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Entanglement is a unique feature of quantum theory and has tremendous potential for application. Nevertheless,
the complexity of quantum entanglement grows exponentially with an increase in the number of entangled
particles. Here we introduce a quantum state concentration scheme which decomposes the multipartite entangled
state into a set of bipartite and tripartite entangled states. It is shown that the complexity of the entanglement
induced by the large number of particles is transformed into the high dimensions of bipartite and tripartite entangled
states for pure quantum systems. The results not only simplify the tedious work of verifying the (in)equivalence
of multipartite entangled states, but also are instructive in the quantum many-body problem involving multipartite
entanglement.
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I. INTRODUCTION

Entanglement is regarded as an essential physical resource
of quantum information sciences, which are responsible for the
so-called second quantum revolution [1]. Besides the develop-
ment of quantum algorithms [2,3] and quantum computation
[4], every study related to many-body quantum system [5]
would benefit from a deeper understanding of multipartite
entanglement. Entanglement may be classified based on the
different tasks it performs in quantum information processing,
which forms the basis of the qualitative and quantitative
characterizations of multipartite entanglement [6]. Though an
enormous amount of work in the literature has been dedicated
to this subject [7,8], a very limited amount of information
about multipartite entanglement has been obtained. This is
because the complexity of characterizing entanglement using
classical parameters, i.e., the coefficients of the quantum
state in decomposition bases, increases dramatically with the
number of particles and dimensions.

Two superficially different entangled states may be used to
implement the same quantum information task identically if
they are equivalent under local unitary (LU) operations and
different performances if they are equivalent under invertible
local operations [stochastic local operations and classical com-
munication (SLOCC)]. The LU equivalence of arbitrary multi-
partite entangled states could be understood via the high-order
singular-value decomposition (HOSVD) [9,10] and an alterna-
tive method also exists for multiqubit states [11,12]. However,
only the states with specific symmetries were explored by
effective methods under SLOCC [13,14]. While the coeffi-
cient matrix method is a practical but rather coarse-grained
classification method for multipartite entanglement [15],
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invariant polynomials encountered in distinguishing the in-
equivalent classes under SLOCC usually involve cumbersome
rational expressions [16]. A recent study shows that four-partite
entanglement may be well understood through its subsystem’s
entanglement [17]. Then one may naturally ask whether gen-
eral multipartite entanglement could also be understood by the
entangled subsystems, rather than by the classical parameters
(coefficients of the quantum state) alone.

In this paper we suggest a splitting scheme for the study of
multipartite entanglement, which nontrivially generalizes the
method of [17] to arbitrary multipartite states. By introducing
virtual particles and performing a sequence of high-order
singular-value decompositions, a multipartite entangled pure
state is transformed into a set of states with only bipartite and
tripartite entangled states. This set of states, which we call
core entangled states, forms a hierarchical structure. The con-
centration of multipartite entanglement to the core entangled
states exhibits a structure similar to that of the tree tensor
network state [18]. By applying entanglement classification
we find that two multipartite states are equivalent under LU
operation or SLOCC if and only if their core entangled states in
each hierarchy are equivalent under LU operation and SLOCC,
respectively.

II. QUANTUM STATE CONCENTRATION

An arbitrary (I1×I2× · · · ×IN )-dimensional multipartite
quantum state has the form

|�〉 =
I1,I2,...,IN∑

i1,i2,...,iN =1

ψi1i2···iN |i1〉|i2〉 · · · |iN 〉, (1)

where the complex numbers ψi1i2···iN ∈ C are coefficients of
the state in the orthonormal basis {|i1〉,|i2〉, . . . ,|iN 〉}. In this
form, the quantum state may be regarded as a high-order
tensor � whose tensor elements are ψi1i2···iN and the inner
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FIG. 1. A 12-partite entangled state is first transformed into six tripartite states and one six-partite state: (�u1 ,�u2 , . . . ,�u6 ,�j1j2 ···j6 ).
Further rescaling may turn the 12-partite state into ten tripartite states and one bipartite state.

product of two states of the same quantum system is defined
as 〈� ′|�〉 = 〈ψ ′

i1···iN |ψi1···iN 〉 ≡ ∑I1,I2,...,IN

i1,i2,...,iN=1 ψ ′∗
i1i2···iN ψi1i2···iN .

We group every two particles into a composite one, i.e.,
(i1i2)(i3i4) · · · (iN−1iN ), and make the map (i2k−1i2k) �→ jk

such that jk = (i2k−1 − 1)I2k + i2k (we may set j(N+1)/2 =
iN for N odd). This rescaling of the quantum state can be
expressed as

|�〉 =
I1,I2,...,IN∑

i1,i2,...,iN =1

ψ(i1i2)(i3i4)···(iN−1iN )|i1i2〉|i3i4〉 · · · |iN−1iN 〉

=
J1,J2,...,JM∑

j1,j2,...,jM=1

ψj1j2···jM
|j1〉|j2〉 · · · |jM〉. (2)

Now� may be regarded as anM-partite quantum state rescaled
from the N -partite state.

For an M-order tensor � with dimensions of
J1×J2× · · · ×JM , its kth mode matrix unfolding is represented
by �(k), which is a [Jk×(Jk+1 · · · JMJ1J2 · · · Jk−1)]-
dimensional matrix with matrix elements ψjk (jk+1···jMj1j2···jk−1)

[19]. The HOSVD of the M-partite state � is

� = U (1) ⊗ U (2) ⊗ · · · ⊗ U (M)�, (3)

where unitary matrices U (k) = (�u (k)
1 , . . . ,�u (k)

Jk
) are composed of

the left singular vectors of �(k) and � is called the core tensor of
� [9,19]. The core tensor � has the tensor elements ωj1j2···jM

and is all orthogonal, i.e., 〈ωj1···jk=α···jM
|ωj1···jk=β···jM

〉 = δαβ ,
k ∈ {1, . . . ,M}. Equation (3) can also be written in the form
of tensor elements

� =
r1,r2,...,rM∑

j1,j2,...,jM=1

ωj1j2···jM
�u (1)

j1
◦ �u (2)

j2
◦ · · · ◦ �u (M)

jM
. (4)

Here rk is the local rank of the kth mode matrix unfolding of �

and �u (k)
jk

are (I2k−1×I2k)-dimensional orthonormal vectors for
jk ∈ {1, . . . ,rk}, with ◦ being the direct product. The singular
vectors in the unitary matrix U (k) can be grouped into two parts
according to the rank rk ,

U (k) = (
U

(k)
1 ,U

(k)
0

)
, where U

(k)
1 ≡ (�u(k)

1 , . . . ,�u(k)
rk

)
,

U
(k)
0 ≡ (�u(k)

rk+1, . . . ,�u(k)
Jk

)
. (5)

We define the wrapping of an (I1×I2)-dimensional vector
�u into an I1×I2 matrix as [17]

W(�u) ≡

⎛
⎜⎜⎝

u1 uI1+1 · · · u(I2−1)I1+1

u2 uI1+2 · · · u(I2−1)I1+2
...

...
. . .

...
uI1 u2I1 · · · uI2I1

⎞
⎟⎟⎠ (6)

and the vectorization of a matrix is defined as V[W(�u)] ≡
�u. An (r×I1×I2)-dimensional tripartite pure state can be
expressed in tuples of matrices, that is, {	1, . . . ,	r}, where
	i ∈ CI1×I2 [17,20]. Hence, by wrapping the (I2k−1×I2k)-
dimensional vector �u(k)

jk
into an I2k−1×I2k matrix, we

get an rk×I2k−1×I2k tripartite state �uk
and its com-

plementary state �uk
from the unitary matrix U (k) =

(�u(k)
1 , . . . ,�u(k)

rk
,�u(k)

rk+1, . . . ,�u(k)
Jk

), i.e.,

�uk
≡ (

W
(�u(k)

1

)
, . . . ,W

(�u(k)
rk

))
,

�uk
≡ (

W
(�u(k)

rk+1

)
, . . . ,W

(�u(k)
Jk

))
, (7)

where W(�u(k)
i ) ∈ CI2k−1×I2k are (I2k−1×I2k)-dimensional com-

plex matrices [17].
The N -partite state � now is rescaled and decomposed into

M tripartite states and one M-partite state

� = (
�u1 ,�u2 , . . . ,�uM

,�r

)
. (8)

Here �uk
are (rk×I2k−1×I2k)-dimensional tripartite states as

defined in Eq. (7) and �r is an (r1×r2× · · · ×rM )-dimensional
M-partite state whose coefficients are ωj1j2···jM

. Further rescal-
ing of �r as in Eq. (2) and then wrapping the singular
vectors would lead to another set of tripartite states where
one may get a hierarchical structure of tripartite states for the
multipartite entangled state in the end (see Fig. 1). We call this
decomposition of a multipartite entangled state into bipartite
and tripartite entangled states the quantum state concentration,
which exhibits a form quite similar to the tree tensor network
state [18]. To exemplify the application of the scheme in
the quantum many-body problem, we apply the quantum
state concentration technique to the multipartite entanglement
classification.

For the equivalence (under LU operation or SLOCC) of two
N -partite states � ′ and �, we have the following theorem,
which is a multipartite generalization of Ref. [17].
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Theorem 1. Two N -partite entangled states � ′ and � are
equivalent if and only if the quantum states in the decompo-
sitions � ′ = (�u′

1
, . . . ,�u′

M
,�′

r ) and � = (�u1, . . . ,�uM
,�r )

are equivalent in the following way:

�u′
k
= P (k) ⊗ A2k−1 ⊗ A2k�uk

∀ k ∈ {1, . . . ,M}, (9)

�r = P (1) ⊗ · · · ⊗ P (M)�′
r , (10)

where Ai and P (k) are all invertible (or unitary) matrices for
SLOCC (or LU) equivalence.

Proof. First, if � ′ = A1 ⊗ · · · ⊗ AN �, then the HOSVD
of the rescaled M-partite � ′ and � is equivalent to

U ′(1) ⊗ · · · ⊗ U ′(M)�′

= (A1 ⊗ A2)U (1) ⊗ · · · ⊗ (A2M−1 ⊗ A2M )U (M)�. (11)

Here �′ and � have the nonzero parts of �′
r and �r , respec-

tively. Substituting the QR factorization (A2k−1 ⊗ A2k)U (k) =
Quk

Ruk
into Eq. (11) and applying HOSVD to Ru1 ⊗ · · · ⊗

RuM
�, we get

Ru1 ⊗ · · · ⊗ RuM
� = Xu1 ⊗ · · · ⊗ XuM

�′, (12)

U ′(k) = Quk
Xuk

∀ k ∈ {1, . . . ,M}, (13)

where Xuk
are unitary matrices. Equations (12) and (13) also

give

� = (
R−1

u1
Xu1

) ⊗ · · · ⊗ (
R−1

uM
XuM

)
�′, (14)

U ′(k) = (A2k−1⊗A2k)U (k)
(
R−1

uk
Xuk

)∀ k ∈ {1, · · · ,M}. (15)

If we let P̃ (k) ≡ R−1
uk

Xuk
, because �′ and � have the same local

ranks of rk , Eq. (14) leads to

P̃ (k) =
(

P (k) Y (k)

0 P
(k)

)
. (16)

Here P (k) ∈ Crk×rk and P
(k) ∈ C(I2k−1×I2k−rk )×(I2k−1×I2k−rk ) are

invertible matrices and P̃ (k) are unitary if all matrices Aj are
unitary, which is easy to see from Eq. (15). As the tensor
elements ω′

j1j2···jM
and ωj1j2···jM

of the core tensors � and �′
are nonzero only for 1 � jk � rk ∀ k ∈ {1, . . . ,M}, Eqs. (14)
and (16) lead to Eq. (10). In addition, substituting Eq. (16) in
Eq. (15), we have(�u ′(k)

1 ,�u ′(k)
2 , . . . ,�u ′(k)

rk

) = A2k−1 ⊗ Ak

(�u(k)
1 ,�u(k)

2 , . . . ,�u(k)
rk

)
P (k),

(17)

where �u ′(k)
i and �u(k)

i are from U ′(k) = (U ′(k)
1 ,U

′(k)
0 ) and U (k) =

(U (k)
1 ,U

(k)
0 ) based on the definition in Eq. (5). The wrap-

ping operations make (W(�u ′(k)
1 ), . . . ,W(�u ′(k)

rk
)) = �u′

k
and

(W(�u(k)
1 ), . . . ,W(�u(k)

rk
)) = �uk

, therefore Eq. (17) is equivalent
to Eq. (9).

Second, Eq. (9) may be expressed in the form

U
′(k)
1 = (A2k−1 ⊗ A2k)U (k)

1 P (k) ∀ k ∈ {1, . . . ,M}, (18)

where U
′(k)
1 = (�u ′(k)

1 , . . . ,�u ′(k)
rk

) and U
(k)
1 = (�u(k)

1 , . . . ,�u(k)
rk

) are

from U ′(k) = (U ′(k)
1 ,U

′(k)
0 ) and U (k) = (U (k)

1 ,U
(k)
0 ). It is legitimate

to construct the matrix P̃ (k) = (P (k) Y (k)

0 P
(k)

)
such that

U ′(k) = (A2k−1 ⊗ A2k)U (k)

(
P (k) Y (k)

0 P
(k)

)
, (19)

where P
(k)

is invertible (unitary when Aj are unitary). The
decomposition � ′ = (�u′

1
, . . . ,�u′

M
,�′

r ) can be expressed as

� ′ = U ′(1) ⊗ · · · ⊗ U ′(M)�′

= (A1 ⊗ A2)U (1)P̃ (1) ⊗ · · ·⊗ (A2M−1 ⊗ A2M )U (M)P̃ (M)�′

= (A1 ⊗ A2)U (1) ⊗ · · · ⊗ (A2M−1 ⊗ A2M )U (M)�

= A1 ⊗ A2 ⊗ · · · ⊗ A2M�. (20)

Here Eq. (19) is used in the second equality and Eq. (10) is used
in the third equality. Therefore, � ′ and � are equivalent under
SLOCC or LU operation when Ai are invertible or unitary.
Q.E.D.

Theorem 1 decomposes the N -partite entangled state into
M tripartite states and one M-partite state, where M = ⌈

N
2

⌉
is the smallest integer greater than or equal to N/2. The M-
partite state could be further rescaled and turn into another set
of �M

2 � tripartite states and one �M
2 �-partite entangled state.

Along this line, one may finally get a hierarchy of tripartite
entangled states and one bipartite entangled state (see Fig. 1).
This scheme therefore reduces the entanglement classifications
of a multipartite state to that of only bipartite and tripartite
states and makes the tripartite entanglement a key ingredient
of quantum entanglement.

The fact that the set of tripartite and bipartite entangled
states represents faithfully multipartite entanglement can be
understood as follows. The number of parameters needed to
characterize the entanglement classes under SLOCC for an
I1×I2× · · · ×IN quantum state is [6]

NI1×···×IN
= 2(I1I2 · · · IN − 1) − 2

N∑
i=1

(
I 2
i − 1

)
. (21)

In the decomposition � = (�u1, . . . ,�uM
,�r ) of Theorem 1,

the number of parameters becomes N3 + NM , where

N3 =
M∑

k=1

[
2(rkI2k−1I2k − 1) − 2

(
I 2

2k−1 + I 2
2k − 2

)]
, (22)

NM = 2(r1r2 · · · rM − 1) − 2
M∑

k=1

(
r2
k − 1

)
. (23)

Here 2(I 2
2k−1 + I 2

2k − 2) are induced by A2k−1 and A2k in the M

tripartite entangled states and 2
∑M

k=1(r2
k − 1) are induced by

P (k) in the M-partite entangled states, according to Eqs. (9) and
(10) in Theorem 1. The number N3 + NM equals NI1×···×IN

in the worst case of rk = I2k−1I2k in the rescaling process.
Along this line, we will finally get a set of states with
bipartite and tripartite entangled states only and the complexity
of characterizing the entanglement of multipartite states is
transformed into the large numbers and high dimensions of
the tripartite and bipartite entangled states in the set.

To illustrate how the parameters in the multipartite state
transform under the decomposition of Theorem 1, we present
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explicit examples of a four-qubit and a six-qubit state. Considering the four-qubit state |�〉 = a1|0001〉 + a2|0010〉 + a3|0100〉 +
a4|1000〉, where we assume ai ∈ R for the sake of illustration, the state contains three independent real parameters (four parameters
with one normalization constraint). The four particles may be grouped as

|�〉 = a1|(00)(01)〉 + a2|(00)(10)〉 + a3|(01)(00)〉 + a4|(10)(00)〉 = a1|01〉 + a2|02〉 + a3|10〉 + a4|20〉. (24)

The last line in Eq. (24) is a bipartite state of 4×4 and can be represented by a matrix whose singular-value decomposition is

� =

⎛
⎜⎝

0 a1 a2 0
a3 0 0 0
a4 0 0 0
0 0 0 0

⎞
⎟⎠

= U
V † =

⎛
⎜⎜⎜⎝

1 0 0 0
0 a3√

a2
3+a2

4

0 −a4√
a2

3+a2
4

0 a4√
a2

3+a2
4

0 a3√
a2

3+a2
4

0 0 1 0

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎜⎝

√
a2

1 + a2
2 0 0 0

0
√

a2
3 + a2

4 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

0 1 0 0
a1√
a2

1+a2
2

0 0 −a2√
a2

1+a2
2

a2√
a2

1+a2
2

0 0 a1√
a2

1+a2
2

0 0 1 0

⎞
⎟⎟⎟⎠

†

. (25)

Based on Eq. (7), we obtained one bipartite state ψ
 = diag{
√

a2
1 + a2

2,

√
a2

3 + a2
4} and two tripartite states

ψu =
⎧⎨
⎩

(
1 0
0 0

)
,

1√
a2

3 + a2
4

(
0 a4

a3 0

)⎫⎬
⎭, ψv =

⎧⎨
⎩ 1√

a2
1 + a2

2

(
0 a2

a1 0

)
,

(
1 0
0 0

)⎫⎬
⎭, (26)

where there is one free parameter in each of them (note that
a2

3

a2
3+a2

4
+ a2

4

a2
3+a2

4
= 1). In this example, the parameters in the

multipartite entangled state |ψ〉 are evenly distributed among
the decomposed tripartite and bipartite entangled states. As
the number of core entangled states grows, there will be fewer
parameters in each individual decomposed state, which results
in a simplification to the practical entanglement classification.

Considering the six-qubit quantum state |�〉 =
b1|000000〉+ b2|010101〉+ b3|101010〉+ b4|111111〉 with
bi ∈ R, we may group the six particles as follows:

|�〉 = b1|(00)(00)(00)〉 + b2|(01)(01)(01)〉
+ b3|(10)(10)(10)〉 + b4|(11)(11)(11)〉

= b1|000〉 + b2|111〉 + b3|222〉 + b4|333〉, (27)

where the last line represents a tripartite state of 4×4×4. An
HOSVD to this tripartite state leads to

φuk
=

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

k ∈ {1,2,3} (28)

|φ�〉 = b1|000〉 + b2|111〉 + b3|222〉 + b4|333〉. (29)

That is, we get three 4×2×2 entangled states φu1 , φu2 , and
φu3 and one 4×4×4 state |φ�〉. Further decomposition of
Eq. (29) may be performed according to the grouping of |φ�〉 =
b1|(00)0〉 + b2|(11)1〉 + b3|(22)2〉 + b4|(33)3〉. However, we
may stop at Eq. (29), as we have already decomposed the
multipartite state into only tripartite states. In this example,
all the parameters in |�〉 are transformed and concentrated
into the high-dimensional 4×4×4 tripartite state and there is
no parameter in the other three tripartite entangled states φuk

,
k ∈ {1,2,3}.

These two explicit examples provide an understanding of
how our method works. The parameters of the multipartite
entangled state are redistributed and/or concentrated into the
core entangled states, which are at most tripartite entangled. In
the following we present two practical corollaries for verifying
the equivalence of tripartite entanglement under SLOCC and
LU operation. The realignment of a matrix A ∈ C(I1×I2)×(I1×I2)

according to the factorization of I1×I2 is defined as [21]

R(A) ≡ (
V(A11), . . . ,V

(
AI11

)
,V(A12), . . . ,

V
(
AI12

)
, . . . ,V

(
AI1I1

))T
,

whereR(A) ∈ C(I1×I1)×(I2×I2) and Aij ∈ CI2×I2 are the subma-
trices of A,

A =

⎛
⎜⎜⎝

A11 A12 · · · A1I1

A21 A22 · · · A2I1

...
...

. . .
...

AI11 AI12 · · · AI1I1

⎞
⎟⎟⎠. (30)

For two r×I1×I2 genuine tripartite entangled states
�u′ = (W(�u′

1), . . . ,W(�u′
r )) and �u = (W(�u1), . . . ,W(�ur )),

we may construct their complementary states,
i.e., �u′ = (W(�u′

r+1), . . . ,W(�u′
I1×I2

)) and �u =
(W(�ur+1), . . . ,W(�uI1×I2 )), where �u′

i and �ui are (I1×I2)-
dimensional vectors and U ′ = (�u′

1, . . . ,�u′
I1×I2

) and
U = (�u1, . . . ,�uI1·I2 ) are invertible matrices [17]. We have
the following corollaries.

Corollary 1. Two (r×I1×I2)-dimensional entangled quan-
tum states �u′ and �u are equivalent under local operators,
i.e., |�u′ 〉 = P ⊗ A1 ⊗ A2 |�u〉, if and only if there exist

P̃ = (P Y

0 P

) ∈ C(I1×I2)×(I1×I2) such that

rank[R(UP̃U ′−1)] = 1. (31)
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HereR is the matrix realignment according to the factorization
of I1×I2; P̃ and UP̃U ′−1 are invertible (unitary) for SLOCC
(LU) equivalences.

Proof. It has been shown that �u′ and �u are equivalent
under P , A1, and A2 if and only if [17]

(U ′
1,U

′
0) = (A1 ⊗ A2)(U1,U0)

(
P Y

0 P

)
. (32)

Therefore, (A−1
1 ⊗ A−1

2 ) = UP̃U ′−1. According to Lemma 3
of Ref. [22], UP̃U ′−1 is a direct product of two unitary
or invertible matrices if and only if UP̃U ′−1 is unitary or
invertible and R(UP̃U ′−1) has rank 1. �

Corollary 2. Two (r×I1×I2)-dimensional entangled quan-
tum states �u′ and �u are equivalent under local operators,
i.e., |�u′ 〉 = P ⊗ A1 ⊗ A2|�u〉, if and only if there exist P̃ =(P Y

0 P

) ∈ C(I1×I2)×(I1×I2) such that

F[W(UP̃U ′−1�a)] = F[W(�a)] ∀ �a. (33)

Here �a is an arbitrary (I1×I2)-dimensional vector; for SLOCC
equivalence, F denotes the rank; for LU equivalence, P̃

should be unitary and F denotes a concave, symmetric, and
strictly increasing function on singular values of matrices with
F(0) = 0.

Proof. The operator � = UP̃U ′−1 induces a linear map ϕ :
CI1×I2 �→ CI1×I2 for the wrapping W : W(��a) = ϕ[W(�a)]
[17]. The proof the Corollary 2 can be carried out straight-
forwardly by the application of linear preserver problem with
local ranks [23] and matrix norms [24]. �

With the state concentration technique, the verification of
SLOCC and LU equivalences of multipartite entanglement
turns to the bipartite and tripartite entanglement classifica-
tions. Corollaries 1 and 2 further simplify the verification of
equivalent relations for tripartite entanglement. Note that the
proposed method employs only linear equations in the verifi-

cation procedure [see Eq. (31)] and detailed information of the
connecting matrices, i.e., A1, . . . ,AN , is not a prerequisite for
both SLOCC and LU equivalences of two tripartite entangled
states [17].

III. CONCLUSION

The characterization of multipartite entanglement is a
longstanding tough issue in quantum information, due to the
dramatic increase in the number of parameters characterizing
it. In this work a quantum state concentration technique is
introduced, which turns the multipartite entangled state into
a set of bipartite and tripartite entangled states, and the
complexity of the entanglement characterization for multiple
particles is transformed into that of large numbers and high
dimensions of tripartite and bipartite entangled states in the
set. By exploring the method, the classification of multipartite
entanglement under SLOCC or LU operations is accomplished
by classifying only the core entangled states, i.e., tripartite and
bipartite entangled states. The results indicate that multipartite
entanglement is no more complex than the tripartite entangled
states of high enough dimensions. Considering the implicit
relation to the tree tensor network state, the scheme presented
here may also be instructive in other studies concerning
quantum multipartite states, e.g., condensed matter physics [5]
and quantum chemistry [25].
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