the authentication problem, then the BB84 protocol does
not consume the key at all, while PRB consumes some amount
of the key. However, from the data provided above, we can see
that the key consumption is negligible for PRB: in a single run
of the protocol, we used the initial secret key with the length
160 bits and generate a key with the length of order 1010 for
lossless case and of order 107 for the lossy case. Thus, the key
consumption (160 bits) is several orders smaller than the key
generation and can be neglected.

Remark 8: Since we consider a protocol with many bases,
it is worthwhile to compare it with the known six-state BB84
protocol [12] which uses three bases: {|0〉,|1〉}, {|π/4〉,|3π/4〉},
and {|0〉 + i|1〉,|0〉 − i|1〉}. The use of three bases pro-
vides higher uncertainty for Eve comparing to the original
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(four-state) BB84. However, this protocol is more difficult to
implement in practice than the original BB84. In contrast, PRB
can be implemented with the same hardware as BB84: PRB
requires just another regulation of the angle ϕ in state (2). This
can be done on the software level.

However, if we have a six-state implementation, we can also
consider its pseudorandom modification, which also uses many
numbers of bases of the form {|r〉,|−r〉}, where |r〉 is a qubit
state corresponding to the point r on the unit sphere (the Bloch
sphere). In this case, |r〉 should be chosen pseudorandomly
from some discrete set of points on the Bloch sphere. Moreover,
in the six-state BB84 protocol, the sifting efficiency is not 1

2
but 1

3 . Hence, the use of a protocol with pseudorandom choices
of bases, which allows to avoid sifting at all, may be even more
advantageous.

IV. PHOTON-NUMBER SPLITTING PLUS
QUANTUM-STATE DISCRIMINATION ATTACK

We performed the analysis for an ideal case, where the light
source is assumed to be single photon. Practically, usually weak
coherent pulses are used [6]. This gives possibilities to Eve
to perform additional attacks, for example, photon-number
splitting (PNS) attack [43,44]. In this attack it is assumed
that quantum technologies are fully accessible for Eve. Let
us describe this attack for the BB84 protocol. Eve measures
the number of photons in each pulse and, if the number of
photons is at least two, takes one photon and saves it in her
quantum memory. After the announcement of the bases, she
measures this photon in the known basis and, so, obtains a
bit of information about the raw keys without disturbance.
This potential Eve’s information must be taken into account
by Alice and Bob. Eve also can stop the single-photon pulses
to increase the fraction of the multiphoton pulses (i.e., the
number of pulses about which she can obtain full information
without disturbance). To detect such actions, the so-called
decoy state method has been proposed and developed [45–49].
Its purpose allows one to obtain tight estimates on the number
of single-photon pulses and the number of errors in these
pulses.

For the case of the proposed pseudorandom basis protocol,
Eve can also perform the PNS attack. While in BB84 she waits
for the announcement of bases, here she waits for the moment
when she gets full knowledge of the initial key and, hence,
bases. To account for this attack, Alice and Bob can also use
the decoy state method.

But, now Eve can perform another type of attack, which
we will refer to as “photon-number splitting plus quantum-
state discrimination” (PNS+QSD) attack. Namely, Eve has a
possibility to use multiphoton pulses to get knowledge of the
initial key during the transmission of quantum states. Recall
that all our analyses above were based on the assumption
that Eve has zero information on the initial key during the
transmission of quantum states and has to guess the bases. But,
now she can perform the following variant of the PNS attack.
Again, she measures the number of photons in each pulse. If
the number of photons in a pulse is at least three, she sends one
photon to Bob (i.e., does not introduce disturbance) and takes
two photons to her quantum memory. We have shown that a
single photon without the knowledge of the raw key bit leaks

no information about the basis [see Eq. (12)]. But, this is not
true if Eve has two photons in the same state. Let us analyze
this attack.

Suppose that Eve has intercepted n such double photons in
positions i1, . . . ,in. Then, to get knowledge of the initial key
x, she has to distinguish between 2l+n states

|ψ(k,x)〉 =
n⊗

j=1

∣∣∣ϕij (k) + π

2
xij

〉⊗2
, (39)

where k ∈ {0,1}l , x = {xi1 , . . . ,xin} ∈ {0,1}n.
Discrimination of quantum states (or hypothesis testing) is

a famous problem in quantum information science [50]. We
will use the following lower bound on the success probability
psucc of guessing the correct quantum state (in our case, correct
k and x) [51]:

psucc �
1

2l+n

∑
k

∑
x

1∑
k′
∑

y〈ψ(k,x)|ψ(k′,y)〉2

= 1

2l+n

∑
k

∑
x

1

1 +∑
k′ �=k

∑
y〈ψ(k,x)|ψ(k′,y)〉2

,

∑
y

〈ψ(k,x)|ψ(k′,y)〉2

=
n∏

j=1

{cos4[ϕij (k) − ϕij (k′)] + sin4[ϕij (k) − ϕij (k′)]}.

We restrict the analysis to the case of two bases (M = 2).
The analysis of the multibasis case leads to more cumbersome
calculations but qualitatively the same conclusions. If k �= k′,
then approximately a half of basis choices for the keys k and
k′ coincide. Hence,∑

y

〈ψ(k,x)|ψ(k′,y)〉2 ≈ 2−n/2 (40)

and

psucc �
1

1 + (2l − 1)2−n/2
, (41)

i.e., Eve needs approximately 2l � N three-photon pulses
to guess the secret key k with a non-negligible probability.
Then she can measure the pulses in correct bases without
disturbance. Hence, the protocol crucially requires single-
photon sources.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we have analyzed a prepare-and-measure
QKD protocol. It uses the pseudorandom sequence of bases
generated by the legitimate parties of communications from
a common initial secret key (seed). The use of a common
pseudorandom sequence of bases allows one to avoid the sifting
procedure and, hence, losing the half of the key. Moreover,
since the bases of Alice and Bob are always the same, they can
use more than two bases.

The main result of this work is the calculation of the secret
key rates of the proposed protocol for the intercept-resend
attack presented in Fig. 3. The main technical ingredient is
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Appendix C, where the mathematical tools of analysis of pseu-
dorandom sequences in the context of quantum cryptography
(where the adversary has unlimited computing power) are
proposed. The main practical formulas derived in this appendix
are (C15) and (C18). They give upper bound on the elements
of a pseudorandom sequence that can be correctly guessed by
the eavesdropper with unlimited computing power.

We have obtained that, for single-photon sources, the
protocol gives twice as large secret key rates as the original
BB84 protocol and in some cases gives slightly higher rates
than the aBB84 protocol. However, we did some assumptions
in favor of Eve (see, for example, Remark 6). More tight
analysis, which requires the development of techniques of
Appendix C, probably, will lead to even more significant
advantage of the proposed pseudorandom multibasis protocol.
The protocol strongly requires a single-photon source of light.

The mathematical tools developed in Appendix C can
be used in different problems of quantum cryptography, for
example, for rigorous estimation of how the use of pseudo-
random sequences (instead of truly random ones) influence
the security of the conventional prepare-and-measure QKD
protocols, such as BB84, asymmetric BB84, etc. First steps in
such analysis have been done in [30]. Our approach suggests
that the pseudorandomness can be even turned to an advantage.

In general, future investigations of the power of classical
pseudorandomness combined with quantum uncertainty in
quantum cryptography are required. The fundamental dif-
ference with the consideration of pseudorandom sequences
in conventional cryptography is that, in the latter case, one
typically assumes the boundedness of the eavesdropper’s com-
puting power. For example, it is assumed that the eavesdropper
cannot use the brute force attack to try all possible seeds for
a PRNG. In contrast, in quantum cryptography we assume
unlimited computing power of the eavesdropper. But, from the
other side, the possibilities of the eavesdropper are limited by
the quantum uncertainty principle. Thus, the analysis of quan-
tum pseudorandom sequences may require novel mathematical
methods.
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APPENDIX A: PSEUDORANDOMNESS PROPERTY
OF THE LEGENDRE SEQUENCES

Here, we formulate the keystone pseudorandomness prop-
erty of the Legendre sequences which is exploited in the present
analysis, mainly in Appendix C. Note that

ai+L = ai, (A1)

i.e., {ai} is a periodic sequence. We then denote ZL =
{0, . . . ,L − 1} the residue ring with respect to integer addition
and multiplication modulo L. For distinct elements i1, . . . ,is ∈
ZL and binary b1, . . . ,bs , denote di1,i2,...,is (b1,b2, . . . ,bs) the
number of j ∈ {0, . . . ,L − 1} such that

aj+i1 = b1, aj+i2 = b2, . . . aj+is = bs, (A2)

i.e., the number of occurrences of the pattern

∗ . . . ∗ b1 ∗ . . . ∗ b2 ∗ . . . ∗ . . . ∗ bs (A3)

in one period. Here, ∗ are “do-not-care” bits. In other words,
we look for patterns with the bit values b1, . . . ,bs on positions
i1, . . . ,is . Here, we do not care bit values on other positions.

We will use the following bounds [40]: for all distinct
i1, . . . ,is ∈ ZP and all binary b1, . . . ,bs :

di,j (b1,b2) =
{

(L − 3)/4, (b1,b2) = (1,1)

(L + 1)/4, (b1,b2) �= (1,1)
(A4a)

−W (s) � di1,i2,...,is (b1,b2, . . . ,bs) − L

2s
� W (s) (A4b)

for s � 3, where

W (s) =
√

L[2s−1(s − 3) + 2] + 2s−1(s + 1) − 1

2s
. (A4c)

For large s, W can be approximated as
√

L[(s − 3)/2] +
(s + 1)/2.

APPENDIX B: GUESSING THE SEED FOR PRNG

In our analysis we assumed that, after all stages of the
protocol and after the transmission of a message encrypted
with the use of the distributed key, Eve can correctly guess the
initial secret key (the seed for the PRNG). In this appendix,
we derive bounds on the number of qubits that Eve needs to
intercept for correct guessing of the seed. We show that this
assumption is not too pessimistic.

First, we specify assumptions on Eve’s knowledge. Of
course, Eve knows her measurement results of intercepted
qubits zi1 , . . . ,zin . We further assume that, during the stage
of error correction, Eve discovers (along with a syndrome or
other messages sent via error correction) the positions where
she introduces errors and the values of the bits xi and yi in such
positions. This is indeed true if the Cascade protocol for error
correction is used, but may be too pessimistic in the case of
the use of one-way error-correcting codes (for example, LDPC
codes). Let us also denote ci = xi ⊕ yi .

Moreover, we assume that Eve may know a part of the
message encoded with the key distributed by the protocol
(“known plain-text attack”). Let r bits of the secret key
(u1, . . . ,ur ) be distributed; r < N due to the key contraction
in the privacy amplification stage. The last l bits from this key
are kept for the next session as a new initial key. The first r − l

bits are used for encryption of a message, for example, using
one-time pad encryption. Eve may know a part of this message
(or even the whole message) and, hence, the corresponding bits
of the key (u1, . . . ,uq), q � r − l. She can use this knowledge
as well as her results of quantum measurements to guess the
unknown part of the distributed key and, in particular, the initial
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key for the next session. The knowledge of the initial key for
the next session gives her a possibility to obtain the key of
the next session without introducing errors since she can also
construct the sequence {ϕi(k)} in the next session.

For definiteness, let us assume that Bob is the side that
corrects errors, so that after error correction Alice and Bob
have the common key x1, . . . ,xN . If the Toeplitz hashing is
used for privacy amplification, then ui are linear combinations
(with respect to XOR) of xj :

ui =
N∑

j=1

tij xj , i = 1, . . . ,r (B1)

where tij are the elements of a Toeplitz matrix.
Thus, Eve knows the following:
(i) her measurement results zi1 , . . . ,zin ;
(ii) the syndrome of the used error-correcting code (or

parities of certain subsets of positions if an interactive error-
correcting procedure like “Cascade” is used);

(iii) whether she has introduced errors in the intercepted
positions: ci1 , . . . ,cin ; also she knows xij and yij if cij = 1;

(iv) q � r − l outputs of linear combinations (B1).
For convenience of notations, let Eve attack the first r

transmitted state and ij = j . Also, to make the derivations
simpler, we do the following modification of the protocol:
let the angles ϕi(k) in (3) are chosen from the set { πj

2M
}2M−1
j=0

rather than from { πj

2M
}M−1
j=0 , M � 2. Thus, we add an additional

pseudorandom binary register which is responsible for an
additional rotation of the angle over π/2. This does not alter
the security properties of the protocol (if the initial key is also
added by one bit) since a basis rotated over π/2 is in fact
the same basis as the initial one up to the interchange of the
assigned bit values 0 and 1. But, as we said before, the bit
value is supposed to be known to Eve after the transmission
of an encrypted message. Such modification is useless for
practice since we should spend the initial secret key on the
additional register, but it is useful for the purposes of the present
section: this modification makes the situation more symmetric
and simplifies the analysis.

Thus, in expansion (10), we have an additional register:

ϕi(k) = π

2

m∑
j=0

ai(k
(j ))2−j . (B2)

Now, we are going to estimate the probability of guessing the
seed

pguess = max
k

p(k|e1, . . . ,en), (B3)

where ei = (xi,zi,ci) is Eve’s knowledge on the ith transmitted
quantum state. Then, we have

p(k|e1, . . . ,en) = p(e1, . . . ,en|k)p(k)

p(e1, . . . ,en)
= 2−l p(e1|ϕ1(k)) · · · p(en|ϕr (k))

p(e1, . . . ,en)
. (B4)

Let us find an expression for p(ei |ϕi):

p(ei |ϕi) = p(xi |ϕi)p(zi |ϕi,xi)p(ci |ϕi,xi,zi) = 1

2
p(zi |ϕi,xi)p(ci |ϕi,xi,zi)

= 1

2
cos2

[
βi − ϕi + π

2
(zi − xi)

]
cos2

[
βi − ϕi + π

2
(zi − xi − ci)

]

= 1

8

{
cos

πci

2
+ cos

[
2(βi − ϕi) + π (xi − zi) − πci

2

]}2

= 1

8

{
1 − ci + cos

[
2(βi − ϕi) + π (xi − zi) − πci

2

]}2

. (B5)

Here, we have used that cos πx
2 = 1 − x if x ∈ {0,1}. Therefore, we arrive at the following expressions:

p(ei) = 1

M

M−1∑
j=0

p

(
ei |ϕi = πj

M

)
=
{

3/16, ci = 0,

1/16, ci = 1,
p(ci) =

∑
xi ,zi∈{0,1}

p(ei) =
{

3/4, ci = 0,

1/4, ci = 1.
(B6)

Substitution of Eq. (B5) into Eq. (B4) yields

p(k|e1, . . . ,en) = 2−l

p(e1, . . . ,en)

n∏
i=1

1

8

{
1 − ci + cos

[
2(βi − ϕi) + π (xi − zi) − πci

2

]}2

. (B7)

If n � l′ (recall that l′ is the length of the initial key for each reg-
ister, while l = ml′ is the whole length of the initial key), then
ϕi are approximately independent and uniformly distributed
on their domain. Hence, Eve’s variables e1, . . . ,en are also
approximately independent: p(e1, . . . ,en) ≈ p(e1) . . . p(en).

By properties of the Legendre sequences, for every com-
bination of angles ϕi , there exists a key k generating this
combination. Then, the maximization of Eq. (B7) is equivalent
to maximization of every separate term in the product in its
right-hand side, i.e., maximization of (B5).
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Let us maximize (B5) over ϕi . We have

max
ϕi

p(ei |ϕi) =
⎧⎨
⎩

p(ei |βi) = 1/2, ci = 0, zi = xi,

p(ei |βi + π/2) = 1/2, ci = 0, zi �= xi,

p(ei |βi + π/4) = 1/8, ci = 1.

(B8)

In other words, if Eve has not introduced an error and her
measurement result zi has coincided with xi , then her optimal
guess is that Alice has chosen the same basis as Eve: ϕi = βi .
If Eve has not introduced an error, but her measurement result
zi has not coincided with xi , then her optimal guess is ϕi =
βi + π/2, i.e., Alice has chosen the basis different from Eve’s
basis by π/2: the basis rotated by π/2 coincides with the initial
basis up to a bit flip. Finally, if Eve has introduced an error,
then her optimal guess is ϕi = βi + π/4, which corresponds
to a situation that yields an error with the maximal probability
(1/2).

Putting it all together, we arrive at the following expression:

max
k

p(k|e1, . . . ,en) = 2−l

(
8

3

)n0

2n1 = 2−l+n0 log 8
3 +n1

= 2−l+3n0+n1−n0 log 3, (B9)

where n0 and n1 are number of positions where ci = 0 and
1, respectively. Indeed, n0 + n1 = n. Since p(ci = 0) = 3/4
and p(ci = 1) = 1/4, if n is large, then n0 ≈ 3n/4, n1 = n/4.
Then,

max
k

p(k|e1, . . . ,en) ≈ 2−l+n[ 3
4 log 8

3 + 1
4 ] = 2−l+n[ 5

2 − 3 log 3
4 ]

≈ 2−l+1.3n. (B10)

Recall that this derivation is valid if n � l′. But, we are
interested in the inverse case. Then, the analysis is more com-
plicated. First, not every sequence of angles {ϕi} is possible:
different angles are not independent, hence, maximization of
the numerator in (B7) is not reduced to maximization of its
separate factors. Second, e1, . . . ,en are also not independent
(as the measurement results of dependent quantum states).

Nevertheless, we will still use formula (B9) as an upper
bound for the guessing probability. The arguments are as
follows. The most advantageous situation for Eve is when the
current angle ϕi does not depend on the previous angles. In
this case, the measurement gives Eve more information than
the measurement in the case when Eve already has partial
information on ϕi . Thus, in favor of Eve, we treat ϕi inde-
pendent from each other even if r > l′ and use formulas (B9)
and (B10). Numerical experiments confirm that the validity of
these formulas as upper bounds. Then, Eve can guess a key in
approximately (lower bound)

n = l

5
2 − 3 log 3

4

≈ 0.76 l. (B11)

Thus, Eve needs order l intercepted positions to correctly guess
the initial secret key. Our numerical experiments with short
enough keys (up to l′ = 10, which allows one to explicitly
implement the proposed maximum likelihood method) and
m � 8 show that formula (B11) is adequate as a rough estimate
at least for the subkeys k(0) and k(1) that govern the highest-
order (i.e., most important) bits in the binary expansion of

angles (B2). One needs much more iterations to correctly guess
the lowest-order bits since close quantum states are hard to
distinguish. From the other side, lowest-order registers are less
important. Hence, the assumption that Eve gets a knowledge of
the initial key after the transmission of the cipher text (provided
that she knows the plain text) seems to be not too pessimistic.

APPENDIX C: GUESSING IN PSEUDORANDOM
BINARY SEQUENCES

In this Appendix we obtain an upper bound for the number
of correctly guessed bits in a certain class of binary pseudoran-
dom sequences. We assume that Eve has access to unlimited
computing power, and we design an optimal attack for Eve.

Let us introduce assumptions about PRNG. Let {ai(k)}∞i=1
be a periodic sequence with the period L for any k, i.e.,
ai+L(k) = ai(k). The set of keys is K = ZL = {0, . . . ,L − 1},
the residue ring with respect to integer addition and multi-
plication modulo L. For distinct keys k1, . . . ,ks and binary
b1, . . . ,bs , denote

Ab1...bs
(k1, . . . ,ks) = {i ∈ ZL| ai(k1) = b1, . . . ,ai(ks) = bs}.

(C1)

Let us assume that there exists S � 2 such that, for all distinct
keys k1, . . . ,kS and for all binary b1, . . . ,bS ,

|Ab1,...,bs
(k1, . . . ,ks)| = L

2S
. (C2)

It is also assumed that L is divided by 2S .
Eve chooses the fraction 0 < γ � 1 of positions that she

will try to guess, i.e., she will try to guess γL positions in
a period. Her aim is to choose the positions to maximize the
fraction of the guessed outcomes. If Eve attacks all L positions,
then, due to Eq. (C2), she guesses exactly a half of positions,
which is expected when the sequence is truly random. We are
going to prove the upper bound for the case 0 < γ < 1.

Theorem 1: Let the pattern distribution satisfy (C2) and we
try to guess n = γL positions in a period. Then the number of
correctly guessed bits does not exceed

ncorrect(γ ) = L

{
Ps−1(r) + s − r − 1

s
[γ − 2Ps(r)]

}
(C3)

with the probability at least 1 − s/|K|, for every 2 � s � S.
Here,Ps(t) = Pr[Xs � t],whereXs is a binomially distributed
random variable with the number of experiments s and the
success probability in one experiment 1/2 [i.e., Ps(t) is a
cumulative distribution function], and r is the integer such that
Ps(r) � γ /2 but Ps(r + 1) > γ/2.

Proof. Let us consider s arbitrary distinct keys k1, . . . ,ks .
Let T ⊂ ZL be the set of positions chosen by Eve, |T | = γL.
Denote nb1...bs

= |Ab1...bs
(k1, . . . ,ks) ∩ T |. Let it be known that

the actual key k is one of the keys k1, . . . ,ks . Let n
(i)
correct be the

number of our correct guesses provided that the actual key is ki ,
i = 0, . . . ,s − 1. We try to maximize min(n(1)

correct, . . . ,n
(s)
correct),

i.e., the guaranteed number of correct guesses.
Let the set T be fixed. For each position j ∈ T , if the

majority of the values aj (k1), . . . ,aj (ks) is 0 (1), then the
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optimal guess a
guess
j is also equal to 0 (1), i.e.,

a
guess
j =

{
0, HW(aj (k1), . . . ,aj (ks)) � s/2,

1, otherwise, (C4)

where HW(b1, . . . ,bs) is the Hamming weight of the vector (b1, . . . ,bs). Then,

n
(i)
correct =

∑
(b1, . . . ,bs ) :

HW(b1, . . . ,bs ) � s/2,

bi = 0

nb1...bs
+

∑
(b1, . . . ,bs ) :

HW(b1, . . . ,bs ) > s/2,

bi = 1

nb1...bs
(C5)

for i = 1, . . . ,s.
Thus, we have the following optimization problem with respect to 2s integers nb1...bs

:

min
(
n

(1)
correct, . . . ,n

(s)
correct

) → max ,
∑

(b1,...,bs )

nb1...bs
= γL,nb1...bs

� 2−sL, ∀ (b1, . . . ,bs), (C6)

where the last condition is a consequence of (C2). From the symmetry of the problem we can put

nb1...bs
= nHW(b1,...,bs ) (C7)

[that is, only the number of keys ki such that aj (ki) = a
guess
j for a certain position j matters]. Thus,n(1)

correct = · · · = n
(s)
correct = ncorrect.

Denote also νt = nt/L and νcorrect = ncorrect/L.
The number of vectors (b1, . . . ,bs) with the Hamming weight t is equal to (st) (a binomial coefficient). If we have a constraint

bi = 1 for fixed i [like in the summation in (C5)], then the number of vectors with the Hamming weight t is equal to (s − 1
t − 1). If we

have a constraint bi = 0 for fixed i, then the number of vectors with the Hamming weight t is equal to (s − 1
t ). Thus,

νcorrect =
�s/2�∑
t=0

(
s − 1

t

)
νt +

s∑
t=�s/2�+1

(
s − 1
t − 1

)
νt , (C8)

and the optimization problem (C6) is reduced to

νcorrect =
�s/2�∑
t=0

(
s − 1

t

)
νt +

s∑
t=�s/2�+1

(
s − 1
t − 1

)
νt → max ,

s∑
t=0

(
s

t

)
νt = γ, νt � 2−s , t = 0, . . . ,s. (C9)

Obviously, an optimal choice is to assign the maximally possible value 2−s to νt with t close to 0 or s. This means that we prefer
positions where the guessed value is true for large number of keys. In other words, we primarily try to maximize ν0 and νs , then
try to maximize ν1 and νs−1, and so on. The restriction of this process is the first constraint in (C9). Denote r the minimal integer
such that

r∑
t=0

(
s

t

)
2−s =

s∑
t=s−r

(
s

t

)
2−s � γ

2
, but (C10)

r+1∑
t=0

(
s

t

)
2−s =

s∑
t=s−r−1

(
s

t

)
2−s >

γ

2
. (C11)

Equations (C10) and (C11) can be rewritten as Ps(r) � γ /2 and Ps(r + 1) > γ/2.
Thus, νt are set to maximally possible value 2−s for t � r and t � s − r . Then, νr+1 and νs−r−1 are assigned by as large a

value as possible:

νr+1 = νs−r−1 =
[
γ

2
− Ps(r)

](
s

r + 1

)−1

. (C12)

Other νt (i.e., for r + 2 < t < s − r − 2) are set to zero. The optimal value of the target function νcorrect is

νcorrect =
r∑

t=0

(
s − 1

t

)
2−s +

(
s − 1
r + 1

)(
s

r + 1

)−1[
γ

2
− Ps(r)

]

+
s∑

t=s−r

(
s − 1
t − 1

)
2−s +

(
s − 1

s − r − 1

)(
s − r − 1

r + 1

)−1[
γ

2
− Ps(s − r)

]

= Ps−1(r) + s − r − 1

s
[γ − 2Ps(r)]. (C13)
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This result means that, for any s keys, we cannot choose γL positions such that more than ncorrect guesses given by formula (C3)
are correct for all keys. This means that the number of correct guesses cannot be larger than ncorrect with the probability at least
1 − s/|K|. �

Remark 9: If, in (C3), s → ∞, then, by definition of r , we have Ps(r) → γ /2 and Ps−1(r) → γ /2, so, ncorrect → Lγ/2.
Recall that Lγ is the number of terms we try to guess, i.e., the fraction of correct guesses tends to a 1/2, as in the case of truly
random sequences.

Now let us relax condition (C2).
Corollary 1: Let the pattern distribution satisfy

|Ab1,...,bs
(k1, . . . ,ks)| = L

2s
+ W (s) (C14)

for all s from some range, where W (s) is some function. We try to guess n = γL positions in a period. Then, with the probability
at least 1 − ε, the number of correctly guess bits does not exceed

ncorrect(γ,ε) = L′
{
Ps−1(r) + s − r − 1

s
[γ ′ − 2Ps(r)]

}
, (C15)

where s = ε|K|. Here,

L′ = L′(s) = L

[
1 + 2sW (s)

L

]
, γ ′ = γ ′(s) = γ

[
1 + 2sW (s)

L

]−1

(C16)

and r is the integer such that Ps(r) � γ ′/2 but Ps(r + 1) > γ ′/2.
Note that, for the PRNG based on the Legendre symbol, (C14) is satisfied due to (A4) and (8).
Proof. The proof is the same, but optimization problem (C6) is modified into

min
(
n

(1)
correct, . . . ,n

(s)
correct

) → max ,
∑

(b1,...,bs )

nb1...bs
= γL = γ ′L′, nb1...bs

� 2−sL + W (s) = 2−sL′, ∀ (b1, . . . ,bs). (C17)

Thus, formula (C15) holds with the substitutions of L and γ by L′ and γ ′. �
If s > 	L
 = l, formulas (C3) and (C15) may be too optimistic for Eve. But, we can obtain more tight bounds.
Corollary 2: Let (C14) be satisfied for some s. Other conditions are as in Corollary 1. Then, with the probability at least 1 − ε,

the number of correctly guess bits does not exceed

ncorrect(γ,ε) = ν∗
correctL

′. (C18)

Here, ν∗
correct is the solution of the following linear programming problem for S = ε|K|:

νcorrect =
�S/2�∑
t=0

(
S − 1

t

)
νt +

S−1∑
t=�S/2�+1

(
S − 1
t − 1

)
νt → max ,

S∑
t=0

(
S

t

)
νt = γ ′,

S−s∑
t=0

(
S − s

t

)
νh+t � 2−s , h = 0, . . . ,s

(C19)

with the agreement νt = νS−t , i.e., the actual number of variables in the optimization problem is �(S + 1)/2�.
Proof. Let us consider S arbitrary keys k1, . . . ,kS , but condition (C14) is satisfied for s � S. A generalization of optimization

problem (C17) to this case is

min
(
n

(1)
correct, . . . ,n

(s)
correct

) → max ,
∑

(b1,...,bS )

nb1...bS
= γ ′L′,

∑
(b1, . . . ,bS ) :

bi1 = c1, . . . ,bis = cs

nb1...bS
� 2−sL′, ∀ (c1, . . . ,cs), 1

� i1 < · · · < is � S, (C20)

where

n
(i)
correct =

∑
(b1, . . . ,bS ) :

HW(b1, . . . ,bS ) � S/2,

bi = 0

nb1...bS
+

∑
(b1, . . . ,bS ) :

HW(b1, . . . ,bS ) > S/2,

bi = 1

nb1...bS
. (C21)

Again, by the symmetry, we can put

nb1...bS
= nHW(b1,...,bS ) (C22)

and nt = nS−t , so, the problem is reduced to (C19) (where
νt = nt/L

′ and νcorrect = ncorrect/L
′). Let us comment the last

set of constraints. If HW(c1, . . . ,cs) = h, then the left-hand

side of the last constraint in (C20) is reduced to

h+S−s∑
t=h

(
S − s

t − h

)
νt =

S−s∑
t=0

(
S − s

t

)
νh+t , (C23)

which coincides with that of (C19). �
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FIG. 4. Results of analysis of the Legendre sequences in terms
of δ(γ ) = νcorrect(γ ) − 1/2 by formulas (C15) (top curve) and
(C18) (bottom curve) for L = 1010 − 33, log2 L ≈ 16, s = 12, and
S = 1000.

Remark 10: The parameter s in (C19) is, in fact, an op-
timization parameter. If we use the Legendre sequences as
PRNG, then, according to (A4), s should be taken between√

l and l: smaller s leads to less tight bounds, while larger s

lead to large deviations W (s) in (A4), which also lead to less
tight bounds.

The comparison of the results of formulas (C15) and (C18)
for Legendre sequences (see Sec. II A and Appendix A) is given

in Fig. 4. We took L = 1010 − 33, log2 L ≈ 16, s = 12 [for
both (C15) and (C18)], and S = 1000, ε = S/L ≈ 10−7. We
calculate the quantity δ(γ ) = νcorrect(γ ) − 1/2, i.e., deviation
of νcorrect from the mean value 1/2 in the case of random
guessing.

It is clearly seen that the results of (C18) are significantly
better. But, the picture will be incomplete if we do not compare
these results with the corresponding estimates for truly random
sequences. To estimate the number of correct guesses for truly
random sequences, we can use the Hoeffding’s inequality [52]:
if X is a binomially distributed random variable with γL trials
and the probability of success 1/2 in one trial, then

Pr[X � (1/2 + δ)γL] � e−2δ2γL = ε (C24)

or

δ = δ(γ ) =
√

1

2γL
ln

1

ε
. (C25)

For ε = 10−7, we have δ(γ ) ≈ 2.8×10−4 = 0.028% whenever
γ � 0.01 = 1%, which is of several orders of magnitude
smaller than the results obtained for the pseudorandom se-
quences. Thus, from the cryptanalyst’s point of view (if it has
enough computing power), an optimal guesses of elements of
pseudorandom sequences gives much better results than the
simple random guessing.
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