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Supraquantum nonlocality refers to correlations that are more nonlocal than allowed by quantum theory but
still physically conceivable in postquantum theories, in the sense of respecting the basic no-faster-than-light
communication principle. While supraquantum correlations are relatively well understood for finite-dimensional
systems, little is known in the infinite-dimensional case. Here, we study supraquantum nonlocality for bipartite
systems with two measurement settings and infinitely many outcomes per subsystem. We develop a formalism for
generic no-signaling black-box measurement devices with continuous outputs in terms of probability measures,
instead of probability distributions, which involves a few technical subtleties. We show the existence of a class of
supraquantum Gaussian correlations, which violate the Tsirelson bound of an adequate continuous-variable Bell
inequality. We then introduce the continuous-variable version of the celebrated Popescu–Rohrlich (PR) boxes,
as a limiting case of the above-mentioned Gaussian ones. Finally, we characterize the geometry of the set of
continuous-variable no-signaling correlations. Namely, we show that that the convex hull of the continuous-
variable PR boxes is dense in the no-signaling set. We also show that these boxes are extreme in the set of
no-signaling behaviors and provide evidence suggesting that they are indeed the only extreme points of the
no-signaling set. Our results lay the grounds for studying generalized-probability theories in continuous-variable
systems.
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I. INTRODUCTION

Bell nonlocality refers to correlations incompatible with
local hidden-variable theories [1], which explain correlations
between spacelike separated measurement outcomes as due
exclusively to past common causes. Since the pioneering works
of Bell [1] and of Clauser, Horn, Shimony, and Holt [2], it
is known that quantum mechanics admits Bell nonlocality,
i.e., that local measurements on quantum entangled states
produce Bell nonlocal correlations. However, nonlocality is
not a phenomenon exclusive of quantum theory. Hypotheti-
cal supraquantum theories satisfying the basic no-signaling
principle of no-faster-than-light communication, in consis-
tency with special relativity, can produce Bell correlations that
are even more nonlocal than those compatible with quantum
theory. This is generally referred to as supraquantum Bell
nonlocality. The first known example thereof was the so-
called Popescu–Rohrlich (PR) boxes [3]. These are hypothetic
black-box measurement devices that can violate the Clauser–
Horn–Shimony–Holt inequality up to its algebraic maximum
of four, which is above the maximum value of 2

√
2 attained

by quantum correlations, known as Tsirelson’s bound [4].
Importantly, the aim of studying supraquantum nonlocality

is by no means to question the validity of quantum mechanics
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but, rather on the contrary, actually to gain a better under-
standing of quantum nonlocality itself. For instance, even
though unphysical, PR boxes make excellent units of Bell
nonlocality, serving, in fact, as references to quantify the
nonlocal weight of quantum correlations [5,6]. Furthermore,
understanding why quantum mechanics is not as nonlocal
as allowed by the no-signaling principle gives us valuable
insights with foundational implications on the very axiomatic
structure of quantum theory. For instance, a seminal result in
this direction was the realization that the physical existence of
PR boxes would make communication complexity problems
trivial [7–9], which is a highly implausible possibility. Hence,
if one accepts that communication complexity is not trivial as
a postulate, the nonexistence of PR boxes is implied. In fact,
in a similar spirit, a large effort has been devoted to proposing
physically reasonable postulates from which Tsirelson’s bound
can be derived from first principles (see, e.g., Refs. [10–14]).

PR boxes have been generalized to arbitrary finite numbers
of measurement outcomes [15] and to multipartite systems
as well [16]. What is more, in the multipartite scenario,
nontrivial tight Bell inequalities are known without a quantum
violation, i.e., for which the quantum maximum coincides
with the local one and is below the no-signaling one [17]. In
addition, supraquantum nonlocality has been explored even in
the bipartite scenario where only one part makes measurements
[18]. From a broader perspective, Bell nonlocality in general-
ized probabilistic theories has been extensively studied in the
finite-dimensional case (see Ref. [19] and references therein).
Nevertheless, in striking contrast, essentially nothing is known
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about supraquantum nonlocality in continuous-variable (CV)
systems. On the one hand, this is surprising in view of the
huge amount of work on CV quantum nonlocality (see, e.g.,
Refs. [20–30]) and the importance of CV systems for quantum
information processing [31–33]. On the other hand, this is at
the same time understandable because, for CV systems, the set
of local correlations (as well as that of no-signaling ones) is a
generic convex set, instead of a (computationally much tamer)
convex polytope as in finite-dimensional systems [34–36].

In this article we explore CV supraquantum nonlocality.
To begin with, we develop a formalism to deal with generic
no-signaling black-box measurement devices with discrete
measurement settings (inputs) and CV measurement out-
comes (outputs). The correlations produced by such devices
are described by probability measures instead of probabil-
ity distributions. We then show the existence of a class of
supraquantum Gaussian PR boxes, for bipartite systems with
dichotomic inputs and real, continuous outputs. This is done
by showing that these behaviors violate the Cavalcanti–Foster–
Reid–Drummond (CFRD) inequality [25], which admits no
quantum violation in the bipartite case [30]. Next, we introduce
a limiting case of the supraquantum Gaussian behavior, a
hierarchy of CV PR boxes, whose ground level consists of
local, deterministic points and the upper levels of nonlocal,
nondeterministic ones. The CV PR boxes obtained are very
similar in structure to the finite-dimensional ones. To end up
with, we characterize the set of CV no-signaling behaviors
and show that all CV PR boxes are extreme points of the CV
no-signaling set, and that their convex hull (i.e., the set of all
finite convex sums) is dense therein. In particular, we discuss
whether the CV PR boxes are the only extreme no-signaling
behaviors and, along with some evidence, conjecture that this
is indeed the case.

The paper is structured as follows: In Sec. II, we set up
the mathematical framework for CV no-signaling behavior
based on probability measures. In Sec. III, we introduce the
supraquantum Bell nonlocal Gaussian behavior and the CV
PR boxes. Section IV is devoted to the geometrical characteri-
zation of the set of CV no-signaling set. Finally, we conclude in
Sec. V with some final remarks and perspectives of our work.

II. PRELIMINARIES: MATHEMATICAL
REPRESENTATION OF CONTINUOUS VARIABLE

BELL CORRELATIONS

We consider a bipartite Bell experiment where two spacelike
separated observers, conventionally referred to as Alice (A)
and Bob (B), make measurements. We work in the generic
device-independent scenario where the measurement appara-
tuses are treated as unknown black-box measurement devices
[see Fig. 1(a)]. Alice’s (Bob’s) device has a dichotomic input x
(y) ∈ {0,1} and a continuous output a (b) ∈ R. That is, we are
considering infinite resolution: we want to investigate the ideal
situation where the outputs can take any arbitrary real value.
The statistics produced by such devices is most conveniently
described in terms of probability measures, which we briefly
recap in what follows. We consider probability spaces defined
by a triple {�,B(�),μ}, where � denotes a sample space,B(�)
is the Borelσ algebra of events on� (i.e., the smallestσ algebra
that contains all open subsets of �) and μ : B(�) → [0,1] is

FIG. 1. Schematic representation of a bipartite Bell experiment
with continuous measurement outcomes in the so-called device-
independent scenario of black-box measurement instruments. Two
spacelike separated observers, Alice (A) and (Bob), perform local
measurements on their subsystems with dichotomic measurements
choices (inputs) x and y, respectively, and obtain continuous-variable
measurement outcomes (outputs) a and b.

a Borel probability measure. In our case, the sample space is
given by a product space � = �A × �B, with �A = �B = R,
where the first and second factors, �A and �B, correspond to
the outputs of A and B, respectively. The probability measure
μ is required to be normalized, μ(R × R) = 1, and to satisfy
the additivity property μ(

⋃
i=1 Ei) = ∑

i=1 μ(Ei) for every
countable sequence {Ei}i of disjoint events Ei ∈ B(R × R),
where ∪ stands for the set union. The probability of an event
E ∈ B(R × R) is then given by P (E) := μ(E). We denote the
set of all probability measures on B(R × R) as MR×R.

The connection between a probability measure μ and a
probability density p (with respect to the Lebesgue measure)
can be made explicit in the integral representation

μ(A × B) :=
∫

A×B

dμ(a′,b′) =
∫

A

∫
B

p(a′,b′)da′db′, (1)

where A × B ∈ B(R × R), A,B ∈ B(R), p(a′,b′) denotes the
corresponding probability density to μ, and dμ(a,b) and
da′db′ refer to integrations with respect to μ and the Lebesgue
measure on R × R, respectively. Note that not every prob-
ability measure can be expressed in terms of a probability
density as in Eq. (1). The question of the existence of a
probability density is answered by the Radon–Nikodym (RN)
theorem, whose statement is briefly reviewed in Appendix A.
While most assumptions of the RN theorem are fulfilled
by any probability measure on R × R, for us the crucial
prerequisite is that μ has to be absolutely continuous with
respect to the Lebesgue measure. However, as we see later
on, absolute continuity cannot be guaranteed for all types
of probability measures which will become important when
dealing with so-called boxes describing idealized unphysical
outcome scenarios. Hence, all in all, it is both more general and
more convenient to work with measures, because one needs not
worry about the existence of a density.

We thus arrive at the following definition:
Definition 1. (CV Bell behavior) A behavior is a joint

conditional probability measure represented by a 2 × 2 ma-
trix μ = {μx,y}x,y∈{0,1} with arbitrary probability measures
[μ]x,y := μx,y ∈ MR×R as entries. The set of all behaviors
is denoted as M4

R×R.
Note that, for finite-dimensional systems, the sample space

has a finite number of events, so that joint conditional
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probability measures reduce to the more usual notion of
joint conditional probability distributions [19]. Also as in the
discrete case, since the observers are spacelike separated, μ

must fulfill the no-signaling principle, given, in this language,
by the constraints

μx,y(A × R) = μx,y(A × R) ∀ x ∈ {0,1}, (2a)

μx,y(R × B) = μx,y(R × B) ∀ y ∈ {0,1}, (2b)

for all A,B ∈ B(R), where y = y ⊕ 1 and x = x ⊕ 1, with ⊕
being the sum modulo two.

Conditions (2a) and (2b) imply respectively that Alice’s
and Bob’s marginal measures μx(A) := μx,y(A × R) and
μy(B) := μx,y(R × B) are independent of each others’ input,
which prevents signaling. We call any μ satisfying these
conditions a no-signaling behavior, and denote the set of all
no-signaling behaviors by MNS ⊂ M4

R×R.
Quantum correlations, in turn, are those described by the

behaviors that can be expressed as

μx,y(A × B) = Tr [Mx(A) ⊗ My(B)�AB] (3)

for all A,B ∈ B(R), where ρAB is an arbitrary bipartite
quantum state on a Hilbert space H := HA ⊗ HB, with HA

and HB being the local Hilbert spaces of Alice’s and Bob’s
systems, respectively, and where Mx and My are, for all
x (y) ∈ {0,1}, semispectral measures, also known as positive-
operator valued measures (POVMs) [37]. The latter means
that Mx,My : B(R) → L�0(H) are maps such that, for all
A (B) ∈ B(R),Mx(A) ∈ L�0(HA) [My(B) ∈ L�0(HB)], with
L�0(HA) [L�0(HB)] being the space of positive semidefinite
operators on HA (HB); and that Mx(R) = 1A [My(R) = 1B],
with 1A (1B) being the identity operator on HA (HB). We call
any μ satisfying Eq. (3) a quantum behavior and denote the set
of all quantum behaviors by MQ. For generic Bell scenarios,
the relationship MQ ⊆ MNS holds. For the scenario under
consideration here, we show below that MQ ⊂ MNS. We call
any μ ∈ MNS \ MQ a supraquantum behavior.

The last important class for our purposes is the one of
classical correlations, described by the behaviors produced by
local hidden-variable models:

μx,y =
∫

�

δa(x,λ),b(y,λ)dη(λ), (4)

where λ is the hidden variable, taking values in a parameter
space � according to a probability measure η : B(�) → R�0,
and δa(x,λ),b(y,λ) is the CV version of the λth local deterministic
response function. More precisely, δa,b denotes the Dirac
measure at the point (a,b) ∈ R2, i.e., the deterministic measure
such that

δa,b(A × B) :=
{

1 if a ∈ A and b ∈ B

0 otherwise,
(5)

for all A,B ∈ B(R). In turn, for each λ ∈ �, a(x,λ) and
b(y,λ) are respectively deterministic functions of x and y, in
a similar spirit to the local deterministic response functions in
finite-dimensional scenarios [19]. Since the outputs are locally
generated from each input and the pre-established classical
correlations encoded in λ, one typically calls any μ given by
Eq. (4) a local behavior. We denote the set of all local behaviors

FIG. 2. Pictorial (not rigorous) geometrical representation of the
(possible) inner structure of the setMNS of CV no-signaling behaviors
in the Bell scenario of Fig. 1. MNS contains the set MQ of quantum
behaviors, which contains, in turn, the set ML of local behaviors.
All three sets are generic convex sets with infinitely many extreme
points, delimited by facets as well as curved hypersurfaces. This is
in contrast with the finite-dimensional case, where both MNS and
ML are convex polytopes, delimited exclusively by facets that can be
characterized by a finite number of linear Bell inequalities. In the plot,
an example of a linear Bell inequality is represented as the straight line
LI. Such linear inequality can, e.g., correspond to a Bell inequality for
finite-dimensional systems, which can be violated by CV quantum
correlations using so-called binning procedures [20–24,27,28] (see
also references in Ref. [19]). Besides this, a hypothetical quantum
extreme point is shown in the figure (light-blue corner). While
such points are in principle possible, no explicit example thereof
is known. In this paper we consider a nonlinear Bell inequality,
the CFRD inequality [25], represented as a curve in the plot. This
inequality applies in the genuinely CV scenario of our interest and
has, additionally, the appealing feature of admitting violations only
by supraquantum behaviors (see Sec. III). Finally, four exemplary CV
PR boxes are represented as extreme points of MNS (black dots).

by ML ⊆ MQ. In turn, any μ ∈ MNS \ ML is a nonlocal
behavior.

Finally, we emphasize that, in contrast with the finite-
dimensional case,ML does not define a polytope (i.e., a convex
set with finitely many extreme points); see Fig. 2. This is
due to the fact that Dirac measures are extreme in MNS and
ML is generated by a continuously infinite number of them.
It follows, then, that ML cannot be characterized by a finite
set of linear Bell inequalities [34–36]. In the next section, we
use a nonlinear Bell inequality to identify not only nonlocal
behaviors but supraquantum ones.

III. CONTINUOUS-VARIABLE SUPRAQUANTUM
NONLOCALITY

In Ref. [25], Cavalcanti, Foster, Reid, and Drummond
derived the nonlinear Bell inequality

[〈A0B0〉 − 〈A1B1〉]2 + [〈A0B1〉 + 〈A1B0〉]2

�
〈
A2

0B
2
0

〉 + 〈
A2

0B
2
1

〉 + 〈
A2

1B
2
0

〉 + 〈
A2

1B
2
1

〉
, (6)

where A0 and A1 (B0 and B1) are the real, continuous outputs
of Alice’s (Bob’s) box for the inputs 0 and 1, respectively. By
using the integral representation of Eq. (1), the expectation
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values of such observables appearing in the inequality can be
recast as cross-moments of the behavior elements μx,y :

〈
Ana

x Bnb

y

〉 =
∫
R2

anabnbdμx,y(a,b). (7)

Equation (6) can be generalized to a higher number of parties
[25] as well as observables per party [26]. We refer to the
bipartite dichotomic-input version of inequality, given by
Eqs. (6) and (7), as the CFRD inequality. The inequality has
a number of interesting properties [25,26]. Specially relevant
for our purposes is the fact that it cannot be violated by any
quantum behavior. This was first shown in Ref. [29] for the
restricted case of measurements of (quantum) phase-space
quadrature operators, and then extended to the general case
of arbitrary quantum measurements in Ref. [30]. Hence, the
CFRD constitutes a nontrivial Bell inequality with no quantum
violation. Any no-signaling behavior that violates it is thus
automatically certified as supraquantum, as we do next.

The first case that we study is a subclass of behaviors that
we term Gaussian PR boxes. To this end, we first introduce
two real vectors, a := (a1, . . . ,ak) and b := (b1, . . . ,bk), with
different components, i.e., such that a1 �= a2 �= · · · ak and b1 �=
b2 �= · · · bk , and one positive-real vector σ := (σ1, . . . ,σk), all
of length k ∈ N. The vectors a and b determine k points
(aj ,bj ) where Gaussian-measure components are centered;
while the vector σ := (σ1, . . . ,σk) determines their widths.
More precisely, then, we say that μ ∈ MNS is a Gaussian PR
box of order k, with center vector (a,b) and width vector σ , if
it is of the form

μ(k,a,b,σ )
x,y := 1

k

k∑
j=1

N(aj ,b[j+xy]k ),σj
, (8)

where [ ]k denotes modulo k and N(a,b),σ is the normal
(Gaussian) measure centered at (a,b) and with width σ , defined
through Eq. (1) with the probability density

p(a,b),σ (a′,b′) = 1

2πσ 2
e
− (a−a′)2+(b−b′)2

2σ2 . (9)

Whether a Gaussian PR box is supraquantum depends on
(a,b) and σ . As an example, consider next the simple case
with k = 2, a = (�, − �) = b, for some arbitrary � ∈ R�=0, and
σ = (σ,σ ), graphically represented in Fig. 3(a). It is immediate
to see that the resulting behavior violates the CFRD inequality
by the amount

max{8�4 − 4(σ 2 + �2)2,0}. (10)

This violation is plotted in Fig. 3(b) as a function of σ/�.
Note that it grows unboundedly with �. The condition for this
Gaussian PR box to violate the CFRD inequality is �/σ �
(1 + √

2)1/2 ≈ 1.55, as can be graphically appreciated in the
figure. In turn, taking, for the Gaussian PR box above, the limit
σ → 0, one obtains the behavior with components

μx,y = 1
2 [δ�,(−1)xy� + δ−�,−(−1)xy�], (11)

with δ being the measure defined in Eq. (5). This limiting box
violates the CFRD inequality by 4�4. In fact, it is the CV version
of the original dichotomic-input dichotomic output PR box [3].

Similarly, to define generic CV PR boxes, we take the σ →
0 limit of the Gaussian PR boxes of Eq. (12). That is, we say

FIG. 3. (a) Density plots of a Gaussian PR box of order two,
with center vector characterized by a = (�, − �) = b and width vector
σ = (�/5,�/5), for the inputs (x,y) = (0,0), (0,1), or (1,0) (left) and
(x,y) = (1,1) (right). Note that, for both plots, the projections onto the
horizontal as well as vertical axes coincide, reflecting the fact that the
behavior is no-signaling. Each center point may also have a different
width (or squeezing), but we do not consider that here for simplicity.
(b) Violation of the CFRD inequality, normalized by the factor �4,
by the Gaussian behavior in question as a function of the parameter
�/σ . The CFRD inequality certifies that the Gaussian PR box is
supraquantum for the parameter region with �/σ � (1 + √

2)1/2

≈ 1.55.

that μ(k,a,b) ∈ MNS is a CV PR box of order k and center
vector (a,b), with different real components such that a1 �=
a2 �= · · · ak and b1 �= b2 �= · · · bk , if it is of the form

μ(k,a,b)
x,y := μ(k,a,b,0)

x,y = 1

k

k∑
j=1

δaj ,b[j+xy]k
. (12)

One can immediately verify that these behaviors fulfill the
no-signaling constraints (2). These boxes are the CV version
of the finite-dimensional PR boxes generalized to arbitrarily
many outputs and dichotomic inputs given in Ref. [15]. Still,
Eq. (12) does not yet describe the most general CV PR
box, because input and output relabelling symmetries must
be taken into account. For dichotomic inputs, the possible
local, reversible relabelings are given by x → [x + 1]2 and
y → [y + 1]2 [15]. The situation is notably different, however,
for the outputs, because they are continuous. For CV outputs,
the most general local, reversible relabelings are given by
a → αx(a) and b → βy(b), where αx : Rk → Rk and βy :
Rk → Rk are, for every x,y ∈ {0,1}, bijective maps from
Rk to itself. This amounts to reshuffling the components of
the center vectors in a reversible, input-dependent fashion,
so that the condition [αx(a)]1 �= [αx(a)]2 �= · · · [αx(a)]k and
[βy(b)]1 �= [βy(b)]2 �= · · · [βy(b)]k is always maintained.

012133-4



CONTINUOUS-VARIABLE SUPRAQUANTUM NONLOCALITY PHYSICAL REVIEW A 97, 012133 (2018)

Since the relabelings are local and reversible, all boxes
equivalent under them have the same nonlocality properties.
Indeed, all the boxes given by Eq. (12), i.e., for all different
center vectors, are equivalent under input-independent rela-
belings. So, any of them, i.e., for any fixed center vector, can
be taken as representative to define (modulo local, reversible,
and input-dependent relabelings) the entire class of all CV
PR boxes. This is, in turn, equivalent to allowing for input-
dependent center vectors (ax,by) directly in the definition:

Definition 2. (Set of CV PR boxes) We define the classMPR

as the set

MPR := {μ(k,a0,a1,b0,b1) ∈ MNS}k∈N, a0,a1,b0,b1∈Rk , (13)

where each behavior component [μ(k,a0,a1,b0,b1)]x,y is given by

a measure μ
(k,ax ,by )
x,y as in Eq. (12), with a possibly different

vector (ax,by) for each (x,y) ∈ {0,1}2.
Note that for k = 1, CV PR boxes reduce to local, determin-

istic behaviors, whose components are given by Dirac delta
measures. In contrast, for all k � 2, Def. 2 yields nonlocal,
nondeterministic behaviors. Here, for simplicity, we use the
term “CV PR box” for all k ∈ N indistinctly, the distinction
between local, deterministic, and nonlocal, nondeterministic
ones being given by the order k. In the next section, we show
that every element of MPR is an extreme behavior of MNS and
that the convex hull of MPR is dense in MNS.

IV. CHARACTERIZATION OF SET OF NO-SIGNALLING
BEHAVIORS

We start by recapping basic definitions of convex combina-
tions and extremality. The convex hull Conv(M) of an arbitrary
(finite or infinite) set M of behaviors is the set of all finite
convex sums of elements of M:

Conv(M) =
{

n∑
i=1

qiμi : μi ∈ M
}

qi�0,
∑n

i=1 qi=1, n∈N
. (14)

In turn, if M contains an uncountably infinite number of ele-
ments, continuous convex combinations (i.e., convex integrals)
of infinitely many elements can be considered, too, but are not
necessarily contained in Conv(M).

Clearly, any behavior that admits a decomposition in terms
of a convex integral of uncountably infinitely many behaviors,
admits also a decomposition in terms of a convex sum of
finitely many behaviors. Similarly, any behavior that admits
a decomposition in terms of a convex sum of an arbitrary finite
number of behaviors admits also a decomposition in terms of
a convex sum of two behaviors. This leads us to the same
definition of extreme no-signaling behaviors as in discrete
variables.

Definition 3 (Extreme no-signaling behaviors). We call μ an
extreme point ofMNS if, for any μ∗,μ′ ∈ MNS and 0 � q � 1
such that

μ = qμ∗ + (1 − q)μ′, (15)

it holds that either q = 1 and μ∗ = μ, or q = 0 and μ′ = μ.
Now we know that every μ ∈ MPR has a finite number

of outcomes with nonzero probability and belongs to MNS.
That is, μ is either an extreme point of MNS or it can be
decomposed as the convex sum of at most finitely many points

in MNS. However, the fact that finite-dimensional PR boxes
are no-signaling extreme implies that the former is the case.
This follows from the fact that finite-dimensional PR boxes
are given by an equivalent expression to that in Eq. (12) where
Kronecker deltas are in the place of the Dirac ones [15]. This
proves, then, that all CV PR boxes are no-signaling extreme:

Observation 1. (Extremality of MPR) All elements of MPR

are extreme points of MNS.
Observation IV constitutes, in turn, a generalization to

the CV realm of the result of Ref. [38], where it is shown
that any extreme point of the no-signaling set with a given
finite number of inputs and outputs is also extreme in the
no-signaling set with any higher (but still finite) number of
inputs and outputs. In addition, since MPR is not finite, the
observation also directly implies that MNS is not a polytope.
On the other hand, the fact that MNS contains behaviors with
infinitely many outcomes with nonzero probability (e.g., the
Gaussian PR boxes of the previous section) automatically
implies that MNS �⊆ Conv(MPR), in striking contrast with
the finite-dimensional case. This is due to the fact that every
behavior in Conv(MPR) necessarily has only finitely many
outcomes with nonzero probability. Nevertheless, we show
in Appendix B that MNS is approximated arbitrarily well
by Conv(MPR), in the formal sense of there existing, for
all μ ∈ MNS, a sequence of elements in Conv(MPR) that
converges to μ. This proves the following:

Theorem 1. [Conv(MPR) dense in MNS] The closure
Conv(MPR) of Conv(MPR) equals MNS. In other words,
Conv(MPR) is a dense subset of MNS.

The theorem is proven in detail in Appendix B. Let us sketch
the proof idea here. We consider first the case of behaviors
defined on a compact domain [−K,K]2. There, we can use
standard techniques from measure theory to show that, for any
no-signaling behavior μ, one can find a sequence of convex
sums of CV PR boxes μn that converges to it. The main idea
is then to define the considered sequence in such a way that its
components become good approximations of the components
of μ, in the limit of large n. This procedure can be seen as a
generalization to the approximation of a function by piecewise
constant functions as it is used in integration theory. Next,
one generalizes this further to an infinite sequence of compact
intervals which, in the infinite-length limit, covers the whole
space R × R.

Even though MPR consists exclusively of extreme points
of MNS, the fact that Conv(MPR) is a strict subset of MNS in
principle leaves room for other extreme points in MNS that
are not contained in MPR. In the following, we approach
this problem systematically by focusing first on behaviors
with compact support. In this case, a related problem was
addressed by Milman, who proved that, given a compact
convex subset C of a locally convex space E (see Ref. [39]
for a definition of locally convex) and another set T ⊂ C such
that Conv(T ) = C, it follows that all extreme points of C are
in the closure of T [39]. The space M[−K,K]2 of probability
measures with bounded domain [−K,K]2 ⊂ R2, is a compact
subset of the locally convex space of all measures on the same
domain. The same holds also for the set of behaviorsM4

[−K,K]2 .
Moreover, the set of no-signaling behaviors on [−K,K]2 is
a closed subset of M4

[−K,K]2 and thus also compact, which
enables us to use Milman’s theorem to characterize its extreme
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points. In what follows, we deal with no-signaling and PR box
behaviors on a compact domain. To emphasize this, we equip
the corresponding no-signaling set and the set of CV PR boxes
with a superscript K, i.e., M(K)

NS and M(K)
PR . Consequently, we

arrive at the following corollary:
Corollary 1. (Characterization of M(K)

NS ) Every extreme
point of M(K)

NS belongs to the closure of M(K)
PR .

Further on, it is interesting to investigate if the closure of
M(K)

PR contains behaviors that are extreme as well. If this were
not the case, it would prove that all extreme points of M(K)

NS are
in M(K)

PR . We thus have to answer the question if PR boxes of
infinite order, i.e., in the limit k → ∞ [see Eq. (12)], are also
extreme. In Appendix C we provide evidence suggesting that
this is not the case. More precisely, we provide an exemplary
sequence of PR boxes whose limiting behavior is not extreme,
thus implying thatM(K)

PR is not a closed set. This evidence leads
us to the following conjecture:

Conjecture 1. (Characterization of M(K)
NS ) Every extreme

point of M(K)
NS belongs to M(K)

PR .
Even though the preceding discussion was restricted to

behaviors with outcomes on a compact set, we have reasons
to believe that the conjecture holds also in the general case
of unbounded support. Namely, in probability theory it is a
rather standard result that all extreme points of the set of
probability measures are given by Dirac measures [see Eq. (5)].
In particular, this is the case for probability measures defined
on R. Similarly, the extreme no-signaling behaviors may have
also only finite support, which would suggest our Conjecture
1 also in the general case of behaviors defined on R. A
proof of Conjecture 1 would, however, require more involved
arguments which go beyond the scope of the present article.

Let us finish with some final clarifications on the bound-
ary and the boundedness of MNS. In the finite-dimensional
case, the boundary between the no-signaling behaviors and
behavior-like objects that still satisfy the no-signaling con-
straints but involve nonpositive probability distributions is
given by the subset of all convex combinations of no-signaling
extreme points resulting in nonstrictly positive behaviors [i.e.,
whose (x,y)th components are probability measures assigning
zero probability to some event]. Consequently, the set of
no-signaling behaviors has a nonempty interior. In contrast,
for infinite dimensional behaviors, the boundary of MNS is
actually MNS itself, showing that its interior is empty. The
latter can be proven by using convergence arguments similar
to those used in the proof of Theorem 1, i.e. every no-signaling
behavior is arbitrarily close (in the weak-convergence sense)
to a nonpositive no-signaling behavior. This may at first blush
seem bizarre, but it is actually a typical property of compact
convex sets in infinite-dimensional spaces. Indeed, the sets
of probability distributions or quantum states for infinite-
dimensional systems display exactly the same property (see,
e.g., Ref. [40]).

Lastly, we stress that, in the present work, we did not touch
the question of whether the set MNS is bounded. Doing so
would require to introduce an appropriate metric and, because
we are dealing with infinite-dimensional spaces, the bounded-
ness of the set MNS might depend on its particular choice. For
instance, with respect to the Lévy–Prokhorov metric, which is
a metric on the set of probability measures associated with the

weak topology, the set of all probability measures is bounded.
Hence, for this metric also the no-signaling set is bounded,
since the components of behaviors are by definition always
probability measures.

V. FINAL DISCUSSION

We have studied supraquantum Bell correlations in a gen-
uinely CV regime, i.e., without discretization procedures such
as binning [20–24,27,28]. Here, genuine CV supraquantum-
ness was witnessed by the violation of the CFRD inequality
[25], which, for the bipartite case, is known not to admit any
quantum violation [29,30]. We found a class of supraquantum
Gaussian PR boxes, whose zero-width limit gives the CV PR
boxes. Here, we have explicitly checked the supraquantumness
of both Gaussian and CV PR boxes of order k = 2. Interest-
ingly, due to symmetries in the CFRD inequality, no violation
can be found for k = 3, but supraquantumness of CV PR boxes
of higher orders is guaranteed by the supraquantumness of the
equivalent boxes in finite dimensions. In turn, the supraquan-
tumness of finite-width Gaussian PR boxes of higher order can
be verified violating—via some appropriate binning—finite-
dimensional Bell inequalities above their quantum limit; but
this is outside the scope of this paper.

In addition, we have characterized the set of CV no-
signaling correlations from a geometrical point of view. To
this end, we devised a mathematical framework to deal with
arbitrary CV no-signaling behaviors based on conditional
probability measures instead of on conditional probability
distributions. With this, we have shown that, for CV systems,
the convex hull (i.e., the set of all finite convex sums) of
all CV PR boxes is dense in the no-signaling set, instead
of equal to it as in finite-dimensional systems. In particular,
this result tells us that every no-signaling behavior can be
approximated arbitrarily well by a sequence of behaviors with a
finite number of nonzero probability outcomes. Consequently,
the nonlocality of every CV no-signaling behavior can always
be detected with discrete Bell inequalities in combination with
a binning procedure, for a sufficiently large number of bins.

Since every CV PR box assigns a nonzero probability to a
finite number of outcomes, being thus in one-to-one correspon-
dence with a discrete PR box in the usual finite-dimensional
scenario, it is not surprising that every CV PR box is extreme in
the no-signaling set. In contrast, the possibility that all extreme
points of the no-signaling set are given by CV PR boxes, as
suggested by Conjecture 1, appears as more surprising. Indeed,
it would evidence a qualitative difference between the structure
of quantum theory and that of generic probability theories
compatible with the no-signaling principle, a question that
has been previously considered in other scenarios, too [41].
Namely, in quantum theory we know about the existence of
behaviors with an uncountably infinite number of nonzero
probability outcomes which are extreme in the set of CV
quantum correlations. The latter quantum behaviors can be
built, e.g., with extreme quantum POVMs with a continuous
spectrum [42–44] acting on pure CV entangled states. We leave
the proof (or disproof) of this conjecture as an open question
for future investigations.

Another interesting question for future investigations is
how to formalize the notion of tightness [36] for CV Bell
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inequalities, and, in particular, whether the CFRD inequality
is tight. In finite dimensions, nontrivial tight Bell inequalities
without a quantum violation exist in the multipartite scenario
[17], but no equivalent example is known for bipartite systems.
If the CFRD inequality were tight, our results would give it the
status of the first known example of a nontrivial tight Bell
inequality with no quantum violation in the bipartite setting.

To end up with, far from being just a mere abstract exer-
cise, studying supraquantum nonlocality helps us understand
quantum nonlocality itself. Efficient tools to study nonlo-
cality for discrete systems—such as semidefinite or linear
programming—no longer apply for CV systems; so that the
characterization of nonlocal correlations is a much harder task.
We thus hope that our findings can be useful for future research,
such as, e.g., searching for novel CV Bell inequalities or,
more generally, studying generalized-probability theories in
CV systems.
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APPENDIX A: RADON-NIKODYM THEOREM

A measurable space is given by a pair (X,�), where X is
some nonempty set and � denotes a σ algebra on X. We define
a measure ν on X to be σ finite if X is a countable union of
measurable sets Xi with finite measure ν(Xi) < ∞. Note that
every probability measure μ on R is also σ finite since, on the
one hand,R can be expressed as countable union of measurable
set and, on the other hand, we have by definition that μ(A) < 1,
for all A ⊂ R. Furthermore, a measure ν is called absolutely
continuous with respect to μ, if from ν(A) = 0 it follows that
μ(A) = 0, for every measurable set A ⊂ X. Now, we are in
the position to state the Radon–Nikodym Theorem.

Theorem 2. (Radon–Nikodym) Given a σ -finite measure
ν on (X,�) that is absolutely continuous with respect to a
σ -finite measure μ on (X,�), then there exists a measurable
function f : X → [0,∞), referred to as the Radon–Nikodym
derivative, such that

ν(A) =
∫

A

f dμ, (A1)

for any measurable subset A ⊂ X.

APPENDIX B: PROOF OF THEOREM 1

Before turning to the proof of Theorem 1 we provide some
preliminary notions of the type of convergence that we use

in the following, i.e., the weak convergence. We say that
a sequence of measures (μn)n∈N ∈ M� converges weakly
towards the same μ ∈ M�, with n → ∞, if∫

�

f dμn →
∫

�

f dμ, (B1)

for all f ∈ Cb(�), where Cb(�) denotes the set of bounded
and continuous functions f : � → R. In what follows, if not
stated differently, we always implicitly assume the use of weak
convergence for sequences of measures. Moreover, since we
often consider behaviors (i.e., matrices with entries given by
probability measures), we say that a sequence of behaviors μn

weakly converges to μ if [μn]x,y → [μ]x,y,∀x,y .
Weak convergence is a natural choice in the present context

because it is directly applicable to sequences of measures with-
out resorting to a specific distributions in terms of some random
variables. Other, possibly stronger, notions of convergence do
exist but are not required here. Furthermore, as we will see
shortly, weak convergence is also meaningful with respect to
physical considerations since, from experiments, one usually
extracts some statistical moments of a probability measure
instead of the measure itself.

Further on, as stated also in the main text, to prove that
Conv(MPR) is dense in MNS we need to show that, for every
behavior μ ∈ MNS, one can find a sequence in Conv(MPR)
that converges weakly to μ. To keep the proof of Theorem
1 as instructive as possible, we first provide a proof for the
case of behaviors with compact support meaning that their
components are probability measures on � = [−K,K]2. A
generalization of the proof to the most general case � =
R × R will then be ensued afterwards.

Then, the following lemma holds:
Lemma 1. [Conv(M(K)

PR ) dense in M(K)
NS ] The clo-

sure Conv(M(K)
PR ) of Conv(M(K)

PR ) equals M(K)
NS . In other

words, Conv(M(K)
PR ) is a dense subset of M(K)

NS .
Note that, according to the introduced nomenclature in the

main text we equipped the corresponding no-signaling set and
the set of CV PR boxes with a superscript K, i.e., M(K)

NS and
M(K)

PR .
Proof of Lemma 1. Without loss of generality we can restrict

the following proof to the case K = 1, i.e., � = [−1,1]2. The
strategy consists of explicitly constructing, for every arbitrary
μ ∈ M(1)

NS, a sequence of behaviors μn ∈ Conv(M(1)
PR) that

weakly converges to μ. The proof is divided in three steps:
First, for every μ ∈ MNS, we define a sequence of behaviors
that weakly converges to μ. Second, we show that each element
of this sequence is indeed a no-signaling behavior. Third, we
show that all such elements can be expressed as a convex sum
of CV PR boxes.

For the first step, we divide the interval [−1,1] in n � 1
segments of the same length, denoting each one by In (note
that a generalization of the following proof to arbitrary Ks
would simply involve a rescaling of the defined intervals In).
Next, we define μn as follows:

[μn]x,y =
n∑

k,l=1

[μ]x,y(Ik × Il)δak,bl
∀ x,y, (B2)
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where (ak,bl) is a point located in the interval Ik × Il and the
Dirac measure is defined according to Eq. (5). The behaviors
μn have the same weight as μ on each of the squares Ik × Il , but
concentrated on a single point (ak,bl). In this way, μn becomes
a better and better approximation of μ with increasing n.

To prove thatμn is indeed weakly converging toμ, it suffices
to prove that each of its components is weakly converging to the
components of μ. Let f be a bounded and continuous function
defined on the domain [−1,1] × [−1,1]. Integrating f with
respect to μ

x,y
n yields∫

[−1,1]2
f d[μn]x,y =

∑
k,l

f (ak,bl)[μ]x,y(Ik × Il). (B3)

The sum on the right-hand side of Eq. (B3) can be bounded
from below and above in the following way:∑

k,l

[μ]x,y(Ik × Il)min
Ik×Il

f �
∫

[−1,1]×[−1,1]
f d[μn]x,y (B4)

�
∑
k,l

[μ]x,y(Ik × Il)max
Ik×Il

f, (B5)

where minIk×Il
(maxIk×Il

) denotes the minimum (maximum)
of the function f over the cell Ik × Il . The same inequality
holds if we integrate f with respect to [μ]x,y , and, since f is
continuous, this proves that

∫
f d[μn]x,y → ∫

f d[μ]x,y and
that [μn]x,y → μ,∀x,y. It follows that μn → μ.

As for the second step, we now prove that μn is no-signaling
for all n. For a given n > 0 and x,y ∈ {0,1}n, the marginal of
[μn]x,y on Bob’s side is given by

[μn]x,y([−1,1] × B) =
n∑

k,l=1

[μ]x,y(Ik × Il)δak,bl
([−1,1] × B)

=
∑

l

δbl
(B)

∑
k

[μ]x,y(Ik × Il)

=
∑

l

δbl
(B)[μ]x,y([−1,1] × Il),

(B6)

where δbl
is the Dirac measure located at bl in the lth interval.

Since we know that μ is a no-signaling behavior it follows
that [μ]x,y([−1,1] × Il) does not depend on x [compare with
Eq. (2a)]. The same argument holds for the Alice’s marginal
and proves that the μn are no-signaling behaviors.

The third and last step to complete the proof is to show
that μn can be written as a convex sum of finitely many
CV PR boxes. For this we note that the μn are no-signaling
behaviors with a finite number of outcomes (the centers of the
intervals Ik,l) and support [−1,1]2. However, we know from
the finite-dimensional case that all behaviors with only finitely
many outcomes with nonzero probability can be expressed
as a convex combination of finitely many PR boxes. Taking
instead their continuous-variable generalizations (12), yields
the desired decomposition. �

With Lemma 1, we next prove Theorem 1.
Proof of Theorem 1. Now we consider the case � = R × R.

Again, we consider a μ ∈ MPR and want to prove that there
exists a sequence μn ∈ Conv(MPR) for which each component
converges weakly to the components of μ. To do so, we

divide [−n,n], with n � 1, in 2n2 subintervals of length 1/n

and denote them by In as before. Furthermore, we define the
components of μn as follows:

[μn]x,y =
2n2∑

k,l=1

[μ]x,y(Ik × Il)δak,bl
+ [νn]x,y, (B7)

where (ak,bl) is a point located in the square Ik × Il , and δak,bl

is the Dirac measure. The first term of Eq. (B7) corresponds to
the same construction as in the compact case treated in Lemma
B, whereas the second term νn is merely necessary to ensure
the no-signaling conditions (2a) and (2b) on R × R. It reads
as follows:

[νn]x,y =
n∑

l=−n

{
[μ]x,y(]n,∞[×Il)δn+1,bl

+[μ]x,y(] − ∞, − n[×Il)δ−(n+1),bl

}
+

n∑
k=−n

{
[μ]x,y(Ik×]n,∞[)δak,(n+1)

+[μ]x,y(Ik×] − ∞, − n[)δak,−(n+1)
}

+[μ]x,y(]n,∞[×]n,∞[)δn+1,n+1

+[μ]x,y(] − ∞, − n[×]n,∞[)δ−(n+1),n+1

+[μ]x,y(]n,∞[×] − ∞, − n[)δn+1,−(n+1)

+[μ]x,y(] − ∞, − n[×] − ∞, − n[)δ−(n+1),−(n+1),

(B8)

where ]a,b[ refers to an open interval bounded by a and
b, respectively. Note that, in contrast to the compact case
treated in Lemma 1, the measures [μn]x,y are defined on
different intervals for different n. We now complete the proof of
Theorem 1 by showing the weak convergence of this sequence
in the general case. The other parts of the proof remain
unchanged.

Let f ∈Cb(R2) and ε ∈ [0,1], we want to prove that there
exists an n0 ∈ N such that |∫R2 f dμn − ∫

R2 f dμ| < ε for
all n > n0, where this inequality should be understood as
component wise inequality. Since μ is a set of probability
measures and f is a bounded function, there exists an n1 ∈ N
such that:

[μ]x,y(R2 \ [−n1,n1]) < min

(
ε,

ε

maxR2 |f |
)

(B9)

for all (x,y) and all n > n1. It follows that

∣∣∣∣
∫
R2

f d[μn]x,y −
∫
R2

f d[μ]x,y

∣∣∣∣
<

∣∣∣∣
∫
R2\[−n1,n1]2

f d[μn]x,y −
∫
R2\[−n1,n1]2

f d[μ]x,y

∣∣∣∣
+

∣∣∣∣
∫

[−n1,n1]2
f d[μn]x,y −

∫
[−n1,n1]2

f d[μ]x,y

∣∣∣∣. (B10)

012133-8



CONTINUOUS-VARIABLE SUPRAQUANTUM NONLOCALITY PHYSICAL REVIEW A 97, 012133 (2018)

While the first term on the right-hand side of inequality
(B10) becomes∣∣∣∣

∫
R2\[−n1,n1]2

f d[μn]x,y −
∫
R2\[−n1,n1]2

f d[μ]x,y

∣∣∣∣
�

∣∣∣∣
∫
R2\[−n1,n1]2

f d[μn]x,y

∣∣∣∣ +
∣∣∣∣
∫
R2\[−n1,n1]2

f d[μ]x,y

∣∣∣∣
� maxR2 |f |[μn]x,y(R2 \ [−n1,n1]2) + ε

= maxR2 |f |[μ]x,y(R2 \ [−n1,n1]2) + ε

� 2ε, (B11)

the second term contains an integration over a compact area,
which allows us to use the statement of Lemma 1. Hence, we
can conclude that this term is smaller than ε for sufficiently
large n. Note that Lemma 1 does not apply directly here since
the considered sequence of behaviors is not no-signaling on
the compact domain [−n1,n1]2, but rather on R2. However,
dropping the no-signaling condition does not contradict with
the convergence of this sequence. By combining inequalities
(B10) and (B11) we finally arrive at∣∣∣∣

∫
R2

f d[μn]x,y −
∫
R2

f d[μ]x,y

∣∣∣∣ < 3ε, (B12)

for n sufficiently large. This quantity goes to zero as ε goes to
zero and thus μn weakly converges to μ.

APPENDIX C: CONCERNING CONJECTURE 1

Here we construct a specific example of a sequence of
CV PR boxes, with increasing order k, whose limit is not

an extreme no-signaling behavior anymore. This suggests that
one cannot obtain extreme no-signaling behaviors as limits
of a sequences of CV PR boxes when the order k goes to
infinity. We restrict ourselves to measures on [0,1]2 but it can
be straightforwardly extended to R2.

Proof. We prove that there is a sequence μn ∈ M(1)
PR that

converges to an element μ that is outside of M(1)
PR. Let μ be the

set of measures where the two outcomes are always perfectly
correlated for all settings: μx,y(a,b) = δ(a − b). μ is clearly
no-signaling, but not extreme.

We define μn as follows:

μx,y
n =

⎧⎨
⎩

1
n

∑n
k=0 δ k

n
, k

n
, for x · y = 0

1
n

[∑n−1
k=0 δ k

n
, k+1

n
+ δ1,0

]
, for x · y = 1,

(C1)

which yields

∫∫
[0,1]2

f (a,b)μx,y
n (a,b) (C2)

=
⎧⎨
⎩

1
n

[∑n
k=0 f

(
k
n
, k
n

)]
, for x · y = 0

1
n

[∑n−1
k=0 f

(
k
n
, k+1

n

) + f (1,0)
]
, for x · y = 1,

(C3)

where f ∈ Cb([0,1]2). Now, by a applying standard integra-
tion theory it follows that [ 1

n

∑n−1
k=0 f ( k

n
, k+1

n
) + f (1,0)] →∫

[0,1] f (a,a) = ∫∫
[0,1]2 f (a,b)μx,y(a,b). We thus proved that

μn converges to an element that is outside of M(1)
PR (since μ

has an infinite number of outcomes contrary to all elements of
M(1)

PR). �
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