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We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end,
we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and
show how deep insights into the analytic structure as well as generic results about the long-time behavior can be
extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network
is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation
into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk
requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form
solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to

overlap with its starting position, which oscillates with a period that scales as Nd
Q
w /df with system size N . While

the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df = log2 λ1, the
asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of
the quantum walk via dQ

w = log2

√
λ1λ2. We trace this fact to delicate cancellations caused by unitarity. We obtain

identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct
features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance
with df = d and dQ

w = 1—appear to be quite general and likely apply to networks beyond those studied here.

DOI: 10.1103/PhysRevA.97.012309

I. INTRODUCTION

Quantum walks [1–7] are rapidly achieving a central place
in quantum information science. They have captured the
imagination because of their wide applicability to describe
physical situations as well as computational tasks [6,8–20].
Such a quantum walk, similar to random walks before them
[21–24], are completely described by the probability density
function (PDF) ρ(�x,t) to detect a walk at time t at a site of
distance x = |�x| after starting at the origin. At large times and
spatial separations, this PDF obeys the scaling collapse,

ρ(�x,t) ∼ t−
df

dw f (x/t
1

dw ), (1)

with the scaling variable x/t1/dw , where dw is the walk
dimension and df is the fractal dimension of the network [25].

The evidence that a similar scaling ansatz also describes
the behavior of quantum walks on a network is suggested
by “weak-limit” results that predict ballistic scaling, dw = 1,
on d-dimensional lattices [26,27]. This may be obvious for
walks on a lattice in continuous time, which closely resemble
the tight-binding model [5,28]. Such a scaling is less obvious
for discrete-time quantum walks, which came to prominence
as the earliest example for which Grover’s quantum search
algorithms [8] can achieve a nearly quadratic speed-up even
on a square grid [6,29]. These require an internal “coin”
degree of freedom to ensure unitarity, which can impact their
spreading behavior in interesting ways, inducing localization
without disorder [12,30–32]. It remains largely unexplored
how the breaking of translational invariance would affect the
asymptotic scaling behavior. That scaling as in Eq. (1) still
holds for quantum walks was argued earlier in Ref. [32].
We will show in the following how to analytically determine

the spreading dynamics of such a quantum walk on fractal
networks. As examples, we explicitly calculate several of the
values conjectured there for the walk dimension, in particular,
on the dual Sierpinski gasket with dQ

w = log2

√
5, and on a hi-

erarchical network (MK3) with dQ
w = log4

√
21. The existence

and nontriviality of those values demonstrate the applicability
of Eq. (1). The methods we develop to obtain it allow the study
of quantum walks in more complex environments, such as with
disorder [33,34] and decoherence [12,35,36].

The renormalization group (RG) of classical random walks
[23,25,37] provides a straightforward blueprint for developing
the RG for a discrete-time quantum walk, even with the added
complication of an internal coin space [38]. In this way,
exact RG-flow equations for quantum walks on a number of
complex networks have been derived [32,39]. Those results,
for instance, have led to the conjecture that the walk dimension
dw in Eq. (1) for a quantum walk with a Grover coin always
is half of that for the corresponding random walk, dQ

w = 1
2 dR

w

[39]. Such a relation between classical and quantum scaling
has been found previously for the “hitting time” in Markov
chains [40,41]. However, the RG analysis of quantum walks
is complicated by the unitarity constraint on the evolution
operator. As this constraint is not necessarily expressed by
the RG recursion equations, we have argued previously [42]
that the leading contribution in the RG analysis had to be
disregarded to access subdominant terms. Our calculations
here demonstrate the subtle and surprisingly diverse ways that
unitarity affects the required cancellations in the asymptotic
RG analysis. To this end, we explicitly analyze a unitary
observable, the amplitude of a quantum walk at its starting
position. As this analysis is conducted conveniently via a
Laplace transform, a central role is assumed by the Laplace
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poles of the observable. While in the RG for classical random
walks it is usually sufficient to follow a single pole, for the
quantum walk we find it necessary to consider adiverging
number of such poles to facilitate a consistent evaluation. In
light of this, we show how to interpret the fixed point of the RG
flow. In particular, we provide an interpretation of eigenvalues
of the fixed-point Jacobian. Unlike for the classical case of a
random walk [37], the RG flow for a quantum walk must consist
of at least two parameters, to yield two relevant eigenvalues.
The largest eigenvalue λ1 always reflects merely the geometry
of the network under consideration by determining its fractal
dimension df , while the dynamics of the quantum walk in
the form of its walk dimension dQ

w depends on the second
eigenvalue λ2, i.e.,

df = logb λ1, dQ
w = logb

√
λ1λ2. (2)

These results are obtained for two fractal networks, the dual
Sierpinski gasket (DSG) and a Migdal-Kadanoff lattice (MK3)
[39,43], where each arrives at the same conclusion in quite
distinct fashion, suggesting its generality.

This paper is organized as follows: In Sec. II, we describe
the coined quantum walk, its Laplace transform, and its
implementation by example of the dual Sierpinski gasket. In
Sec. III we derive the generic RG-recursion equations for
the DSG. In Sec. IV, we obtain the RG flow for a specific
implementation of the quantum walk on a DSG with a Grover
coin. In Sec. V, we analyze the fixed point of the RG flow
and apply the asymptotic flow to determine the amplitude at
the origin of the walk, with some details of the arguments
being deferred to the Appendix. In Sec. VI, we compare with
the corresponding analysis on a Migdal-Kadanoff lattice. We
conclude with a discussion and outlook in Sec. VII.

II. QUANTUM MASTER EQUATIONS

The time evolution of a discrete-time quantum walk is
governed by the evolution equation [6]

|�t+1〉 = U |�t 〉 (3)

with unitary propagator U . With ψx,t = 〈x|�t 〉 in the N -
dimensional site basis |x〉 of the network, the probability
density function is given by ρ(x,t) = |ψ2

x,t |. In this basis, the
propagator can be represented as a matrix Ux,y = 〈x|U |y〉,
similar to a network Laplacian, but with entries that are
operators in a internal coin space which describe the transitions
between neighboring sites (“hopping matrices”). We can study
the long-time asymptotics via a discrete Laplace transform,

ψx(z) =
∞∑
t=0

ψx,t z
t , (4)

as z → 1− implies the limit t → ∞. So, Eq. (3) becomes

ψx = z
∑

y

Ux,yψy + ψx,t=0. (5)

Due to the self-similarity of fractal networks, we can
decomposeUx,y into its smallest substructure [37], exemplified
by Fig. 1. It shows the elementary graphlet of nine sites
that is used to recursively build the DSG of size N = 3g

after g generations. The evolution equations in Laplace space
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FIG. 1. Depiction of the (final) RG step in the analysis of the DSG.
The letters {A,C} label transitions between sites (black dots on the
vertices) of the quantum walk in the form of hopping matrices. (Only
on the three outermost sites, the matrix C refers back to the same site.)
Recursively, the inner-six sites (labeled 3–8) of each larger triangle
(left) in the DSG are decimated to obtain a reduced triangle (right) with
renormalized hopping matrices (primed). To build a DSG of N = 3g

sites, this procedure is applied (in reverse) g times to all triangles
every generation. Each generation the base length L increases by a
factor of b = 2, such that the fractal dimension is df = logb=2 3.

pertaining to these sites are

ψ0 = (M + C)ψ0 + A(ψ3 + ψ4) + ψIC,

ψ {1,2} = (M + C)ψ {1,2} + A(ψ {5,7} + ψ {6,8}),

ψ {3,4,5,6,7,8} = Mψ {3,4,5,6,7,8} + Cψ {8,5,4,7,6,3}

+A(ψ {0,3,1,5,2,7} + ψ {4,0,6,1,8,2}). (6)

The hopping matrices A and C describe transitions between
neighboring sites, while M permits the walker to remain on its
site in a “lazy” walk. The inhomogeneous ψIC term allows for
an initial condition ψx,t=0 = δx,0ψIC for a quantum walker to
start at site x = 0 in state ψIC . (It is tedious but straightforward
to generalize the following analysis to an initial condition at
arbitrary x and then treat that entire section of the network
accordingly.)

III. RENORMALIZATION GROUP

We now review the RG procedure for the DSG, as an illus-
trative example. It is identical to that discussed in Refs. [44,45].
Note that it is a vast improvement over a previous version [32],
which assumed that the hopping matrices for each out direction
of a site should be distinct. However, the RG recursions
(involving five coupled nonlinear recursions with hundreds
of terms each in Ref. [32]) significantly simplify here by the
assumption of symmetry, A = B, among the hopping matrices.
As a consequence, we obtain a lazy walk to maintain unitarity,
as we will discuss in the context of Eq. (13) below.

To accomplish the decimation of the sites ψ {3,...,8}, as
indicated in Fig. 1, we need to solve the linear system in Eqs. (6)
for ψ {0,1,2} Thus, we expect that ψ {3,...,8} can be expressed as
(symmetrized) linear combinations:

ψ {3,4} = Pψ0 + Qψ {1,2} + Rψ {2,1},

ψ {5,8} = Rψ0 + Pψ {1,2} + Qψ {2,1}, (7)

ψ {6,7} = Qψ0 + Pψ {1,2} + Rψ {2,1}.
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Inserting this ansatz into Eqs. (6) and comparing coefficients
provides consistently for the unknown matrices:

P = (M + A)P + A + CR,

Q = (M + C)Q + AR, (8)

R = MR + AQ + CP.

Using the abbreviations S = (I − M − C)−1A and T = (I −
M − AS)−1C, Eqs. (8) have the solution

P = (I − M − A − CT )−1A,

R = T P, (9)

Q = SR.

Finally, after ψ {3,...,8} have been eliminated, we find

ψ0 = ([M + 2AP ] + C)ψ0 + A(Q + R)(ψ1 + ψ2) + ψIC,

(10)

and similar for ψ {1,2} (without ψIC). By comparing coefficients
between the renormalized expression in Eq. (10) and the cor-
responding self-similar expression in the first line of Eqs. (6),
we can identify the RG recursions

Mk+1 = Mk + 2AkPk,

Ak+1 = Ak(Qk + Rk), (11)

Ck+1 = Ck,

where the subscripts refer to k- and (k + 1)-renormalized forms
of the hopping matrices. These recursions evolve from the
unrenormalized (k = 0) hopping matrices with

{M,A,C}k=0 = z{M,A,C}. (12)

These RG recursions are entirely generic and, in fact, would
hold for any walk on the DSG, classical or quantum. In the
following, we now consider a specific form of a quantum walk
with a Grover coin.

IV. RG FLOW FOR THE QUANTUM WALK
WITH A GROVER COIN

To study the scaling solution for the spreading quantum
walk according to Eq. (1), it is sufficient to investigate the
properties of the RG recursion in Sec. III for {M,A,C}. In the
unrenormalized (“raw”) description of the walk, these hopping
matrices are chosen as

M =
⎡
⎣− 1

3 0 0
0 1 0
0 0 0

⎤
⎦G,

A =
⎡
⎣ 2

3 0 0
0 0 0
0 0 0

⎤
⎦G, C =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦G. (13)

Here, we have to pay a small price for the fact that, throughout,
A shifts weights symmetrically to two neighboring sites within
their local triangle. The walk now must have a lazy component,
i.e., some weight may remain at each site every update, so that
M 	= 0. Only then does the walk satisfy the unitarity conditions
derived for the DSG in Ref. [44]. The matrix C shifts weight to
the one neighbor outside those triangles, as illustrated in Fig. 1.

These weights are the three complex components of the state
vector at each site, ψx,t , which are all zero at t = 0, except
at x = 0 where ψx=0,t=0 = ψIC is arbitrary but normalized,
|ψ2

IC | = 1. For every update, these weights are entangled at
each site before every shift via the unitary 3×3 coin matrix
due to Grover, which is given by

G = 1

3

⎡
⎣−1 2 2

2 −1 2
2 2 −1

⎤
⎦. (14)

The walk is unitary, i.e., the norm stays preserved, because G

is unitary and 2A + C + M = I. Note that G is also reflective,
i.e., G2 = I.

Iterating the RG recursions in Sec. III for the matrices in
Eq. (13) for only the k = 1 step reveals a simple recursive
pattern that suggests the ansatz

Mk =
⎡
⎣ ak

3 − 2bk

3 0 0
0 z 0
0 0 0

⎤
⎦G,

Ak =
⎡
⎣ ak

3 + bk

3 0 0
0 0 0
0 0 0

⎤
⎦G, Ck =

⎡
⎣0 0 0

0 0 0
0 0 z

⎤
⎦G. (15)

This flow is initiated already at k = 0 with

ak=0 = bk=0 = z. (16)

Inserted into the RG recursions in Sec. III, these matrices
exactly reproduce themselves in form after one iteration, k →
k + 1, when we identify for the scalar RG flow

ak+1 = 3(3z − 1)akbk + (3 − z)(ak − 2bk)

3(3 − z) − (3z − 1)(2ak − bk)
,

bk+1 =

3(3z − 1)
(
3z2 + 1

)
akb

2
k

+ 2
(
3z3 − 3z2 + 7z − 3

)
b2

k

− 4
(
3z3 − 6z2 + 4z − 3

)
akbk

− (3 − z)
(
3 + z2

)
(ak − 2bk)

(3z − 1)
(
3z2 + 1

)
(2ak − bk)bk

− 2
(
3z3 − 7z2 + 3z − 3

)
ak

+ 4
(
3z3 − 4z2 + 6z − 3

)
bk

+ 3(3 − z)
(
3 + z2

)
. (17)

Note that these RG-flow recursions are vastly simpler than the
five-term recursions previously reported [32].

V. RG ANALYSIS FOR THE DSG

We now proceed to study the fixed-point properties of the
RG flow at k ∼ k + 1 → ∞ near z → 1, which builds on
the discussion in Ref. [42]. With the choice of ak and bk in
Eq. (15), the Jacobian matrix J = ∂(ak+1,bk+1)

∂(ak,bk ) |
k→∞ of the fixed

point at z = 1 and a∞ = b∞ = 1 already is diagonal, with two
eigenvalues, λ1 = 3 and λ2 = 5

3 . The eigenvalues correspond
to those two of the five eigenvalues found in Ref. [32] that are
relevant, i.e., they are >1. Extending the expansion of Eq. (17)
in powers of ζ = z − 1 for k → ∞ to higher order, we obtain

ak(z) ∼ 1 + ζ 1Aλk
1 + ζ 2α

(2)
k + ζ 3α

(3)
k + · · · ,

bk(z) ∼ 1 + ζ 1Bλk
2 + · · · , (18)
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FIG. 2. Plot of the poles of the Laplace transforms for the amplitude to remain at the origin, ψ
(k)
0 (z) = XkψIC , in the complex-z plane at

two consecutive RG steps k for a quantum walk on the 1D line (left), DSG (middle), and MK3 (right). (In these walks, poles are certain to occur
in complex-conjugate pairs, so only the upper z plane is shown.) Although the pattern by which poles evolve appears more complicated for the
DSG and MK3, a diverging number of those poles progressively impinge on the real-z axis for all systems.

with unknown constants A and B, and with

α
(2)
k ∼ 1

2

(
Aλk

1

)2 + · · · ,

α
(3)
k ∼ 1

4

(
Aλk

1

)3 − 1
8

(
Aλk

1

)2(Bλk
2

) + · · · , (19)

where we have only kept leading-order terms in k that con-
tribute in the following considerations.

For the case of a classical random walk, only the dominant
eigenvalue λ1 would be relevant to determine dR

w = log2 λ1

[37]. In contrast, in Ref. [42] it was conjectured that for a
quantum walk the Jacobian eigenvalues provide df and dQ

w as
given in Eq. (2). Here, we shall scrutinize that claim in more
detail and show explicitly how to calculate both exponents.
Central to this argument is the fact that the observable ρ(x,t) =
|ψ2

x,t | in Eq. (1) has Laplace poles that only move with k on the
unit circle in the complex z plane, while those poles of ak and bk

move both tangentially and radially on the outside of that circle.
That radial motion with k—absent in ρ(x,z)—depends only on
λ1, while the tangential motion is controlled by

√
λ1λ2. This

conclusion was based on modeling the behavior of just the two
complex poles closest to z = 1. Although these conclusions
turn out to be correct, a more detailed analysis shows that
actually o(N ) of such poles impinging on z = 1 must be
considered here, which is significant. This we can demonstrate
rigorously in the Appendix for the case of a quantum walk
on the one-dimensional (1D) line. Here, we will utilize the
implications of that discussion for our analysis of the DSG.

Instead of ρ(x,z) in its entirety, we focus merely on ψ0(z),
the amplitude at the origin of the quantum walk on the DSG.

According to Fig. 1 and Eq. (10), we have

ψ0 = (Mk + Ck)ψ0 + Ak(ψ1 + ψ2) + ψIC,

ψ {1,2} = (Mk + Ck)ψ {1,2} + Ak(ψ0 + ψ {2,1}), (20)

which has the solution ψ0 = XkψIC with

Xk = [I − Mk − Ck − 2Ak(I − Mk − Ak − Ck)−1Ak]−1.

(21)

Inserting Eqs. (15) and (18) and expanding (some generic
component of) the matrix Xk in powers of ζ = z − 1 yields

[Xk]11 ∼ −ζ−1 1

9
(
Aλk

1

) + ζ 0

[
4

9
+ α

(2)
k

9
(
Aλk

1

)2

]

+ ζ 1

[(
Aλk

1

)
α

(3)
k − (

α
(2)
k

)2

9
(
Aλk

1

)3 + 1

3
(Bλk

2)

]
+ · · ·

∼ ζ−1O

(
1

λk
1

)
+ ζ 0O(1) + ζ 1O

(
λk

2

) + · · · . (22)

It is the cancellation of the leading O(λk
1) term at order ζ 1 that

signals the anticipated placement of the Laplace poles onto the
unit circle in the complex z plane, as demanded by unitarity. As
argued in Ref. [42], λ1 controls the radial movement of poles
with k which is removed by this cancellation, thereby exposing
λk

2 as the relevant contribution that controls the tangential
movement of poles purely on the unit circle. Numerical studies
of the Laplace poles of Xk for small values of k, shown in
Fig. 2, suggest that these poles arise along arcs on the unit
circle, located symmetrically around the real-z axis due to the
real-valued coin such as G in Eq. (14), and that these poles
get increasingly dense and impinge on the real-z axis at z = 1.
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This picture is borne out by our analysis of a quantum walk
on the 1D loop in the Appendix, which suggests the following
generalized form for the amplitude matrix at the origin:

[Xk]11 ∼ 1

h(N )

h(N)∑
j=−h(N)

fj

1 − z eiθkjgj

∼ −ζ−1 f0

h(N )
+ ζ 0 2S0(N )

h(N )
− ζ 1 4S2(N )

θ2
k h(N )

+ · · · ,

(23)

where we defined the sums

Sm(N ) =
h(N)∑
j=1

fj

(gj j )m
. (24)

By analogy with the 1D loop, we expect by the fact that the coin
in Eq. (14) is reflective and real that both fj and gj are real,
symmetric, and weakly varying functions of j (but not N ).
In turn, h(N ) specifies how many Laplace poles effectively
contribute to the asymptotic behavior. If only one (or few)
poles contribute, h(N ) = O(1), as in the classical case [37],
then Sm = O(1) for all m � 0, and the ζ 0 terms between
Eqs. (22) and (23) are inconsistent. The only consistent choice
entails that a diverging number of poles must be considered,
h(N ) 
 1, specifically h(N ) ∼ λk

1 = N . This implies that (a)
S0 = O(N ) and (b) Sm�2 = O(1). For instance, in the 1D
quantum walk, we have fj = gj = const such that both (a)
and (b) are satisfied. Matching the expansion also between
the ζ 1 terms of Eqs. (22) and (23), we obtain θ2

k h(N ) ∼ λ−k
2

or θ2
k ∼ λ−k

1 λ−k
2 . With L = 2k and assuming that the scaling

solution implied by Eq. (1) arises via the cutoff at θkt ∼ 1 [37],
i.e., θk ∼ L−dQ

w , we arrive at Eq. (2). Expanding to two more
orders in powers of ζ provides further proof of the consistency
of this interpretation.

The backwards Laplace transform ofXk in Eq. (23) provides
for some typical component in the spinor ψ0,t in a DSG of size
N = 3k that

ψ0,t ∼ 1

h(N )

h(N)∑
j=0

fj cos

(
jgj t

Nd
Q
w /df

)
. (25)

Note that due to condition (a) we have |ψ (k)
0,t | ∼ 1 for t = 0, as

would be expected for a walk starting at x = 0.

VI. RG ANALYSIS FOR MK3

To demonstrate the generality of our conclusions, we
present briefly also the corresponding analysis for another
fractal network, based on the Migdal-Kadanoff hierarchical
lattices [43,46]. The RG recursions, as depicted in Fig. 3,
for this case have already been presented in detail previously
in Ref. [39]. Again, all matrices can be parametrized with
merely two scalars, most conveniently in the form {A,B,C} =
a+b

2 (P{1,2,3} · G) and M = a−b
2 (I · G), where the 3×3 matrices

[Pν]i,j = δi,νδν,j (with
∑3

ν=1 Pν = I) facilitate the shift of the
νth component to a neighboring site. The RG flow was found

RGIC
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FIG. 3. Graphic depiction of the (final) RG step in the analysis of
MK3. The letters {A,B,C} label transitions between sites (black dots
on the vertices) of the quantum walk in the form of hopping matrices.
Recursively, the inner-four sites (here labeled 2–5,6–9, and 10–13)
of each branch in MK3 are decimated to obtain a reduced set of three
lines (right) with renormalized hopping matrices (primed). To build
MK3 of N = 2×7g sites, this procedure is applied in reverses g times
to all lines at each generation. Note that each generation the base
length L increases by a factor of 4, such that the fractal dimension is
df = log4 7.

to close for

ak+1 =
−9ak + 5a3

k + 9bk + 3akbk − 17a2
k bk − 3a3

kbk

+ 3b2
k + 14akb

2
k − 3a2

k b
2
k − 18a3

kb
2
k

− 18 − 3ak + 14a2
k + 3a3

k − 3bk − 17akbk

+ 3a2
k bk + 9a3

kbk + 5b2
k − 9a2

k b
2
k

,

bk+1 =
− 3ak − a2

k + 3bk + 4akbk − 3a2
k bk

− b2
k + 3akb

2
k + 6a2

k b
2
k

6 + 3ak − a2
k − 3bk + 4akbk

+ 3a2
k bk − b2

k − 3akb
2
k

, (26)

with a0 = b0 = z. Remarkably, it can be shown that |ak| =
|bk| ≡ 1 for all k, in principle reducing the RG parameters to
just two real phases for ak,bk .

Similar to the DSG in Sec. V, we have a fixed point at z = 1
with a∞ = b∞ = 1. Again, the Jacobian already is diagonal
with the two eigenvalues, λ1 = 7 and λ2 = 3. As before,
extending the expansion of Eq. (17) in powers of ζ = z − 1
for k → ∞ to higher order, we obtain

ak(z) ∼ 1 + ζAλk
1 + ζ 2α

(2)
k + ζ 3α

(3)
k + · · · ,

bk(z) ∼ 1 + ζBλk
2 + ζ 2β

(2)
k + ζ 3β

(3)
k + · · · , (27)

with unknown constants A and B, and with

α
(2)
k ∼ 1

2

(
Aλk

1

)2 + · · · ,

α
(3)
k ∼ 1

4

(
Aλk

1

)3 + · · · ,

β
(2)
k ∼ 1

2

(
Bλk

2

)2 + · · · ,

β
(3)
k ∼ − 3

80

(
Aλk

1

)(
Bλk

2

)2 + · · · , (28)

where we have only kept leading-order terms in k relevant for
the following considerations.
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The final step of the RG, shown on the right of Fig. 3, is
given by

ψ0 = Mkψ0 + (Ak + Bk + Ck)ψ1 + ψIC,

ψ1 = Mkψ1 + (Ak + Bk + Ck)ψ0, (29)

which has the solution ψ0 = XkψIC with

Xk = [I − Mk − Vk(I − Mk)−1Vk]−1, (30)

abbreviating Vk = Ak + Bk + Ck . Inserting {Ak,Bk,Ck,Mk}
with the RG flow in Eq. (27) into Xk in Eq. (30) and expanding
in powers of ζ = z − 1 yields for the (1,1) component

[Xk]11 ∼ −ζ−1

[
1

3
(
Bλk

2

) + 1

6
(
Aλk

1

)
]

+ ζ 0

[
1

4
+ · · ·

]

+ ζ 1

[(
Aλk

1

)
α

(3)
k − (

α
(2)
k

)2

6
(
Aλk

1

)3 − 23
(
Aλk

1

)
240

+ · · ·
]

+ · · ·
∼ ζ−1O

(
1

λk
2

)
+ ζ 0O(1) + ζ 1O

(
λk

1

) + · · · . (31)

Although the ζ 1 term exhibits the same cancellation in the
first term as in Eq. (22) for the DSG, other terms of order
O(λk

1) remain, hiding any contributions from λ2 here. However,
the highly peculiar ζ−1 term also reverses the role of the
eigenvalues, now selecting λ2 as the dominant contribution
over λ1 there. Comparison with the expected form of Xk in
Eq. (23) then leads to an effective number of poles that scales
subextensively with the system size, h(N ) ∼ λk

2 = N log7 3.
Consistency then also demands that S0(N ) ∼ h(N ), so that
Sm�2(N ) = O(1). Amazingly, despite the reversal of roles
between λ1 and λ2, matching the ζ 1 terms again provides
θ2
k ∼ λ−k

1 λ−k
2 , which is invariant to this switch. As before,

we have expanded to two more orders in powers of ζ and
found consistency throughout. Thus, the RG of MK3 affirms
the result in Eq. (2), all differences in the analysis aside.

VII. DISCUSSION

We have provided a comprehensive description of the
real-space renormalization-group treatment of discrete-time
quantum walks. We have referred to the DSG and MK3 as
specific examples, but we expect that this procedure also
describes other networks. Our procedure is immediately ap-
plicable to study the quantum search algorithm with a coin
or power-law localization in hierarchical networks, which we
will present elsewhere. Especially, our approach opens the
door to a systematic consideration of universality classes in
quantum walks and search algorithms. For instance, entire
classes of coins can be studied, in particular those that might
break the symmetries that were essential to establish the
current results and the delicate cancellations these require.
The methods developed here also provide the starting point for
the consideration of disordered environments [33,34] and the
discussion of localization in complex networks [32]. Finally,
approximate means can be explored on the basis of the current
calculation that eventually can preserve unitarity, or allow one
to handle decoherence in a controlled manner that is found in
any realistic implementations [10,12,35].
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APPENDIX: ANALYSIS OF THE QUANTUM
WALK ON A LINE

The renormalization group treatment of the quantum walk
on the 1D line [38] provides the RG flow:

ak+1 = sin η a2
k

1 − 2 cos η bk + b2
k

,

bk+1 = bk + (bk − cos η)a2
k

1 − 2 cos η bk + b2
k

. (A1)

But unlike the analog expressions for the DSG in Eq. (17) or
MK3 in Eq. (26), this RG flow in fact possesses a closed-form
solution for all N = 2k:

ak = cos σ sin η

cos(Nν + σ )
, bk = cos η + i

sin(Nν) sin η

cos(Nν + σ )
, (A2)

where ν(z) and σ (z) are determined by matching to the initial
flow, a1 = z2 sin η and b1 = z2 cos η.

Previously, in Ref. [42], the equivalent of Eq. (21) for the
amplitude at the starting site of a quantum walk, ψ0 = XkψIC ,
for the 1D line was shown to be

Xk = [I − (Ak + Bk + Mk)]−1. (A3)

Here, the hopping matrices are parametrized as

Ak =
[
ak 0
0 0

]
C, Bk =

[
0 0
0 −ak

]
C, Mk =

[
0 bk

bk 0

]
C

(A4)

after k renormalization steps, with the coin matrix

C =
(

sin η cos η

cos η − sin η

)
. (A5)

Equations (A2)–(A4) together provide

Xk =

[
1 − ak sin η − bk cos η ak cos η − bk sin η

−ak cos η + bk sin η 1 − ak sin η − bk cos η

]
1 − 2ak sin η − 2bk cos η + a2

k + b2
k

=
[

1
2 − cot η

2
cot η

2
1
2

]
+

[
i cot η + sin σ i − sin σ cot η
sin σ cot η − i i cot η + sin σ

]
2 tan Nν

2 cos σ
.

(A6)

In the following, we shall express Xk asymptotically near
the RG fixed point for ζ = z − 1 → 0 and N = 2k → ∞ in
three different ways: (1) the exact solution, (2) the presumed
expansion in O(N ) Laplace poles, and (3) the expansion of the
RG flow in Eq. (A1), which is typically the only form available
in nontrivial applications of the RG. The validation of 2 and
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3 by 1 demonstrates our contention that, indeed, a number
of Laplace poles must be considered that diverges with N to
consistently interpret 3.

1. Exact solution

We simplify matters and (without restriction of generality)
set η = π

4 in the following. With a1 = b1 = z2/
√

2 we find
from Eq. (A2) that

sin 2ν = i

(
1

z2
− 1

)√
1 + z4,

sin σ = i z2. (A7)

The expansion of Eq. (A2) in powers of ζ = z − 1 is now
straightforward and results in

ak ∼ ζ 0 1√
2

+ ζ 1 N√
2

+ ζ 2 N

2
√

2

− ζ 3 2(N − 2)(N − 1)N

3
√

2

− ζ 4 (N − 2)N (3N2 − 8N + 2)

6
√

2
· · · ,

bk ∼ ζ 0 1√
2

+ ζ 1 N√
2

+ ζ 2 N (2N − 3)

2
√

2

+ ζ 3 (N − 2)(N − 1)N

3
√

2

− ζ 4 (N − 2)N (4N2 − 6N + 5)

12
√

2
+ · · · . (A8)

Inserted into Eq. (A6), we find for each component of the
matrix Xk in Eq. (A6)

[Xk]11 = [Xk]22 ∼ −ζ−1 1

N
+ ζ 0 N−1

2N
− ζ 1 2N2−5

12N
+ · · · ,

[Xk]12 = −[Xk]21 ∼ ζ−10 − ζ 0 N − 2

2N
+ ζ 10 + · · · . (A9)

Note that a larger number of terms in Eq. (A8) is needed that
could potentially contribute to second order in Eq. (A9), due
to the singular nature of Xk . However, to leading order in N in
Xk , those terms finally do cancel.

2. Expansion in Laplace poles

The long-range asymptotics (in space and time) of Xk is
determined by its Laplace poles in the complex z plane [42].
As shown in Fig. 2, unitarity demands that these poles are all
located on the unit circle there, and we can parametrize them
as zj = eiωj . With a1 = b1 = z2/

√
2 we find from Eq. (A7) on

the unit circle

sin νj = −
√

2 sin ωj , sin σj = i e2iωj . (A10)

To find the Laplace poles of Xk in the second line of Eq. (A6),
we can ignore the first (nonsingular) matrix and focus on the
N -dependent zeros of the denominator of the second,

νj = 2π

N
j ∼ −

√
2ωj , (j ∈ Z), (A11)

in accordance with Fig. 2. Note, again, that such a result, ωj =
jθk with

θk =
√

2π

N
, (A12)

can only be obtained because we are in possession of the
closed-form solution of the RG flow. It will be the purpose
of the next section, and of the entire RG analysis generally,
to produce the scaling of the cutoff in time, 1/θk , with system
size N .

At small ωj , we also have from Eq. (A10) that sin σj ∼
i − 2ωj and cos σj ∼ √

2. To evaluate the residue of Xk at the
j th pole, we obtain

Rj = lim
z→e

iωj

(z − eiωj )Xk ∼ − 1

N

[
1 −iωj

iωj 1

]
∼ − 1

N
I,

(A13)

to leading order. Using ωj = jθk , we then express (some
component of) Xk in terms of h(N ) = O(N ) of such poles:

Xk ∼
h(N)∑

j=−h(N)

Rj

z − eiθkj
,

[Xk]11 ∼ −ζ−1 1

N
− 1

N

h(N)∑
j=1

[
1

ζ+1−eiθkj
+ 1

ζ+1−e−iθkj

]

∼ −ζ−1 1

N
− 1

N

h(N)∑
j=1

[
ζ 0 + ζ 1 2

θ2
k j 2

+ · · ·
]

∼ −ζ−1 1

N
− ζ 0 h(N )

N
− ζ 1

⎛
⎝h(N)∑

j=1

1

j 2

⎞
⎠ 2

Nθ2
k

+ · · · .

(A14)

The last line must be compared with the exact result in Eq. (A9).
The first term fits exactly, and the last term does fit with the
correct choice of θk in Eq. (A12) and the realization that the sum
is always finite, whether h(N ) is small or divergent. The key
observation concerns the middle term: There, the comparison
demands that h(N ) ∼ N , i.e., that we must sum over O(N )
poles to make the match consistent. We thus conjecture this to
be generically true. In fact, the application of this conjecture
allows us to consistently interpret the results for the DSG (and
other networks).

3. RG-flow solution

Typically, such as for the case of the DSG in Eq. (17) or
MK3 in Eq. (26), we do not possess a closed-form solution of
the RG flow like Eq. (A2). In those cases, we would proceed as
in Sec. IV to obtain the asymptotic expansion of the RG flow
by expanding around the fixed point at z = 1. This expansion
[38] finds the Jacobian eigenvalues λ1 = λ2 = 2 to first order
and continues to yield

ak(z) ∼ 1√
2

+ ζAλk
1 + ζ 2α

(2)
k + ζ 3α

(3)
k + · · · ,

bk(z) ∼ 1√
2

+ ζBλk
2 + ζ 2β

(2)
k + ζ 3β

(3)
k + · · · , (A15)
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with

α
(2)
k ∼ 1√

2

(
Aλk

1

)2 − 1√
2

(
Bλk

2

)2 + · · · ,

α
(3)
k ∼ 1

3

(
Aλk

1

)3 − 5

3

(
Aλk

1

)(
Bλk

2

)2 + · · · ,

β
(2)
k ∼

√
2
(
Aλk

1

)(
Bλk

2

) + · · · ,

β
(3)
k ∼ 4

3

(
Aλk

1

)2(Bλk
2

) − 2

3

(
Bλk

2

)3 + · · · . (A16)

Inserting Eq. (A15) into the first line of Eq. (A6) yields

[Xk]11 = [Xk]22 ∼ −ζ−1 A + B√
2 λk

1,2(A2 + B2)
+ ζ 0 1

2

− ζ 1 λk
1,2(A + B)

6
√

2
+ · · · ,

[Xk]12 = −[Xk]21 ∼ ζ−1 A − B√
2 λk

1,2(A2 + B2)
− ζ 0 1

2

+ ζ 1 λk
1,2(A − B)

6
√

2
+ · · · , (A17)

where we have kept only terms to leading order in large λk
1,2 for

each order of ζ . With the (global) exact solution in Eq. (A8), we

can easily identify A = B = 1√
2
, however a (local) asymptotic

analysis does not provide such information. Thus, we would
not realize the accidental cancellation of the ζ±1 terms in the
off-diagonal elements of Xk in Eq. (A17). As those terms are
appearing only as divergent as the ones on the diagonal, it will
not affect the conclusions.

In summary, the RG would tell us that each component of
Xk has the form

[Xk]ij ∼ ζ−1O
(
λ−k

1,2

) + ζ 0O(1) + ζ 1O
(
λk

1,2

) + · · · . (A18)

Thus, by comparing the ζ−1 term between Eq. (A18) and the
expected form of the amplitude in Eq. (A14), we determine
h(N ) ∼ λk

1,2 = N . This allows us to conclude that log2 λ1 =
df , based on the fact that this relation has been observed on all
networks studied thus far. This relation may seem obvious from
λk

1 = 2k but could well be a mere coincidence. (For example,
it would be wrong to conclude generally that log2 λ2 provides
df .) Furthermore, comparing the ζ 1 terms provides that λk

1,2 ∼
1/(Nθ2

k ), i.e., that the temporal cutoff scales as θk ∼ λ−k
1,2 ∼

1/N , which implies by Eq. (1) that dQ
w = log2 λ1,2 = 1. Note,

though, that our main conclusion here is that by comparing
order ζ 0 terms we must assume h(N ) ∼ N for a consistent
interpretation, i.e., O(N ) such poles contribute to this result to
make Eq. (A18) consistent with the corresponding expansion
of Laplace poles in Eq. (A14). Luckily, we do not need to know
anything about those poles.
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Potoček, C. Hamilton, I. Jex, and C. Silberhorn, Science 336, 55
(2012).

[16] A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R.
Fazio, L. Sansoni, F. D. Nicola, F. Sciarrino, and P. Mataloni,
Nat. Photon. 7, 322 (2013).

[17] K. Manouchehri and J. Wang, Physical Implementation of
Quantum Walks (Springer, Berlin, 2014).

[18] V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao,
Phys. Rev. Lett. 118, 130501 (2017).

[19] C. W. Duncan, P. Öhberg, and M. Valiente, Phys. Rev. B 95,
125104 (2017).

[20] H. Friedman, D. A. Kessler, and E. Barkai, Phys. Rev. E 95,
032141 (2017).

[21] Random Walks and their Applications in the Physical and
Biological Sciences, edited by M. F. Shlesinger and B. J. West
(American Institute of Physics, New York, 1984).

[22] G. H. Weiss, Aspects and Applications of the Random Walk
(North-Holland, Amsterdam, 1994).

[23] B. D. Hughes, Random Walks and Random Environments
(Oxford University Press, Oxford, 1996).

[24] R. Metzler and J. Klafter, J. Phys. A 37, R161 (2004).
[25] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695 (1987).
[26] N. Konno, Quant. Info. Proc. 1, 345 (2002).
[27] G. Grimmett, S. Janson, and P. F. Scudo, Phys. Rev. E 69, 026119

(2004).
[28] P. L. Krapivsky, J. M. Luck, and K. Mallick, J. Phys. A 48,

475301 (2015).
[29] A. Ambainis, J. Kempe, and A. Rivosh, in Proceedings of the Six-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’05 (SIAM, Philadelphia, 2005), pp. 1099–1108.

012309-8

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1007/BF02199356
https://doi.org/10.1007/BF02199356
https://doi.org/10.1007/BF02199356
https://doi.org/10.1007/BF02199356
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1016/j.physrep.2011.01.002
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1038/nature05678
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.100.170506
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.102.180501
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1103/PhysRevLett.106.180403
https://doi.org/10.1038/nature09827
https://doi.org/10.1038/nature09827
https://doi.org/10.1038/nature09827
https://doi.org/10.1038/nature09827
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1103/PhysRevLett.108.010502
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1126/science.1218448
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1038/nphoton.2013.26
https://doi.org/10.1103/PhysRevLett.118.130501
https://doi.org/10.1103/PhysRevLett.118.130501
https://doi.org/10.1103/PhysRevLett.118.130501
https://doi.org/10.1103/PhysRevLett.118.130501
https://doi.org/10.1103/PhysRevB.95.125104
https://doi.org/10.1103/PhysRevB.95.125104
https://doi.org/10.1103/PhysRevB.95.125104
https://doi.org/10.1103/PhysRevB.95.125104
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1103/PhysRevE.95.032141
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1088/0305-4470/37/31/R01
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1023/A:1023413713008
https://doi.org/10.1023/A:1023413713008
https://doi.org/10.1023/A:1023413713008
https://doi.org/10.1023/A:1023413713008
https://doi.org/10.1103/PhysRevE.69.026119
https://doi.org/10.1103/PhysRevE.69.026119
https://doi.org/10.1103/PhysRevE.69.026119
https://doi.org/10.1103/PhysRevE.69.026119
https://doi.org/10.1088/1751-8113/48/47/475301
https://doi.org/10.1088/1751-8113/48/47/475301
https://doi.org/10.1088/1751-8113/48/47/475301
https://doi.org/10.1088/1751-8113/48/47/475301


ANALYSIS OF COINED QUANTUM WALKS WITH … PHYSICAL REVIEW A 97, 012309 (2018)

[30] N. Inui, N. Konno, and E. Segawa, Phys. Rev. E 72, 056112
(2005).

[31] S. Falkner and S. Boettcher, Phys. Rev. A 90, 012307
(2014).

[32] S. Boettcher, S. Falkner, and R. Portugal, Phys. Rev. A 90,
032324 (2014).

[33] A. Maritan and A. Stella, J. Phys. A 19, L269 (1986).
[34] H. A. Ceccatto, W. P. Keirstead, and B. A. Huberman, Phys. Rev.

A 36, 5509 (1987).
[35] V. Kendon, Math. Struct. Comput. Sci. 17, 1169 (2007).
[36] A. Romanelli, R. Siri, G. Abal, A. Auyuanet, and R. Donangelo,

Physica A (Amsterdam) 347, 137 (2004).
[37] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, England, 2001).
[38] S. Boettcher, S. Falkner, and R. Portugal, J. Phys.: Conf. Ser.

473, 012018 (2013).

[39] S. Boettcher, S. Falkner, and R. Portugal, Phys. Rev. A 91,
052330 (2015).

[40] M. Szegedy, in Proceedings of the 45th IEEE Symposium on
the Foundations of Computer Science (IEEE, New York, 2004),
pp. 32–41.

[41] F. Magniez, A. Nayak, P. C. Richter, and M. Santha, in Proceed-
ings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09 (SIAM, Philadelphia, 2009), pp. 86–95.

[42] S. Boettcher, S. Li, and R. Portugal, J. Phys. A 50, 125302
(2017).

[43] M. Plischke and B. Bergersen, Equilibrium Statistical Physics,
2nd ed. (World Scientific, Singapore, 1994).

[44] S. Boettcher, S. Li, T. D. Fernandes, and R. Portugal,
arXiv:1708.05339.

[45] S. Boettcher and J. L. Pughe-Sanford, arXiv:1709.06414.
[46] A. N. Berker and S. Ostlund, J. Phys. C 12, 4961 (1979).

012309-9

https://doi.org/10.1103/PhysRevE.72.056112
https://doi.org/10.1103/PhysRevE.72.056112
https://doi.org/10.1103/PhysRevE.72.056112
https://doi.org/10.1103/PhysRevE.72.056112
https://doi.org/10.1103/PhysRevA.90.012307
https://doi.org/10.1103/PhysRevA.90.012307
https://doi.org/10.1103/PhysRevA.90.012307
https://doi.org/10.1103/PhysRevA.90.012307
https://doi.org/10.1103/PhysRevA.90.032324
https://doi.org/10.1103/PhysRevA.90.032324
https://doi.org/10.1103/PhysRevA.90.032324
https://doi.org/10.1103/PhysRevA.90.032324
https://doi.org/10.1088/0305-4470/19/5/010
https://doi.org/10.1088/0305-4470/19/5/010
https://doi.org/10.1088/0305-4470/19/5/010
https://doi.org/10.1088/0305-4470/19/5/010
https://doi.org/10.1103/PhysRevA.36.5509
https://doi.org/10.1103/PhysRevA.36.5509
https://doi.org/10.1103/PhysRevA.36.5509
https://doi.org/10.1103/PhysRevA.36.5509
https://doi.org/10.1017/S0960129507006354
https://doi.org/10.1017/S0960129507006354
https://doi.org/10.1017/S0960129507006354
https://doi.org/10.1017/S0960129507006354
https://doi.org/10.1016/j.physa.2004.08.070
https://doi.org/10.1016/j.physa.2004.08.070
https://doi.org/10.1016/j.physa.2004.08.070
https://doi.org/10.1016/j.physa.2004.08.070
https://doi.org/10.1088/1742-6596/473/1/012018
https://doi.org/10.1088/1742-6596/473/1/012018
https://doi.org/10.1088/1742-6596/473/1/012018
https://doi.org/10.1088/1742-6596/473/1/012018
https://doi.org/10.1103/PhysRevA.91.052330
https://doi.org/10.1103/PhysRevA.91.052330
https://doi.org/10.1103/PhysRevA.91.052330
https://doi.org/10.1103/PhysRevA.91.052330
https://doi.org/10.1088/1751-8121/aa5bc1
https://doi.org/10.1088/1751-8121/aa5bc1
https://doi.org/10.1088/1751-8121/aa5bc1
https://doi.org/10.1088/1751-8121/aa5bc1
http://arxiv.org/abs/arXiv:1708.05339
http://arxiv.org/abs/arXiv:1709.06414
https://doi.org/10.1088/0022-3719/12/22/035
https://doi.org/10.1088/0022-3719/12/22/035
https://doi.org/10.1088/0022-3719/12/22/035
https://doi.org/10.1088/0022-3719/12/22/035



