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Finding paths in tree graphs with a quantum walk
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We analyze the potential for different types of searches using the formalism of scattering random walks on
quantum computers. Given a particular type of graph consisting of nodes and connections, a “tree maze,” we
would like to find a selected final node as quickly as possible, faster than any classical search algorithm. We show
that this can be done using a quantum random walk, both through numerical calculations as well as by using the
eigenvectors and eigenvalues of the quantum system.
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I. INTRODUCTION

A. Quantum random walks

Quantum walks are quantum versions of classical random
walks, but because of interference, which is missing in the
classical walks, their behavior can be very different [1,2] (for
reviews, see [3,4]). They have proven useful in a number of
algorithmic applications, one of which is searches on graphs
[5–16]. Initially the searches were for distinguished vertices,
that is, vertices whose behavior is different than that of the
other, normal vertices [5–10]. This has since been generalized
to searches with nonuniform unmarked edges [11], extra edges
[12,13], connections between graphs [14], and even a general
subgraph [15,16].

A more recent application of quantum walks is in state trans-
fer, where the objective is to use the quantum walk to transfer
the particle from a starting vertex to a final vertex, with high
probability. It was shown that by using a coined quantum walk,
a perfect state transfer can be achieved for a star graph and com-
plete graph with self-loops [17], as well as analysis on a com-
plete bipartite graph [18]. With the recent experimental realiza-
tion of discrete-time walks [19–24], it is hoped that these and
other quantum walk applications may some day soon be tested
experimentally.

Similar to the premise of state transfers, it has been shown
that it is possible to use a quantum walk to find a path between
two marked vertices [25]. In that study, the graph consisted of
M linked star graphs. Each star had N edges emanating from a
central hub, with each edge connected to an additional vertex,
which was called an external vertex to distinguish it from the
hub vertex. The stars were arrayed in a line. The first and last
stars each had a distinguished vertex, labeled START on the
first star and FINISH on the last star. Each star was connected to
its neighbor at one vertex, but it was not known which vertex on
star j , 1 � j � N − 1, was connected to which vertex on star
j + 1. A classical search would take of the order of O(MN )
steps to find the path between START and FINISH, while the
quantum walk only took of the order of O(M

√
N ) steps.

Here we want to extend the study of finding paths to tree
graphs.

B. N-tree maze

The focus of this paper is to explore the possibility of using
quantum walks as a means of searching complex mazes that
can be represented as nodes and connections on a graph G. To
do this, we explore its effectiveness on a specific type of graph,
an N -tree maze.

An N -tree maze is illustrated in Fig. 1. From the viewpoint
of a solver, the maze consists of junctions with N identical
choices. Beyond each choice is another identical junction with
N choices, and so on. The maze is characterized as M layers
deep; thus, to correctly find the exit, one must make M correct
choices in succession. The figure below would be categorized
as N = 2, M = 4. If an incorrect path is chosen at any point,
it is impossible to know exactly where the mistake was made
without backtracking and exhausting all possible paths.

The goal of searching through these graphs is to locate the
specified final node F . For this discussion, it is assumed that
the location S, the starting node, is known. The location of F

is unknown, but N and M are given.
Continuous-time quantum walks on trees have been studied

previously [26,27]. These papers studied joined trees. In the
first study, they showed that a quantum walk could traverse
the graph exponentially faster than a classical random walk.
In the second study, they found a task that the quantum walk
could solve exponentially faster than any classical algorithm.

The layout of this paper is as follows. In Sec. II, we discuss
how a classical computer searches through the maze and in-
troduce the formalism by which a quantum computer searches
using a quantum walk. In Sec. III, we discuss the resulting
quantum system after implementing the quantum walk and
the way probabilities are distributed throughout the maze.
In Sec. IV, we analyze the various ways one can use the
quantum walk to search for F . In particular, we analyze the
effectiveness of using the probability concentrated on the edges
connected to F versus using the probability concentrated along
the entire path from S to F . In Sec. V, we derive an expression
for the number of trials needed to find F with high probability.
And lastly, in Sec. VI, we provide approximate solutions
to N -tree mazes by studying the systems’ eigenvalues and
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FIG. 1. An N -tree maze, where N = 2 (also referred to as a
“binary tree”) and M = 4. F is always located at an end node at
the deepest layer.

eigenstates. We conclude by numerically solving for a form of
U (N,M), the function that gives the number of steps needed
to prepare a maze of size N,M for measurement.

II. CLASSICAL VS QUANTUM SEARCHES ON A MAZE

A. Classical search schemes

For a general maze that can be specified through nodes
and connections (also referred to as vertices and edges) on
a graph G, often times the best classical search algorithm is
a “depth-first” or “breadth-first” search. The two techniques
only differ in how they traverse the maze, but share the
same underlying principles. The algorithms search recursively
through the maze, where one “step” amounts to moving one
node at a time and keeping a list of all connected nodes as well
as those previously visited.

If we turn our attention to N -tree mazes, M layers deep,
the search best suited for this maze geometry is a depth-first
search. Since the general structure of the maze is known (no
internal loops or irregularities) and only the location of F is
unknown, the minimum number of steps to reach F is M ,
while the maximum is E, the total number of edges. E is equal
to (NM+1 − 1)/(N − 1), and thus the average number of steps
needed is of the order of O(NM ). The real merit of any quantum
search algorithm will then be to do better than this scaling.

Once begun, the classical search will always find F , given
enough time. The algorithm moves through the maze and
checks all the end nodes in succession, each one with a
probability of 1

NM . Figure 2 shows the probability of finding
the correct final node as a function of steps, searching on a
“binary tree” (N = 2), M = 3. In this example, there are eight
possible end nodes where F could be, and thus each jump in
the graph corresponds to the algorithm checking one of these
nodes.

As the size of these tree mazes gets larger, a linear ap-
proximation becomes more accurate. We will use these linear
approximations to compare classical vs quantum algorithms,
and their probabilities of finding the correct final node. On
average, the algorithm must check 50% of the final nodes
before finding the correct one, and thus the average number
of steps needed is of the order of O(NM ). The real merit of

FIG. 2. (N = 2,M = 3) The probability of successfully locating
F as a function of steps, using a classical depth-first search. Each time
an end node is checked, the result is a spike in probability.

any quantum search algorithm will then be to do better than
this scaling.

B. Quantum search using a random walk

To compete with the classical depth-first search, we will
use a scattering quantum walk algorithm on the same graph
geometry. Using this formalism, the particle resides on the
edges of the graph and can be thought of as being scattered by
the nodes. The Hilbert space H is spanned by 2E orthonormal
states, two states per edge of the graph. In particular, suppose
we have two nodes A and B connected by an edge. Then there
is a state |A,B〉 which represents the particle scattering into
node B, coming from node A, and vice versa for state |B,A〉.

The scattering walk is a discrete-time quantum walk. The
evolution of the system is given by a unitary operator U

that advances the walk one time step. This U is obtained
by combining the actions of local unitary operations, one for
each vertex, which describe the scattering at their respective
vertices. In particular, they relate the state entering the vertex
at one time step to the state(s) leaving the vertex at the next
time step. For a vertex connected to n edges, with n � 3, the
action of U is given by

U |j,A〉 = −r|A,j 〉 + t

n∑
k=1,k �=j

|A,k〉, (1)

where 1 � j � n, and

t = 2

n
,

r = n − 2

n
. (2)

The constants t and r can be thought of as transmission and
reflection coefficients, respectively. In the special case of end
nodes, defined by a node with only one connection, t = 0 and
r = eiθ . For these nodes, r can be any complex number of
modulus one, but for our purposes we will only consider the
cases where r is equal to either 1 or −1. Specifically, we let
the final node F reflect with −1, while all other end nodes
(including S) reflect with 1.

Now having defined H and the evolution of the system,
we must choose the initial state of the system. We start with an
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equal superposition of all states, reflecting the fact that we have
no a priori knowledge of the location of F . The fact that U acts
differently on F drives the quantum system into a nonuniform
distribution of probabilities, which is then probed by making
a measurement on the system.

III. QUANTUM WALK ON N-TREE MAZES

In this section, we will present results of using a quantum
walk on N -tree mazes. We look at two significant features that
arise: (1) The concentration of probability on the correct final
node F , and (2) the concentration of probability on all the states
making up the path from S to F . These results are generated
numerically. Later we will try to gain a better understanding
of them by looking at eigenstates of U , also numerically, in
Sec. VI.

In both cases, we find a cyclic rise and fall in probabilities.
Figure 3 shows an example of these trends.

The location of these peaks (the number of unitary steps
needed) increases with maze size, both N and M . We discuss
this in detail in Sec. VI, but for a rough sense of magnitude,
one needs of the order of O(N

M
2 ) unitary steps to reach the

peak in probability.

A. Probability concentration on F

By letting the correct final node reflect with −1, and all other
final nodes with +1, the result is peaks in probability where
F is significantly more probable than any other final node.
These peaks come in regular cycles, but only the first peak is
ever considered in this discussion. For these first peaks, Fig. 4
shows the maximum probability of measuring F for various
N and M values.

As shown, the peak probability decreases as N and M get
larger, which translates to more trials on average before finding
F . However, since this decrease in probability gets smaller
as the maze size increases, the effectiveness of using these
probabilities for searches will still prove useful.

B. Probability concentration on the path

Looking at Fig. 4, we see that at the first peak, the probability
that the particle making the walk is on one of the states
connected to F is quite low. By contrast, Fig. 5 reveals that
the probability of finding the particle on one of the states

FIG. 3. (N = 3,M = 10) The concentration of probability on
states representing the edge connected to F (solid line) and the sum
of the probabilities of the states representing the edges connecting S

to F (except the two states directly connected to S) (dashed line).

FIG. 4. Peak probabilities for measuring a state represented by
the edge connected to F .

connecting S to F (including the states connected to F ) is
quite high. This result was also shown in [25], where using the
same type of quantum walk, nearly all of the probability in the
system became concentrated along the path connecting a series
of stars. For our N -tree mazes, Fig. 5 shows the maximum
probability of measuring a state along the correct path for
various N and M values.

When we focus our attention on the states connecting S

to F , we find that the overall peak probability increases with
larger N and M . Thus, as the size of the maze increases, it
becomes more probable that a state along the correct path is
measured. In numerical tests, this trend continues as N and M

increase, with the path probability approaching 1 as N and M

become very large.
If we look at the breakdown of the peak path probability,

Fig. 6 shows an example of how the individual states each con-
tribute. Most importantly, even with individual fluctuations, all
the states along the path peak around the same time, giving rise
to the overall shape depicted in Fig. 3.

The curves that are all very closely clustered together near
the top are the states closest to the final node F , while the
curves corresponding to lower-peak values are closer to S. So
when a measurement is made at the moment of the peak path
probability, we see a simultaneous peaking of the correct path
state probabilities, slightly favoring states closer to F . This fact
will become meaningful in the next section, when we analyze
the use of the path probability as a means to search for F .

FIG. 5. Peak probabilities for measuring a state along the correct
path, which are states along the path connecting S to F .
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FIG. 6. (N = 2,M = 15) Plotted are the probabilities of the eight
closest edges (two states per edge) to F as a function of unitary steps.
The states bunched together at the top are closest to F . The three lines
with the lowest peaks represent the sixth, seventh, and eighth furthest
edges from F . Thus we can see that edges further away from F start
to contribute significantly less than edges closest to F , as quickly as
the halfway point in the path.

IV. COMPARING ALGORITHMS AND SPEEDS

Here we will lay out a few possible algorithm schemes that
take advantage of the quantum system and we compare their
effectiveness in finding F . There are two main disadvantages
that exclusively plague the quantum algorithms: (1) The system
must run a predetermined number of unitary steps before each
measurement. (2) All measurements are probabilistic, so any
measurements that fail to find F means that the entire quantum
system must be prepared again. We will see that the most
effective algorithms work to minimize these disadvantages.

For the quantum algorithm that will come later in this
section, we will always be preparing our quantum systems for a
peak path measurement. Let us define U (N,M) as the function
that gives us the prescribed number of unitary steps needed to
prepare our quantum system for this peak path measurement,
for any N and M . A complete form for this function will be
given in Sec. VI. For now, we would like to use U (N,M)
as a metric for defining “average speed,” which we shall use
throughout this paper.

Rather than expressing speed in terms of steps, let us define
average speed (for both classical and quantum) as follows:
the ratio of the average number of steps needed to find F

to U (N,M). Using this definition, for a given maze of size
N and M , the fastest a quantum algorithm can find F is
1. This is because we are always constrained to prepare our
quantum system, for a peak measurement, at least once. Thus
the theoretical limit of 1 would then correspond to a 100%
success rate of finding F on the first measurement.

A. Classical search speed

The classical search algorithm works like randomly picking
stones out of a bag, checking each final node to see if it is the
one, and, if not, moving onto the next one. Initially, all final
nodes have equal probability of being correct, with each wrong
node reducing the sample space by 1. Thus, the average speed
of the algorithm is determined by the average number of nodes
we need to check.

As depicted in Fig. 2, a linear approximation is sufficient,
especially for larger mazes. Equation (3) below gives the
linear function corresponding to the probability of success as
a function of steps,

P (steps) = steps

E
= steps∑M

i=0 Ni
. (3)

By setting P (steps) = 1
2 , we get the average number of steps

needed for a classical search: Stepsavg = E
2 . Thus, the classical

depth-first search algorithm needs to, on average, step through
roughly half the maze before finding the correct final node,
which scales like O(NM ).

B. Searching for F directly

Suppose we are only interested in searching for the correct
final node, discarding all other measurement results. This
method is analogous to the Grover search; however, here our
chance of success decreases with the size of the maze. As
a result, larger mazes will on average expect more failures.
Compounded with the fact that larger mazes require more
unitary steps to prepare, this type of search suffers drastically
from both disadvantages previously mentioned. Nevertheless,
we shall see that searching for F directly does indeed provide
a speedup over the classical search.

Provided that we know when to probe the quantum system
for the maximum probability of measuring F , say given by
UF (N,M), this type of search is analogous to rolling dice. We
prepare and probe the quantum system over and over until F

is found. If we let p be the probability of measuring F , then
our probability of success as a function of trials, T , as well as
the average number of trials are of the form

Psucc(T ) = 1 − (1 − p)T , (4)

Tavg = 1

p
. (5)

If we take the number of trials and multiply by the number
of unitary steps it takes to prepare the quantum system, this
gives us our relation between success probabilities and steps.
Figure 7 shows a comparison of these probabilities for the case
N = 2, M = 15.

Since the two types of probabilities are very different,
randomly picking stones versus rolling a dice, one must be
cautious in comparing the two. Figure 7 suggests that the
quantum search is favorable in practically all regions, but when
put into practice we want to avoid falling for a Monte Carlo
fallacy, thinking the quantum search is faster than it actually
is. For this reason, the average number of steps needed to find
F for the two searches are marked along the x axis. In terms
of average speed, as defined earlier, we take these average
numbers of steps and divide them by UF (N,M). We then find
that the classical search has an average speed of 21.4, while
the quantum search is 11.2, thus resulting in a speedup of 1.9.
For the quantum search, the average speed can also be viewed
as the average number of times the system will need to be
prepared.

Figure 8 shows the speedups (ratio of classical to quantum
average speeds) for N = 2, for various M .
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FIG. 7. (N = 2,M = 15) Probability of success as a function of
steps for a classical depth-first search (dashed line) and probability of
success as a function of steps using a quantum system to search for
F directly (solid line). The dashes along the x axis mark the point for
the average number of steps of the two searches, respectively.

Thus, we do indeed get a speedup by imitating the Grover
ideology and searching for F directly. We find that the speedup
increases with the size of the maze. Next, we will show that we
can do much better by utilizing what else the quantum system
has to offer, specifically the huge peak probability of the correct
path.

C. Moving through the maze

The major shortcoming of the pervious search scheme is the
amount of wasted steps. Every time a measurement does not
yield the correct final node, it is discarded. Rather than simply
starting over, it would be better if we could extract some kind
of meaningful information from these “failed” measurements.

This is preciously what our next quantum algorithm pro-
poses to do: use the information from previous measurements
to guide future ones. To do this, we probe the system when
measuring a state along the correct path has the highest

FIG. 8. (N = 2) The speedups of quantum over classical searches
as a function M . These speedups are the result of using the “search
for F directly” algorithm, analogous to a Grover search.

FIG. 9. (N = 2) The probabilities of measuring F when the
system is prepared to maximize the probability of F (circles), and the
probabilities of measuring F when the system is prepared to maximize
the probability of measuring a state along the correct path (triangles).

probability, rather than maximizing for measuring F . This is
because we are anticipating that most measurements will not
find F , so instead we will attempt to maximize the probability
of the measurement being along the correct path.

Since we will choose to probe at a different time, we need
to first make sure that we are not sacrificing our search for
F (which is the ultimate goal) by probing when the path is
most probable. Figure 9 shows a comparison of the probability
of measuring F when the system is prepared for maximal F

probability versus maximal path probability, for N = 2.
At lower M’s, particularly 5 and 6, we see a significant

decrease in probability for measuring F . However, as the size
of the maze increases, we get virtually no loss in probability
for F . Thus, for larger mazes, we do not sacrifice anything by
probing for a peak path measurement.

Now in order to make use of the following algorithm
scheme, it is assumed that we have flexible control over our
quantum system. Namely, we have the ability to turn nodes
“on” or “off.” Specifically, nodes that previously had multiple
connections when “on” now act as end nodes with only one
connection when “off.” Figure 10 below shows an example.
Suppose the edge marked with a star was the result of the first
measurement; the node connected to that edge, closer to S, is
then turned “off.” The result is that all the subsequent nodes
behind it are “frozen out,” illustrated by the gray dashed lines.
The remaining edges and nodes form a new graphG and Hilbert
space H.

FIG. 10. Following a measurement (marked by the star), we then
turn a single node “off” and consequently freeze-out edges and nodes
behind it (gray dashed lines). These frozen-out edges and nodes no
longer affect the active quantum system (black solid lines) and are no
longer in the Hilbert space H or unitary operator.
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Changing the geometry of the system is accompanied with
a change to the unitary operator U , to properly operate on the
new system H. In practice, we will only ever tweak our system
at one location, after a measurement has been made. But doing
so will always result in freezing out a large section of the initial
maze.

Now we are equipped to discuss the core idea proposed
by this paper: “moving” through the quantum system. By
movement, we mean changing our quantum system after we
make a measurement to reflect the algorithm’s scheme for
searching through the maze. As shown in Fig. 10, the result
of a measurement dictates which nodes we turn off or, in other
words, where we “move” through the maze. In the example
given, the measurement results in a movement from an M = 4
maze down to M = 2. From there, the process is repeated
until one of two outcomes occurs: the correct final node F

is measured or an incorrect final node is measured. In the latter
case, we must start over from the very beginning, turning on
all nodes and preparing the original full maze.

The benefits of moving from an M to a smaller M ′ (where
M ′ < M) layered maze are as follows: (1) Each preparation
of the system will cost fewer unitary steps to reach the
peak probability. (2) Each measurement will have a higher
probability of measuring the correct final node (except for a
few cases at lower M’s). Thus, if one can successfully move
through the maze in increments towards the correct final node,
both of the main disadvantages of the quantum algorithm are
minimized simultaneously.

However, the trade-off for movement is the potential new
risk of measurement leading to an incorrect step. Any algo-
rithm that utilizes movement through the maze must also have
a means of correcting for a movement in a wrong direction;
otherwise they could become permanently stuck. We will refer
to such an event as stepping into a “dead tree,” and analyze its
impact on the algorithm next.

D. Moving Into a dead tree

Let us discuss the event in which a measurement results in
a movement in the wrong direction, into a dead tree. Based
on the probabilities shown in Fig. 5, such an event has a
small occurrence rate, but is nevertheless worth analyzing. Our
interest is how quickly the algorithm finds a final node and
effectively exits the dead tree by resetting the problem back to
the initial maze.

When a measurement yields a state that is not along the
correct path, the solver has no way of knowing. Thus, following
the protocol of the algorithm, one would move to the smaller
maze and apply the prescribed number of unitary operations
based on U (N,M). However, since the special node F is no
longer in the system, the unitary evolution operator U has no
marked vertex to act on. The result is that the quantum walk
leaves all the states equally probable. But since the structure
of each maze is heavily weighted by states closer to the end
(refer to Fig. 1), having all the states be equally probable is a
huge advantage for measuring a final node or ones closest to a
final node.

As it turns out, the overall loss in speed for misstepping is
very negligible. Figure 11 below shows the average speed for
which the algorithm exits a dead tree, for N = 2.

FIG. 11. (N = 2) The average speed by which the algorithm
measures a final node and effectively exits the dead tree.

We can see that as M becomes larger, the average number
of wasted steps approaches U (N,M). Because of this, the risk
of dead trees slowing down the search algorithm becomes very
minimal. In addition, this slowdown of approximatelyU (N,M)
steps occurs based on the size of the maze at the measurement,
which in most cases is much smaller than the initial maze size.
The largest cost in speed from a misstep actually occurs after
the dead tree, when the initial maze, which has the largest
U (N,M), must be prepared again.

E. Results for following the measurement algorithm

Recall from Fig. 6 that states closer to the correct final node,
along the path, have slightly larger peak probabilities. Thus,
when a state along the path is measured, the resulting layer is on
average over half the distance to the final node, after which each
successive measurement does the same. Combine this style of
movement with the fact that the maze sizes and U (N,M) scale
exponentially and the result is a powerful searching algorithm.

Figure 12 below shows the average speed of this algorithm
in findingF , as well as the classical and searching forF directly
algorithms.

The results show that the movement algorithm outperforms
all previous searches. Most notably, as the size of the maze
increases, its speed slowly trends toward 1, the theoretical limit.

FIG. 12. (N = 2) Plotted are the average speeds for finding the
correct final node F , for all the algorithms discussed: jumping (circles
with dashed lines), search for F directly (triangles with dashed lines),
classical (squares with solid lines).
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In addition, the fact that the speeds are under 2 means that on
average the algorithm finds the correct final node without ever
making a misstep. Thus we see the true strength of relying
on path probabilities to help guide our quantum searches. In
summary, the quantum algorithm that makes use of movement,
and by extension avoids wasting information, outperforms
those which do not. In quantum systems where a projective
measurement completely collapses the wave function, it is ideal
if one can use the information gained from prior experiments
to help dictate future ones. For the movement algorithm, the
only instances where a measurement yields no information are
from measuring S or measuring a wrong final node.

Whether or not any useful information can be extracted
when an incorrect final node is measured, we do not know. We
will leave this as an open question for possible future work,
and next turn our attention towards some analytical solutions
for N -tree mazes.

V. NUMBER OF TRIALS

Let us examine how many trials the movement algorithm
will need to find F . In an N -tree maze, which is M layers
deep, the correct path from S to F has M + 1 edges. We
will label them with the coordinate x, where 1 � x � M + 1.
The edge connected to S is x = 1, x = 2 is the next edge on
the correct path, and x = M + 1 is the edge connected to F .
We shall assume that the probability of the particle being on
the correct path is p. This probability is close to one, and we
will assume that it is independent of the size of the tree, which
is a reasonable approximation for all but the smallest trees. We
begin by finding the probability of a measurement sequence
x1, x2, . . . ,xn, where x1 � x2 � · · · xn, because when we find
xj , we turn off the tree below this point and only search above
it. We assume that each edge on the correct path is equally
probable, which our numerical calculations show is a good
approximation (in actuality, we know that edges closer to F

have slightly higher probabilities). Letting pn(x1,x2, . . . ,xn)
be the probability for finding the sequence x1, x2, . . . ,xn, we
find that

p1(x1) = p

M + 1
,

p2(x1,x2) = p

M + 1

p

M − x1 + 2
, (6)

and, in general,

pn(x1,x2, . . . ,xn) = pn

M + 1

n−1∏
j=1

1

M − xj + 2
. (7)

Now let Psucc(y) be the probability of getting the edge con-
nected to F on the yth trial, but not before. We have that

Psucc(1) = p

M + 1
,

Psucc(2) =
M∑

x1=1

p2(x1,M + 1),

Psucc(y) =
M∑

x1=1

M∑
x2=x1

. . .

M∑
xy−1=xy−2

pn(x1,x2, . . . ,xy−1,M + 1). (8)

It is possible to approximate the sums in the above expressions
by integrals. For example, for y = 3, we find

Psucc(3) = p3

M + 1

M∑
x1=1

M∑
x2=x1

1

M − x1 + 2

1

M − x2 + 2

� p3

M + 1

∫ M

0
dx1

∫ M

x1

dx2
1

M − x1 + 2

× 1

M − x2 + 2

= p3

M + 1

1

2

[
ln

(
M + 2

2

)]2

. (9)

In general, we have that

Psucc(y) = 1

M + 1

py

(y − 1)!

[
ln

(
M + 2

2

)]y−1

. (10)

The probability of finding F on one of the first z trials is

Pfind(z) =
z∑

y=1

Psucc(y)

= p

M + 1

z∑
y=1

py−1

(y − 1)!

[
ln

(
M + 2

2

)]y−1

. (11)

Now consider the sum f (n,h) = ∑n
k=0 hk/k!, for h > 0.

The terms in the sum initially increase as n increases, reaching
a maximum when n is the greatest integer less than h.
After that, they decrease. This suggests that if we choose n

to be several times h, then the sum will be approximately
equal to eh. In more detail, using the Stirling approximation,
k! � kke−k , so

∞∑
k=n+1

hk

k!
�

∞∑
k=n+1

(
he

k

)k

�
(

he

k

)n+1 ∞∑
k=0

(
he

n

)k

=
(

he

k

)n+1 1

1 − (he/n)
, (12)

assuming (he/n) < 1. If we choose n = rhe, then the bound
is (1/r)rhe[r/(r − 1)]. So for he of the order of one, we can
choose an r of the order of one that will make the above sum
small and set f (n,h) � eh. Therefore, in Eq. (11), choosing z

to be of the order of p ln[(M + 2)/2], we have

Pfind �
(

M + 2

2

)p
p

M + 1
� (M + 2)

2(M + 1)
, (13)

where in the last step we have made use of the fact that p

is close to one. Consequently, we will need of the order of
ln[(M + 2)/2] trials to find F with high probability.

VI. FINDING EIGENVALUES AND EIGENVECTORS

We have now shown how one can effectively use the path
probabilities to find F more quickly (Sec. IV), as well as how
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the movement algorithm leads to fewer trials needed (Sec.
V). Returning to the final point made in Sec. IV E, for larger
mazes the average number of steps needed to solve the maze
approached the limit of U (N,M). These results were found
numerically, using the exact maximum path probability. But,
in general, for any N -tree maze, of any size, we would like
some form for U (N,M) that we can use.

In order to do so, we are interested in the eigenvectors and
eigenvalues of the operator U , which advances the walk one
step. Please note that this U represents the evolution of the
system for the case where the marked vertex is present in the
system, different from the U in the case of a dead tree. This
operator acts on a space of dimension 2E, but we can reduce
this by using symmetry. Since we start from an initial state of
the system in which all edges have the same amplitude, and
we are interested only in later states of the system that can be
reached from this initial state by the action of U , there will
be some edges that always will have the same amplitude. This
means that we only need to consider an equal superposition of
the corresponding edge states, thereby reducing the dimension
of the system. For example, in the tree in Fig. 1, the two edges to
the left of F will always have the same amplitude and the four
edges to the right of F will have the same amplitude. In both
cases, we can replace multiple edges with a single effective
edge. Doing so in an N -tree maze, with M layers, allows us to
consider a subspace of dimension (M + 1)(M + 2)/2. From
here, we let a computer find the eigenvectors and eigenvalues
of the matrix of U expressed in the basis of effective edge
states.

A. Eigenvector and eigenvalue characteristics

When we let a computer solve for the eigenvalues and eigen-
vectors, it is found that everything comes in pairs. Specifically:

(1) All eigenvalues come in pairs of complex conjugates.
(2) All eigenvectors come in pairs, where the values in each

vector come in corresponding complex conjugates.
(3) 〈u∗

i |�init〉 = 〈ui |�init〉∗, where |ui〉 is an eigenvector
of U .

This is a result of the fact that in the basis we are using, the
matrix elements of U are real. This implies that the coefficients
in the characteristic equation of the matrix are real, hence point
(1). For point (2), note that if U |ui〉 = λ|ui〉, then since U is
represented by a real matrix, taking the complex conjugate of
both sides gives us that |u∗

i 〉 is the eigenvector corresponding
to λ∗. Point (3) follows from the fact that the components of
|�init〉 are real.

By letting λi and |ui〉 be the eigenvalues and eigenvectors
of the matrix U , we can represent the evolution of our system,

Un|�init〉 =
d∑

i=1

βi(λi)
n|ui〉, (14)

where βi is the overlap of the eigenvector with the initial state

βi = 〈ui |�init〉. (15)

Since the dimensions of the matrix corresponding to U can
be quite large as M gets large, one would hope that only a
handful of the β’s are dominant, so that smaller terms can be
dropped, specifically, any pair of β’s that possesses the largest

|β| value. This indeed turns out to be the case, as all of the β’s
are small enough to be ignored except for two (a corresponding
pair of complex conjugates).

By keeping only the largest pair of β’s and dropping all
other terms, our approximate solution becomes

Un|�init〉 = βeiθλn|u〉 + β∗e−iθλn|u∗〉, (16)

where eiθλ is equivalent to the eigenvalue λi , expressed in polar
form.

Now suppose we are interested in the behavior of a partic-
ular state in our original basis. Using the result from Eq. (16),
we can reconstruct a given state, say |�〉, as follows:

Let zφ = 〈�|u〉 and let Wφ(n) be the amplitude of state |�〉
after n unitary steps, that is, Wφ(n) = 〈�|Un|�init〉. Then we
have

Wφ(n) = βeiθλnzφ + β∗e−iθλnz∗
φ. (17)

If we rewrite β and zφ in polar form, we get

Wφ(n) = |β||zφ|(ei(θβ+θz+θλn) + e−i(θβ+θz+θλn))

Wφ(n) = |β||zφ|2cos(θβ + θz + θλn) (18)

Thus, we get exactly the cyclic form we found numerically.
By using the two dominant β’s, we get the result of Eq. (18),
which is that the amplitude of each state behaves sinusoidally
as a function of unitary steps. Each edge state can be written
as a cosine, with an initial angle of θβ + θz, that increases by
θλn after n steps.

Equation (18) above is general for all of the states in the
system. However, we are primarily interested in the states that
make up the correct path from S to F , e.g., |α〉. For these states,
a more appropriate representation will be

|α〉 = |β||zφ|2 sin

([
θβ + θz + π

2

]
+ θλn

)

≈ |β||zφ|2sin(θλn). (19)

This is because for the states along the path, we find numer-
ically that the quantity [θβ + θz] is near −π

2 . As a result, the
states along the path behave like a sine function, reaching their
peak amplitude when n is O( π

2θλ
), offset just slightly by the

small initial angle [θβ + θz + π
2 ].

In addition to producing the observed sinusoidal nature,
this approximation also tells us that all the states along the
path should peak around the same time, which we indeed see.
Figure 13 below shows a comparison of the approximation
given in Eq. (19) versus the true value found numerically, as
a function of unitary steps. As we can see, for a relatively
small maze, the approximation is very close to the true value.
For larger N and M values, the approximation becomes even
better.

B. Extracting information for higher trends

Using the approximation from the previous section, our real
interest is to learn the form ofU (N,M), the function that tells us
the required number of unitary steps for a peak path probability.
With U (N,M) in hand, we can extend the search potential of
the previously laid out algorithms to any size maze.

To getU (N,M), we are going to use the eigenangles θλ from
the previous section. We will first get the function ε(N,M),
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FIG. 13. (N = 2,M = 10) Probability of the path states using the
approximation in Eq. (19) (dashed line) and actual probability of the
path, generated numerically (solid line).

which gives the eigenangle θλ corresponding to the most
dominant β’s, for any N and M . With the eigenangles ε(N,M),
we can then use the approximation in Eq. (19) to find the peak
probability.

When a three-dimensional (3D) plot is made of the ε(N,M),
with N and M on the x and y axes and the value of θλ on the z

axis, we find a decreasing function in both N and M . Looking
at the 3D plot in slices for when we set M to a constant value,
we can see recognizable trends for θλ as a function of just N .
These trends are of the form y = AxB , where A and B are
constants, and are plotted below in Fig. 14.

This reveals that our function is of the form

ε(N,M) = A(M)NB(M). (20)

Note that ε(N,M) here is in degrees. Using the best-fit
solutions, shown in Fig. 14, we can analyze the forms for A(M)
and B(M). Doing so reveals

A(M) = αMβ,

B(M) = ρ + γM, (21)

where α, β, ρ, and γ are all constants. So we find that A(M)
also takes the form of a power function, while B(M) is linear.

FIG. 14. Eigenangles θλ plotted as a function of N (dots) and
power-fit curve of the form y = AxB (red line).

Putting everything together, we now have our approximate
form for ε(N,M) and, more importantly, U (N,M):

U (N,M) = 90

ε(N,M)
= 90

α
M−βN−ρ−γM, (22)

where

α ≈ 47.87, β ≈ −0.551,

ρ ≈ 0.077, γ ≈ −0.498. (23)

These constants are all found numerically using regression
fitting. Their exact values may vary slightly by using larger
sets of data to generate the regression fits. However, the values
provided were generated using N and M up to 15. When tested
to see if they reproduce the same peak path probabilities found
numerically earlier, they do indeed produce the same peak
probabilities, typically within 1–2% of the exact peak.

C. Final remarks

In conclusion, we have found an approximate form for
U (N,M) through analytical results. Using the regression con-
stants from Eq. (23), we see that the quantum system peaks
around the order of O(M0.55N0.5M ). Comparing this to the
classical speed O(NM ), we see a Grover-like speedup.

But this speedup is only possible by utilizing the follow-
the-measurement algorithm, which provides us with the fastest
means of finding F . Specifically, as shown in Fig. 12, the jump-
ing algorithm provides us with an average solving speed that is
a small multiple of U (N,M), roughly 1.5 times for the mazes
we studied. For larger mazes, the ln M factor from Sec. V
should manifest itself. For this reason, we can truly compare the
two solving speeds and say that the quantum system provides
a definitive speedup of the order of O(M0.55N0.5M ln M) over
O(NM ).

VII. CONCLUSION

We have developed a modification of the Grover search,
where the probability accumulates on a path instead of on a
marked vertex. When faced with the task of finding a special
vertex, hidden in the deepest layer of an N -tree maze, we have
shown that making use of the probabilities of the states leading
to the special vertex results in the fastest search. In particular, to
capitalize on the system’s high density of probability along the
correct path, it is necessary to incorporate changing the graph,
which we called “movement,” into the quantum algorithm.
The ability to “move” while searching for the special vertex is
analogous to the core element of the classical search.

Our efforts were focused solely on N -tree mazes due to their
high symmetry and resulting high peak path probabilities. We
would like to note that in addition to only F reflecting with
−1, we also examined the case where both S and F reflect
with −1, but found that letting S be a special vertex results in
a less-than-ideal probability distribution for searches.

It was shown analytically that when using the movement
algorithm to search for F , one needs on average fewer trials
to find F . Combining this result with the approximate form
of U (N,M) given in Sec. VI, we have an upper bound on the
average solving speed of O[M0.55N0.5M ln(M)].

In addition, by using computational tools to examine the
eigenvalues and eigenstates of the various mazes’ quantum
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systems, we provided an equation that reveals the underlying
sinusoidal nature of the time behavior of the system, to very
close approximation. And by using these approximations, we
were able to produce an approximate form to U (N,M). In
Sec. IV, we showed computationally that the solving speed
approaches the limit of U (N,M), ultimately showing that the
true average solving speed of the quantum algorithm utilizing

movement is of the order of O(M0.55N0.5M ), a speedup over
the classical speed of O(NM ).
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