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Given an arbitrary measurement over a system of interest, the outcome of a posterior measurement can be
used for improving the statistical estimation of the system state after the former measurement. Here, we realize
an informational-entropic study of this kind of (Bayesian) retrodicted quantum measurement formulated in the
context of quantum state smoothing. We show that the (average) entropy of the system state after the retrodicted
measurement (smoothed state) is bounded from below and above by the entropies of the first measurement when
performed in a selective and nonselective standard predictive way, respectively. For bipartite systems the same
property is also valid for each subsystem. Their mutual information, in the case of a former single projective
measurement, is also bounded in a similar way. The corresponding inequalities provide a kind of retrodicted
extension of Holevo bound for quantum communication channels. These results quantify how much information
gain is obtained through retrodicted quantum measurements in quantum state smoothing. While an entropic
reduction is always granted, in bipartite systems mutual information may be degraded. Relevant physical examples
confirm these features.
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I. INTRODUCTION

Prediction and retrodiction are different and alternative
ways of handling information. Respectively, information in the
past or in the future is taken into account for performing a prob-
abilistic (Bayesian) statement about a system of interest. In
physics, most of the theoretical frames are formulated in a pre-
dictive way. The measurement process in quantum mechanics
is clearly predictive. The corresponding information changes
are well known. Nonselective projective measurements never
decrease von Neumann entropy [1]. Furthermore, the en-
tropy S[ρ] ≡ −Tr[ρ ln ρ] after a measurement performed
in a nonselective way is always greater than the (average)
entropy of the same measurement performed in a selective
way [2], that is, S[

∑
k p(k)ρk] � ∑

k p(k)S[ρk], where ρk

and p(k) are respectively the system state and probability
associated with each outcome k. Their difference is bounded by
Shannon entropy H[k] ≡ −∑

k p(k) ln[p(k)] of the outcomes
probabilities {p(k)}, H[k] � S[

∑
k p(k)ρk] − ∑

k p(k)S[ρk].
These statements follows straightforwardly from the Klein
inequality and the concavity of von Neumann entropy [1,2].
Much less is known when the quantum measurement process
is performed in a retrodictive way.

In quantum mechanics, retrodiction was introduced for
criticizing the apparent time asymmetry of the measurement
process [3,4]. Pre- and postselected measurement ensembles
(initial and final states are known) are considered. Questions
about intermediate states are characterized through a (retrod-
ictive) Bayesian analysis and the standard Born rule.

Retrodiction also arises in the related formalisms of
past quantum states [5] and quantum state smoothing [6,7],
which can be considered as a quantum extension of classical
(Bayesian inference) smoothing techniques [8,9]. Both infor-

mation in the past and in the future of an open quantum system
continuously monitored in time [10,11] is available. Hence, the
system information is described through a pair of operators, the
past quantum state, consisting in the system density matrix and
an effect operator that takes into account the future information
[5]. These objects allow us to estimate the outcome probabil-
ities of an intermediate (retrodicted) quantum measurement
process taking into account both past and future information.
The previous scheme was studied and applied in a wide class of
dynamics and physical arrangements [12–20]. The system state
(single density matrix) that takes into account both past and
future information is called a quantum smoothed state [6,21].

While in general it is argued that extra (future) information
improves the estimation of a past (retrodicted) measurement,
in contrast with predictive measurements, a rigorous quantifi-
cation of this informational benefit is lacking. Hence, the goal
of this paper is to perform an informational-entropic study
of retrodictive quantum measurements. We find upper and
lower bounds for the (average) entropy of the retrodicted state
(quantum smoothed state). They are defined by the entropies of
the same measurement without retrodiction and performed in
a nonselective and selective way, respectively. The same kind
of relation is obtained for each part of a bipartite system. Their
mutual information satisfies similar inequalities whose explicit
form (in the case of projective retrodictive measurements)
leads to a kind of retrodicted extension of the Holevo bound
for quantum communication channels [1]. These features are
exemplified with a qubit submitted to strong-weak retrodicted
measurements [14] and a hybrid quantum-classical optical-like
arrange [5].

The developed results provide a rigorous characterization of
the information changes achieved through retrodicted quantum
measurements. The analysis is performed in the context of
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FIG. 1. Scheme of retrodicted measurements. The system is
subjected to two successive measurement processes defined by the
operators {�m} and {My}, respectively. From the second outcome
one infers the probability for the first outcome. The system state at
the different stages is explained in the text.

past quantum states and quantum state smoothing [5–7]. We
remark that retrodicted measurements were also introduced
in alternative ways [22,23]. Some similarities and differences
become clear through the present study.

The paper is outlined as follows: In Sec. II we present the
general structure of retrodicted measurements and quantum
state smoothing. In Sec. III the general entropic relations are
obtained. The case of bipartite systems is also characterized
through their mutual information. In Sec. IV we study the case
of projective measurements performed over a subsystem of
a bipartite arrangement. Retrodicted-like Holevo bounds are
derived. Examples are worked out in Sec. V. In Sec. VI we
provide the conclusions. Calculus details that support the main
results are presented in the appendixes.

II. RETRODICTED QUANTUM MEASUREMENTS

Here we present the basic scheme (see Fig. 1) corresponding
to a retrodicted quantum measurement. It recovers the past
quantum state formalism [5] and also allows us to define a
quantum smoothed state [6,21].

A quantum system is characterized by its density matrix ρI .
This object depends on the previous history of the system. In
a first step, it is subjected to an arbitrary measurement process
[1,2] defined by the set of measurement operators {�m}, which
fulfills

∑
m �

†
m�m = I, where I is the identity matrix in the

system Hilbert space. The system states {ρm} associated with
each outcome, and the probability {p(m)} of their occurrence,
respectively are

ρm = �mρI�
†
m

Tr[�†
m�mρI ]

, p(m) = Tr[�†
m�mρI ], (1)

where Tr[•] is the trace operation.
After the first measurement, the system evolves with its

own (reversible or irreversible) completely positive dynamics
[1,2] and then is subjected to a second arbitrary measurement
process. It is defined by a set of operators {My}, which satisfy∑

y M
†
yMy = I. In the following analysis the system dynamics

is disregarded or, equivalently, it can be taken into account
through a redefinition of the set of operators {My}.

The second measurement implies the state transformation
ρm → MyρmM

†
y/Tr[M†

yMyρm]. The (conditional) probability

p(y|m) of outcome y given that the first one was m reads

p(y|m) = Tr[M†
yMyρm] = Tr[�mρI�

†
mM

†
yMy]

Tr[�†
m�mρI ]

. (2)

An essential ingredient for defining a retrodicted mea-
surement is to ask about the inverse conditional probability
p(m|y); that is, the probability of m given the (posterior)
outcome y. This object follows from Bayes rule. Given that
the joint probability p(y,m) for the measurement events m

and y satisfies p(y,m) = p(y|m)p(m), it reads

p(y,m) = Tr[�mρI�
†
mM†

yMy]. (3)

Now, by using p(y,m) = p(m|y)p(y), where

p(y) =
∑
m

p(m,y) (4)

is the probability of outcome y, we obtain

p(m|y) = Tr[�mρI�
†
mM

†
yMy]∑

m′ Tr[�m′ρI�
†
m′M

†
yMy]

. (5)

This retrodicted probability relies on Bayes rules and standard
quantum measurement theory. It arises in pre- and postselected
ensembles (here defined by ρI and the outcome y) [3,4] and
also in the past quantum state formalism (see supplemental
material in Ref. [5]). In fact, p(m|y) can be written in terms of
the past quantum state � ≡ (ρ,E) where the density and effect
operators are ρ = ρI and E = M

†
yMy , respectively.

Retrodicted-quantum smoothed state

The previous analysis does not associate or define a system
state to the retrodicted probability p(m|y). This assignation
depends on extra assumptions. Similarly to Ref. [5] we assume
that the result of the first measurement is hidden to us; that is,
the first measurement is a nonselective one [1,2]. Hence, the
system state after the first measurement, ρI → ρ�, is

ρ� =
∑
m

ρm p(m) =
∑
m

�mρI�
†
m. (6)

The retrodicted or smoothed quantum state ρy [6,21] here is
defined as the estimate of the system state after the first nonse-
lective measurement given that we know the outcome (labeled
by y) of the second (selective) measurement. Therefore, we
write

ρy ≡
∑
m

ρm p(m|y) =
∑
m

w(m,y)�mρI�
†
m. (7)

Here, w(m,y) ≡ p(m|y)/p(m) = p(y,m)/[p(y)p(m)], which
from Eqs. (1) and (5) explicitly read

w(m,y) = Tr[�mρI�
†
mM

†
yMy]

Tr[�†
m�mρI ]

∑
m′ Tr[�m′ρI�

†
m′M

†
yMy]

. (8)

We remark that the smoothed state ρy depends on (is con-
ditioned to) the result of the second measurement. Contrarily
to the case of pre- and postselected measurements [3,4], where
y is fixed, here not any selection is imposed on the second
measurement result. Therefore, we can define an average
smoothed state ρM ≡ ∑

y ρy p(y), which corresponds to the
system state after averaging ρy over the outcomes y. Using
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that p(y) = ∑
m′ Tr[�m′ρI�

†
m′M

†
yMy] [see Eq. (3)] and that∑

y M
†
yMy = I, it follows that

ρM ≡
∑

y

ρy p(y) =
∑
m

ρm p(m) = ρ�. (9)

Thus, the average smoothed state ρM recovers the state ρ�

corresponding to the state after the first nonselective measure-
ment. A similar property was found in the quantum-classical
arrangements studied in Ref. [21].

The analysis of retrodicted quantum measurements per-
formed in Refs. [22,23] also relies on quantum measurement
theory and Bayes’ rule. Nevertheless, the assumptions differ
from the previous ones. After the second measurement, the
state ρm is not known. Hence, the state after the first measure-
ment [Eq. (6)] is taken as a state of maximal entropy, ρ� � I,
while ρy [Eq. (7)] looses its meaning. Hence, the following
results do not apply straightforwardly to those models.

III. ENTROPIC RELATIONS

The retrodicted quantum measurement scheme described
previously consists in two, nonselective and selective, succes-
sive measurements. Now, the relevant question is how much
information gain is obtained from the retrodicted (smoothed)
state ρy [Eq. (7)]. As usual, as an information measure we
consider the von Neumann entropy S[ρ] = −Tr[ρ ln ρ]. In
general, one is interested in establishing upper and lower
bounds forS[ρy] and in determining how they are related with,
for example, the entropies S[ρ�] or S[ρm].

Given the arbitrariness of the two measurement processes
and given the random nature of the outcome y, it is not possible
to establish any general relation between the entropies S[ρy],
S[ρ�], and S[ρm]. Any relation is in fact possible. Therefore,
similarly to the case of standard measurement process [1,2],
any entropy relation must be established by considering aver-
ages over the possible measurement outcomes.

By using the concavity of the von Neumann entropy,
S[

∑
k p(k)ρk] � ∑

k p(k)S[ρk] [1] (with equality if and only
if all states ρk are the same), in Appendix A we derive the
following entropy relation:

S[ρ�] �
∑

y

p(y)S[ρy] �
∑
m

p(m)S[ρm]. (10)

This is one of the central results of this paper. It demonstrates
that the (average) entropy of the system after the retrod-
icted measurement,

∑
y p(y)S[ρy], is bounded from above

and below by the entropies of its associated nonselective,
S[ρ�], and (average) selective,

∑
m p(m)S[ρm], measurement

entropies. In other words, the retrodictive measurement is
more informative than the first nonselective measurement but
is less informative than a selective resolution of the same
measurement process.

In Eq. (10), the lower bound is achieved when all
states {ρm} are the same, or alternatively when p(m|y) =
δmy ; that is, both measurement results are completely cor-
related, p(y,m) = δymp(m) = δmyp(y) in Eq. (3). On the
other hand, the upper bound is fulfilled when all states {ρy}
are the same. This last condition occurs when all states
{ρm} are identical, or alternatively when p(m|y) = p(m).

Hence, both measurement results, {m} and {y}, are sta-
tistically independent, p(y,m) = p(y)p(m) in Eq. (3) (see
Appendix A).

Interestingly, it is also possible to bound the differ-
ence between the terms appearing in Eq. (10). By using
the upper bound

∑
k p(k)S[ρk] + H[k] � S[

∑
k p(k)ρk] [1],

where H[k] = −∑
k p(k) ln[p(k)] is the Shannon entropy

of a probability distribution {p(k)}, in Appendix A we
obtain

H[y] � S[ρ�] −
∑

y

p(y)S[ρy] � 0, (11)

while in the other extreme it is valid that

H[m] �
∑

y

p(y)S[ρy] −
∑
m

p(m)S[ρm] � 0. (12)

In this way, the Shannon entropies H[y] and H[m] (associated
with the two measurement outcomes) bound the difference
between the entropies of the retrodicted and its associated
nonselective and selective measurements. Conditions under
which the upper bounds of Eqs. (11) and (12) are achieved
are also provided in Appendix A.

A. Bipartite systems

In many physical arrangements where the retrodicted mea-
surement scheme was studied, the system of interest is a
bipartite one. Thus, a relevant question is to determine if the
previous entropy inequality [Eq. (10)] remains valid (or not)
for each subsystem.

Denoting by A and B each subsystem, their states follow
from the partial traces ρa = Trb[ρab], and ρb = Tra[ρab],
whereρab is an arbitrary bipartite state. Under the replacements
ρm → ρ

a/b
m , ρy → ρ

a/b
y , ρ� → ρ

a/b

� , from the demonstrations
of Appendix A it is simple to realize that the inequalities
(10)–(12) remain valid for each subsystem. This result is valid
independently of which kind of (bipartite) measurements are
performed.

B. Mutual information

Another important aspect that can be studied when consid-
ering bipartite systems is the change in the mutual information
between the subsystems. For a bipartite state ρab, the mutual
information I[ρab] is defined as I[ρab] ≡ S[ρa] + S[ρb] −
S[ρab]. As demonstrated in Appendix B, bounds for this object
can be derived by using the strong subadditivity property of von
Neumann entropy,S[ρabc] + S[ρa] � S[ρab] + S[ρac]. Thus,
as usual in quantum information results [1], the demonstrations
rely on introducing an extra ancilla system.

In Appendix B we demonstrate that

S
[
ρab

�

] −
∑

y

p(y)S
[
ρab

y

]
� I

[
ρab

�

] −
∑

y

p(y)I
[
ρab

y

]
.

(13)
Therefore, the difference between the mutual information
corresponding to the nonselective measurement, I[ρab

� ], and
the average mutual information corresponding to the retrod-
icted one,

∑
y p(y)I[ρab

y ], is bounded by the positive quantity
S[ρab

� ] − ∑
y p(y)S[ρab

y ] [see Eq. (11)]. On the other hand,
based on the strong subadditivity condition, it is also possible
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to show that∑
y

p(y)S
[
ρab

y

] −
∑
m

p(m)S
[
ρab

m

]
�

∑
y

p(y)I
[
ρab

y

] −
∑
m

p(m)I
[
ρab

m

]
. (14)

This inequality, which is similar to the previous one, here
gives an upper bound for the difference between the (average)
mutual information corresponding to the retrodicted mea-
surement,

∑
y p(y)I[ρab

y ], and its (nonretrodicted) selective
resolution,

∑
m p(m)I[ρab

m ]. From Eq. (12) it follows that the
upper bound

∑
y p(y)S[ρab

y ] − ∑
m p(m)S[ρab

m ] is a positive
quantity.

General conditions under which the previous bounds
[Eqs. (13) and (14)] become equalities are left open [24]. On
the other hand, notice that only upper bounds were found.

IV. PROJECTIVE MEASUREMENTS IN BIPARTITE
SYSTEMS

The previous results are general and apply independently
of the nature of the measurement processes (Fig. 1). Here, we
consider an arbitrary bipartite system where a first projective
measurement is performed on subsystem B, while the posterior
one remains arbitrary, being performed over subsystem A.
Hence, the operators {�m} that define the first measurement
are written as

�m = Ia ⊗ |m〉〈m|. (15)

Here, Ia is the identity matrix in the Hilbert space of subsystem
A while {|m〉} is a complete orthogonal base of B. The second
measurement is defined by the set of operators {My}, which
act on the Hilbert space of A.

The bipartite state associated with each outcome {m} reads
[Eq. (1)]

ρab
m = 〈m|ρI |m〉

Tra[〈m|ρI |m〉] ⊗ |m〉〈m| ≡ ρa
m ⊗ |m〉〈m|. (16)

The state after the nonselective measurement is [Eq. (6)]

ρab
� =

∑
m

p(m)ρa
m ⊗ |m〉〈m|, (17)

while the retrodictive smoothed state becomes [Eq. (7)]

ρab
y =

∑
m

p(m|y)ρa
m ⊗ |m〉〈m|. (18)

From Eqs. (16) to (18) it is possible to demonstrate (Ap-
pendix C) that in fact the inequalities (10) and bounds defined
by Eqs. (11) and (12) are explicitly satisfied by the bipartite
states. Similar expressions are valid for each subsystem.

A. Mutual information

The changes in the mutual information at the different
measurement stages are upper bounded by Eqs. (13) and (14).
Given the projective character of the first measurement, here
it is also possible to find a lower bound to these informational
changes.

From Eqs. (13) and (16) to (18), in Appendix C we obtain

H[m : y] � I
[
ρab

�

] −
∑

y

p(y)I
[
ρab

y

]
(19a)

= S
[
ρa

�

] −
∑

y

p(y)S
[
ρa

y

]
� 0, (19b)

where H[m : y] = H[m] + H[y] − H[m,y] is the classical
mutual information between the outcomes of both measure-
ments, {m} and {y}. The lower bound in the previous expression
say us that the (average) mutual information associated with
the retrodicted measurement,

∑
y p(y)I[ρab

y ], is smaller than
that corresponding to the nonselective measurement, I[ρab

� ].
Hence, contrarily to the entropy measure, here the retrodicted
measurement leads to a degradation of the mutual information
between the subsystems. Similarly to Eq. (19), it is possible to
obtain (Appendix C)

H[m|y] �
∑

y

p(y)I
[
ρab

y

] −
∑
m

p(m)I
[
ρab

m

]
(20a)

=
∑

y

p(y)S
[
ρa

y

] −
∑
m

p(m)S
[
ρa

m

]
� 0, (20b)

where H[m|y] = −∑
y p(y)

∑
m p(m|y) ln[p(m|y)] is the

conditional Shannon entropy of outcomes {m} given outcomes
{y}. Thus, while the mutual information associated with the
retrodictive measurement decreases with respect to the nonse-
lective measurement, it is bounded from below by the mutual
information of its selective resolution,

∑
m p(m)I[ρab

m ].

B. Retrodicted-like Holevo bound

Interestingly, Eqs. (19) and (20) can be read as a retrod-
icted version of the well-known Holevo bound for quantum
communication channels [1].

The standard Holevo bound arises in the following context:
A sender prepares a quantum alphabet {ρa

m} with probabilities
{p(m)}. A receiver performs a measurement characterized by
the operators {My} on the sent letter (state), which gives the
result y. The Holevo bound states that, for any measurement
the receiver may do, it is fulfilled that [1]

H[m : y] � S
[∑

m

p(m)ρa
m

]
−

∑
m

p(m)S
[
ρa

m

]
. (21)

Hence, the accessible channel information (measured by
the mutual information H[m : y] between the preparation
and the measurement outcomes), is upper bounded by χ ≡
S[

∑
m p(m)ρa

m] − ∑
m p(m)S[ρa

m].
In the retrodicted measurement scheme (Fig. 1), the prepa-

ration {ρa
m} with probabilities {p(m)} can be associated with

the first nonselective measurement, while the receiver measure-
ment corresponds to the second one. With this interpretation
at hand, we notice that Eq. (19) rewritten as

H[m : y] � S
[∑

y

p(y)ρa
y

]
−

∑
y

p(y)S
[
ρa

y

]
(22)

can be read as a retrodicted-like Holevo bound. While Holevo
bound (21) gives an upper bound for the accessible informa-
tion, the retrodicted bound [Eq. (22)] gives a lower bound for
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H[m : y]. Interestingly, it is written in terms of the (retrodicted)
quantum smoothed states {ρa

y }. A complementary expression
follows straightforwardly from Eq. (20).

V. EXAMPLES

Different experimental realizations of the retrodicted
scheme of Fig. 1 are performed with open quantum systems
continuously monitored in time. Hence, their description relies
on the formalism of stochastic wave vectors [10,11]. The re-
sults developed in the previous sections can be extended to this
context. Nevertheless, for simplicity, we consider examples
where only two measurements are performed (Fig. 1). The
chosen measurement operators capture the main features of
different experimental realizations [5,14].

A. Weak- and strong-retrodicted measurements of a qubit

First, we consider a qubit system (two-level system) that
starts in an arbitrary state ρI , which is written as

ρI = 1
2 (I + rI · σ ). (23)

Here, I is the identity matrix while σ = (σx,σy,σz) is defined
as Pauli matrices. The Bloch vector [1,2] is defined as rI =
rI n, where its modulus satisfies 0 � rI = |rI | � 1 and n =
(nx,ny,nz) = (sin(θI ) cos(φI ), sin(θI ) sin(φI ), cos(θI )). Thus,
ρI = ρI (rI ,θI ,φI ).

Similarly to Ref. [14], the first measurement operator is
given by (m → V )

�V = (2πa2)−1/4 exp

[
− (V − σz)2

4a2

]
, (24)

where a > 0 is a real free parameter and V ∈ (−∞, + ∞),
which defines the outcomes of the first measurement. Con-
sistently,

∫ +∞
−∞ dV �

†
V �V = I. In the experiment analyzed in

Ref. [14], the second measurement can be related with an effect
operator that takes into account the future stochastic evolution.
Instead, here we consider an arbitrary qubit projective mea-
surement (y = ±) performed in an arbitrary direction, which
is defined by the angles (θ,φ). Hence,

M± = |n±〉〈n±|, (25)

[M± = M±(θ,φ)] where the state vectors |n±〉 are

|n+〉 = cos

(
θ

2

)
|+〉 + sin

(
θ

2

)
e−iφ|−〉, (26a)

|n−〉 = − sin

(
θ

2

)
|+〉 + cos

(
θ

2

)
e+iφ|−〉. (26b)

Here, |±〉 are the eigenstates of σz.
The previous definitions completely set the retrodicted mea-

surement scheme of Fig. 1. It depends on the free parameters
(rI ,θI ,φI ,a,θ,φ). Our results guarantee that inequality (10) is
fulfilled independently of their values.

The states associated with a selective resolution of the first
measurement, ρV = �V ρI�

†
V /Tr[�†

V �V ρI ] [Eq. (1)], can be
calculated in an exact way from the following expression:

ρ̃V =
√

1

2πa2

(
〈+|ρI |+〉e− (V −1)2

2a2 〈+|ρI |−〉e− (V 2+1)
2a2

〈−|ρI |+〉e− (V 2+1)
2a2 〈−|ρI |−〉e− (V +1)2

2a2

)
,

(27)

where ρ̃V ≡ �V ρI�
†
V . From this result it is possible to demon-

strate that

lim
a→0

ρV = |±〉〈±| (V ≷ 0), lim
a→∞ ρV = ρI . (28)

Thus, in the limit a → 0, the operators {�V } perform a strong
projective measurement in the base of eigenstates of σz. On the
other hand, in the limit a → ∞, a weak measurement [25] is
performed, ρV = ρI .

From Eq. (27), after a straightforward calculation, the state
ρ� = ∫ ∞

−∞ dV �V ρI�
†
V [Eq. (6)] can be written as

ρ� =
(

〈+|ρI |+〉 〈+|ρI |−〉e− 1
2a2

〈−|ρI |+〉e− 1
2a2 〈−|ρI |−〉

)
. (29)

This expression also reflects the strong and weak feature of the
(here nonselective) measurement as a function of the parameter
a. In fact, when a → 0 a diagonal matrix follows, while
lima→∞ ρ� = ρI .

From Eq. (27) it is also simple to obtain the probability
density p(V ) = Tr[�†

V �V ρI ] = Tr[ρ̃V ] [Eq. (1)], which is
defined by a superposition of two shifted Gaussian distributions
weighted by the initial populations 〈±|ρI |±〉. In general,
the joint probability p(±,V ) = Tr[�V ρI�

†
V M

†
±M±] [Eq. (3)]

reads

p(±,V ) = +
√

1

2πa2
e
− (V ∓1)2

2a2 cos

(
θ

2

)2

〈±|ρI |±〉

+
√

1

2πa2
e
− (V ±1)2

2a2 sin

(
θ

2

)2

〈∓|ρI |∓〉

±
√

1

2πa2
e
− V 2+1

2a2 sin (θ )[e+iφ〈+|ρI |−〉 + c.c.].

(30)

From here follows the expressions for the retrodicted prob-
abilities p(V |±) = Tr[�†

V �V ρIM±]/p(±) [Eq. (5)], and
the probabilities p(±) = ∫ +∞

−∞ dV Tr[�V ρI�
†
V M

†
±M±] asso-

ciated with the second measurement outcomes [Eq. (4)]. On
the other hand, the integral that define the retrodicted smoothed
states [Eq. (7)],

ρ± =
∫ ∞

−∞
dV p(V |±)

�V ρI�
†
V

Tr[�†
V �V ρI ]

, (31)

must be performed in a numerical way.
In Fig. 2, for a particular initial condition, we show

the entropies associated with the nonselective and selective
measurements, S[ρ�] and

∫ +∞
−∞ dVp(V )S[ρV ], respectively,

as well as the average entropy of the retrodicted smoothed
state,

∑
y=± p(y)S[ρy]. Consistently, we observe that, inde-

pendently of the parameter a and angles (θ,φ) that define the
first and second measurements, respectively [Eqs. (24) and
(25)], the inequalities (10) are fulfilled.

In the limit a → ∞ (weak measurement) all entropies
converge to the same value, which is given by the entropy
of the initial state (gray line). In fact, in this limit all states ρV

are the same [Eq. (28)], a property that guarantees the equality
of all (average) entropies in Eq. (10).
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FIG. 2. Average entropies corresponding to the qubit retrodicted
measurement scheme defined by Eqs. (24) and (25). The entropies
are plotted as a function of the parameter a that defines the first
measurement. The angles of the second projective measurement are
φ = π and, from top to bottom, θ = π/2, π/3, π/8, and 0. The
parameters of the initial state (rI ,θI ,φI ) [Eq. (23)] are indicated in
the plot, jointly with its entropy (gray line).

In the limit a → 0 the first measurement corresponds to
a strong projective one in the basis {|±〉} of eigenstates
of σz. When θ = 0, and arbitrary φ, the second projective
measurement is performed in the same basis {|±〉}. Thus,
both measurement outcomes are completely correlated, which
leads to the equality of the average entropies of the selective
and retrodicted measurements. On the other hand, for θ =
π/2, φ = π , the second measurement is performed in the basis
of eigenstates of σx . In this case, both measurement outcomes
are statistically independent (see Appendix A), which leads to
the equality of the average entropies of the nonselective and
retrodicted measurements. While the previous properties are
strictly fulfilled for a = 0, in Fig. 2 they remain approximately
valid for 0 � a � as ≈ 0.4. Thus, from an entropic point of
view, in that interval the first measurement may be considered
as a projective one. In fact, in all curves of Fig. 2, the value
of the plateau regime around the origin can be estimated by
taking into account two successive projective measurements,
the first one being in the z direction and the second one in the
direction defined by the angles (θ,φ).

B. Post-selected expectation values and entropies

Under postselection [14], the measurement defined by the
operator (24) leads to the so-called weak values [25]. Here,
this feature is analyzed from an entropic point of view.

From the retrodicted measurement scheme it is possible to
define the averages

〈V�〉 ≡
∫ +∞

−∞
dV Vp(V ), 〈V±〉 ≡

∫ +∞

−∞
dV Vp(V |±).

(32)
Here, 〈V�〉 gives the (unconditional) average of (the random
variable) V associated with the first measurement. On
the other hand, 〈V±〉 is the (conditional) average of V

given that the second measurement outcome is y = ±. In
agreement with Eq. (9), they fulfill the relation 〈V�〉 =
p(+)〈V+〉 + p(−)〈V−〉. Furthermore, from Eq. (27) it follows

FIG. 3. (a), (b) Unconditional and conditional expectations values
[Eq. 32] as a function of the parameter a. (c), (d) Conditional
entropies of the postselected (smoothed) states [Eq. (31)] jointly
with the upper and lower bounds corresponding to nonselective
and selective measurements, respectively. In panels (a) and (c), the
parameters are (θ,φ) = (π/4,π ) while the initial condition is defined
by (rI ,θI ,φI ) = (0.9,π/4,0). In panels (b) and (d), the parameters are
(θ,φ) = (π/6,0), with initial condition (rI ,θI ,φI ) = (0.9,π/2,0).

〈V�〉 = 〈+|ρI |+〉 − 〈−|ρI |−〉 = Tr[ρIσz] = rI cos(θI ).
Consistently, anomalous weak values are defined by the
condition |〈V±〉| > 1.

In Figs. 3(a) and 3(b) we show the behavior of 〈V±〉 as
a function of the parameter a. As expected, by increasing
the parameter a (weak measurement limit) the anomalous
property |〈V±〉| > 1 may develop. Furthermore, we find that
this feature is absent for 0 � a � as ≈ 0.4, which correspond
to the interval where, from an entropic point of view, the first
measurement can be approximated by a strong projective one
(plateaus in Fig. 2).

Similarly to expectation values, one can define the con-
ditional entropies S[ρ±], which correspond to the entropies
of each postselected smoothed state, Eq. (31). For the same
parameters values, these objects are shown in Figs. 3(c) and
3(d). We find that S[ρ±] do not fulfill the (average) bounds
(10). In addition, we deduce that this feature cannot be related
with the anomalous property of the weak expectation values.
In fact, in general, any relation may occur; that is, normal or
anomalous weak values may develop while the corresponding
conditional entropies may or not be bounded by the constraints
(10).

C. Retrodiction in a bipartite quantum-classical optical-like
hybrid system

Retrodiction was studied in different physical arrangements
where the effective dynamics can be described through a
quantum system (A) coupled to unobservable stochastic clas-
sical degrees of freedom (B) [7]. The quantum system is
continuously monitored in time. For optical ones, its fluores-
cence signal is observed via photon- or homodyne-detection
processes [6,21]. In Ref. [5], the state of the (two-state)
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classical system randomly modulate the coherent (fluorescent
intensity) system dynamics. In general, one may also consider
situations where the classical subsystem modulate any of
the characteristic parameters of the quantum evolution [26].
These hybrid dynamics can also be studied from the present
perspective; that is, through the entropic inequality (10) and
the mutual information inequalities (19) and (20).

We consider a hybrid quantum-classical system whose
initial bipartite state is

ρab
I =

∑
μ

qμρμ ⊗ |cμ〉〈cμ|. (33)

Here, {ρμ} are different states (Tra[ρμ] = 1) of a quantum
two-level system A, while the projectors {|cμ〉〈cμ|} represent
different (countable) macrostates of classical system B. Their
statistical weights satisfy

∑
μ qμ = 1. The states {ρμ} are

written as

ρμ = 1
2 (I + rμ · σ ), (34)

where, similarly to Eq. (23), {rμ} are Bloch vectors. Hence,
ρμ = ρμ(rμ,θμ,φμ).

The first (projective) measurement is defined by the opera-
tors (m → μ)

�μ = |cμ〉〈cμ|, (35)

which are associated with each classical macrostate. The
operators of the second measurement are (y = ±)

M+ = |−〉〈+|, M− = |−〉〈−|, (36)

where, as before, |±〉 are the eigenstates of σz, and M
†
+M+ +

M
†
−M− = I. This generalized measurement [1] can straight-

forwardly be read as a photon-detection process. In fact, M+
and M− can be associated with the presence and absence of
a transition |+〉 � |−〉; that is, a photon-detection event. The
previous definitions completely set the retrodicted measure-
ment scheme of Fig. 1.

The state of the bipartite system after a measurement per-
formed with the operators {�μ}, in a selective and nonselective
way, respectively, leads to [Eqs. (1) and (6)]

ρab
μ = ρμ ⊗ |cμ〉〈cμ|, ρab

� = ρab
I . (37)

The first expression say us that ρμ is the state of A given
that B is in the macrostate μ. Similarly to the experimental
situations quoted previously, the second equality represents
the inaccessibility of the classical degrees of freedom.

Using M
†
+M+ = |+〉〈+| and M

†
−M− = |−〉〈−|, the joint

probabilities (3) [p(y,m) → p(±,μ)] read

p(±,μ) = qμ〈±|ρμ|±〉 = qμ
1
2 [1 ± rμ cos(θμ)]. (38)

This expression in turn allows us to calculate the retrodicted
probabilities {p(μ|±)} [Eq. (5)] and p(±) [Eq. (4)]. The
retrodicted smoothed state reads [Eq. (7)]

ρab
± =

∑
μ

p(μ|±)ρμ ⊗ |cμ〉〈cμ|. (39)

Notice that in contrast with projective measurements in ar-
bitrary bipartite systems [Eq. (18)], here the smoothed state
only differs from the initial condition [Eq. (33)] by the

FIG. 4. (a) Entropy of the quantum subsystem for the measure-
ment scheme defined by Eqs. (35) and (36). (b) Mutual information
of the quantum-classical arrangement. The parameter q defines the
weights of the initial bipartite state (33). The states of the quantum
subsystem (ρ1 and ρ2) [Eq. (34)] are defined with (r1,θ1,φ1) =
(0,0,0), and (r2,θ2,φ2) = (1,0,0).

replacement qμ → p(μ|±). A similar result was found in
Ref. [21].

To exemplify the problem we consider a two-state clas-
sical system, μ = 1,2. Therefore, the free parameters are
(r1,θ1,φ1), (r2,θ2,φ2), for the initial states {ρμ}μ=1,2, while an
extra parameter q gives their weights in the initial bipartite
state (33), q1 = q and q2 = (1 − q). Explicit expressions
for the entropies and mutual information can be read from
Appendix C.

In Fig. 4(a), for a set of particular initial conditions, we
plot the entropy of the quantum subsystem A as a function
of the weight q. Consistently, as demonstrated in Sec. III, the
inequalities (10) are fulfilled by the entropies of the subsystem.
In Fig. 4(b) we show the dependence of the (average) mutual
information for the nonselective, retrodicted, and selective
measurements schemes. In agreement with Eqs. (19) and
(20), we observe that, while the retrodicted scheme implies an
entropic benefit for each subsystem, the retrodicted measure-
ment decreases their mutual information when compared with
the nonselective measurement. The difference between these
objects is measured by the retrodicted-like Holevo bound
(22). On the other hand, the average mutual information for
the selective measurement vanishes [see Eq. (37)]. The main
features shown in Fig. 4 remain valid for arbitrary initial
conditions.

VI. SUMMARY AND CONCLUSIONS

We performed and informational-entropic study of retro-
dicted quantum measurements (Fig. 1). Given that a nonse-
lective measurement was performed over a system of inter-
est, a second successive measurement is used for improving
the estimate of the possible outcomes of the former one.
From the quantum expressions for the outcome probabilities,
Bayes’ rule allows us to obtain the corresponding retrodicted
probabilities, Eq. (5). The system state after the retrodicted
measurement (smoothed state) results from an addition of
the system transformations associated with each measurement
outcome with a weight given by the retrodicted probabilities,
Eq. (7).

Based on the concavity of von Neumann entropy we proved
that, on average, the entropy of the smoothed state is bounded
from above and below by the entropies associated with the first
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nonselective measurement and the entropy corresponding to its
selective resolution respectively, Eq. (10). This central result
quantifies how much information gain may be obtained from
the retrodicted measurement scheme.

For bipartite systems it was shown that, independently of
the measurement’s nature, the same property is valid for the
entropy of each subsystem. In addition, based on the strong
subadditivity of von Neumann entropy, upper bounds for the
mutual information changes were also established, Eqs. (13)
and (14).

We specified the previous results for a bipartite system
where the measurements are performed over each single
system successively, being projective the former one. The
retrodicted measurement diminishes the entropy of each sub-
system. Nevertheless, their (average) mutual information is
diminished with respect to that of the nonselective measure-
ment, Eq. (19). This reduction is bounded from below by
the (average) mutual information of the selective resolution
of the first measurement, Eq. (20). These inequalities in turn
lead to a kind of retrodicted Holevo inequality that bound the
(classical) mutual information [Eq. (22)] between the two sets
of measurement outcomes.

As explicit examples we worked out the case of a qubit
subjected to weak and strong retrodicted measurements. All
theoretical results are confirmed by the model. In addition, we
find that anomalous weak values arise when, from an entropic
point of view, the first measurement cannot be approximated
by a strong projective one. On the other hand, we considered a
bipartite quantum-classical optical-like hybrid system. Degra-
dation of mutual information under the retrodicted measure-
ment scheme was explicitly confirmed.

The developed results quantify the information changes that
follow from a retrodicted measurement. While the entropy
of the system of interest is always diminished, implying an
information vantage, in bipartite systems mutual information
may be degraded. These results provide a solid basis for
studying other informational measures that may be of interest
is physical arrangements where retrodicted measurements are
implemented.
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APPENDIX A: DEMONSTRATION OF ENTROPY
INEQUALITIES

The entropy inequalities for the retrodicted measurement
scheme can be derived as follows: They rely on the con-
cavity of the von Neumann entropy [1], S[

∑
k p(k)ρk] �∑

k p(k)S[ρk], with equality if and only if all states
ρk for which p(k) > 0 are identical. Starting from the
S[

∑
m p(m)ρm], and using Eq. (9), it leads to the following

inequalities:

S
[∑

m

p(m)ρm

]
= S

[∑
y

p(y)ρy

]
�

∑
y

p(y)S[ρy]

(A1a)

=
∑

y

p(y)S
[∑

m

p(m|y)ρm

]
(A1b)

�
∑

y

p(y)
∑
m

p(m|y)S[ρm] (A1c)

=
∑

y

∑
m

p(m,y)S[ρm] (A1d)

=
∑
m

p(m)S[ρm], (A1e)

where we have used that p(m) = ∑
y p(m,y) =∑

y p(m|y)p(y). Taking into account the first and last
lines, it follows that

S
[∑

m

p(m)ρm

]
�

∑
y

p(y)S[ρy] �
∑
m

p(m)S[ρm],

(A2)
which recovers the entropy inequalities (10).

Given that equality in the concavity entropy inequality
is valid if and only if all states with nonvanishing weight
are the same, from Eq. (A1a) we deduce that the upper
bound is achieved when all states {ρy} are the same. This
condition happens when all states {ρm} are identical or, al-
ternatively, when p(m|y) = p(m) [see definition (7)]. Hence,
the joint probability (3) satisfies p(y,m) = p(y)p(m). This
condition implies that both measurement results, {m} and
{y}, are statistically independent. This property is fulfilled
by projective measurements �m = |m〉〈m| and My = |y〉〈y|,
where the basis of states {|m〉} and {|y〉} are such that |〈m|y〉|2
is independent of m [27].

Similarly, from Eq. (A1c) we deduce that the lower bound
in Eq. (A2) is achieved when all states {ρm} are the same, or
alternatively when p(m|y) = δmy . Hence, the joint probability
Eq. (3) satisfies p(y,m) = δmyp(y) = δymp(m), that is, both
measurement results, {m} and {y}, are completely correlated.
From Eq. (3), we deduce that this condition is fulfilled by pro-
jective measurements �m = |m〉〈m| and My = |y〉〈y|, where
the basis of states {|m〉} and {|y〉} are the same, |〈m|y〉|2 = δmy .

We notice that statistical independence and complete cor-
relation between both measurement outcomes also give the
equality conditions for the entropies of the measurement
probabilities {p(m)} and their retrodicted version {p(m|y)}.
They satisfy the classical inequality [1]

H[m] � H[m|y] � 0, (A3)

where H[m] = −∑
m p(m) ln[p(m)] and H[m|y] =

−∑
y p(y)

∑
m p(m|y) ln[p(m|y)] is the conditional Shannon

entropy of outcomes {m} given outcomes {y}. In fact,
H[m] = H[m|y] when p(y,m) = p(y)p(m) [1]. On the other
hand, the lower bound H[m|y] = 0 occurs when {m} is a
deterministic function of {y} [1], which here corresponds to
p(y,m) = δmyp(y) = δymp(m).

By using the upper bound [1]
∑

k p(k)S[ρk] + H[k] �
S[

∑
k p(k)ρk], with equality if and only if all states

ρk have support on orthogonal subspaces, where H[k] =
−∑

k p(k) ln[p(k)], under the replacement k → y it follows
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that

H[y] � S
[∑

y

p(y)ρy

]
−

∑
y

p(y)S[ρy]. (A4)

Taking into account that
∑

y p(y)ρy = ∑
m p(m)ρm [Eq. (9)],

the previous expression recovers Eq. (11). This upper bound
is achieved when all states {ρy} have support on orthogonal
subspaces. On the other hand, taking k → m the upper entropy
bound becomes

H[m] � S
[∑

m

p(m)ρm

]
−

∑
m

p(m)S[ρm] (A5a)

�
∑

y

p(y)S[ρy] −
∑
m

p(m)S[ρm], (A5b)

where the last inequality is guaranteed by Eq. (A2), which in
turn recovers Eq. (12). This upper bound is achieved when
all states {ρm} have support on orthogonal subspaces and
p(m|y) = p(m).

APPENDIX B: DEMONSTRATION OF MUTUAL
INFORMATION INEQUALITIES

Here we demonstrate the inequalities that bound the changes
in the mutual information of a bipartite arrangement consisting
in subsystems A and B, Eqs. (13) and (14). The demonstrations
rely on the strong subadditivity property of von Neumann
entropy [1]. Hence, an extra ancilla system C is introduced.

First inequality. The tripartite arrangement is described by
the state

ρabc =
∑
m,y

p(m,y)ρab
m ⊗ |y〉〈y|, (B1)

where p(m,y) is an arbitrary joint probability of m and y.
Hence,

∑
m p(m,y) = p(y), and

∑
y p(m,y) = p(m). The set

{ρab
m } are states in the AB Hilbert space, Trab[ρab

m ] = 1, while
{|y〉} is an orthogonal base of the Hilbert space of C. The
marginal state of AB and C, ρab, and ρc, respectively, read

ρab =
∑
m

p(m)ρab
m , ρc =

∑
y

p(y)|y〉〈y|, (B2)

where ρab by partial trace defines the states of A and B, ρa =
Trb[ρab] and ρb = Tra[ρab], respectively. The entropy of the
tripartite state ρabc, by using p(m,y) = p(m|y)p(y), can be
written as

S[ρabc] = H[y] +
∑

y

p(y)S
[
ρab

y

]
, (B3)

where

ρab
y =

∑
m

p(m|y)ρab
m , (B4)

and H[y] is the classical Shannon entropy of the distribution
{p(y)}, H[y] = −∑

y p(y) ln[p(y)]. Similarly, the entropies
S[ρac] and S[ρbc] follow from Eq. (B3) under the replace-
ments ρab

y → ρa
y = Trb[ρab

y ] and ρab
y → ρb

y = Tra[ρab
y ], re-

spectively. Using the strong subadditivity condition S[ρabc] +

S[ρa] � S[ρab] + S[ρac] [1], it follows

S[ρa] − S[ρab] �
∑

y

p(y)S
[
ρa

y

] −
∑

y

p(y)S
[
ρab

y

]
. (B5)

Interchanging the indices a ↔ b, the previous inequality be-
comes

S[ρb] − S[ρab] �
∑

y

p(y)S
[
ρb

y

] −
∑

y

p(y)S
[
ρab

y

]
. (B6)

The addition of the previous two expressions leads to

I[ρab] −
∑

y

p(y)I
[
ρab

y

]
� S

[
ρab

] −
∑

y

p(y)S
[
ρab

y

]
,

(B7)
which recovers Eq. (13), where the mutual information of a
bipartite state is I[ρab] = S[ρa] + S[ρb] − S[ρab].

Second inequality. In this case the tripartite arrangement is
described by the state

ρabc
y =

∑
m

p(m|y)ρab
m ⊗ |m〉〈m|. (B8)

This state parametrically depends on y. p(m|y) is an arbitrary
conditional probability of m given y,

∑
m p(m|y) = 1. The

set {ρab
m } are states in the Hilbert space of the bipartite system

AB, Trab[ρab
m ] = 1, while here {|m〉} is an orthogonal base of

the Hilbert space of C. The marginal state of AB and C, ρab
y ,

and ρc
y , respectively, read

ρab
y =

∑
m

p(m|y)ρab
m , ρc

y =
∑
m

p(m|y)|m〉〈m|. (B9)

The states of A and B read ρa
y = Trb[ρab

y ] and ρb
y = Tra[ρab

y ],
respectively.

A straightforward calculation leads to

S
[
ρabc

y

] = H[m]|y +
∑
m

p(m|y)S
[
ρab

m

]
, (B10)

where

H[m]|y ≡ −
∑
m

p(m|y) ln [p(m|y)]. (B11)

The entropies S[ρac
y ] and S[ρbc

y ] follow from Eq. (B10) under
the replacements ρab

m → ρa
m and ρab

m → ρb
m, respectively.

Using the strong subadditivity condition [1] S[ρabc] +
S[ρa] � S[ρab] + S[ρac], with ρabc → ρabc

y [Eq. (B8)],
jointly with Eq. (B10), lead to

S
[
ρa

y

] − S
[
ρab

y

]
�

∑
m

p(m|y)S
[
ρa

m

] −
∑
m

p(m|y)S
[
ρab

m

]
.

(B12)
Interchanging a ↔ b in the strong subadditivity condition, the
previous equation becomes

S
[
ρb

y

] − S
[
ρab

y

]
�

∑
m

p(m|y)S
[
ρb

m

] −
∑
m

p(m|y)S
[
ρab

m

]
.

(B13)
By adding the previous two inequalities, it follows

I
[
ρab

y

] −
∑
m

p(m|y)I
[
ρab

m

]
� S

[
ρab

y

] −
∑
m

p(m|y)S
[
ρab

m

]
.

(B14)
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Applying
∑

y p(y) to each contribution in the previous inequal-
ity, and using that

∑
y p(m|y)p(y) = p(m), leads to

∑
y

p(y)I
[
ρab

y

] −
∑
m

p(m)I
[
ρab

m

]

�
∑

y

p(y)S
[
ρab

y

] −
∑
m

p(m)S
[
ρab

m

]
, (B15)

which recovers Eq. (14).

APPENDIX C: BIPARTITE PROJECTIVE
MEASUREMENTS

Here, we apply the main results of Sec. III to the case of
bipartite projective measurements presented in Sec. IV.

1. Entropy inequalities

From Eq. (17), a straightforward calculation gives

S
[
ρab

�

] = H[m] +
∑
m

p(m)S
[
ρa

m

]
. (C1)

From Eq. (18), the average entropy of the smoothed state reads∑
y

p(y)S
[
ρab

y

] = H[m|y] +
∑
m

p(m)S
[
ρa

m

]
, (C2)

where H[m|y] = −∑
y p(y)

∑
m p(m|y) ln[p(m|y)] =

H[m,y] − H[y] is the conditional entropy of outcomes {m}
given outcomes {y}. From Eq. (16), the average entropy
corresponding to the selective resolution of the nonselective
measurement is∑

m

p(m)S
[
ρab

m

] =
∑
m

p(m)S
[
ρa

m

]
. (C3)

Using that 0 � H[m|y] � H[m] [1], it follows that the entropy
inequalities (10) are fulfilled by the bipartite system.

From Eqs. (C1) and (C2), jointly with the inequality (11) it
follows that

S
[
ρab

�

] −
∑

y

p(y)S
[
ρab

y

] = H[m : y] � H[y], (C4)

where H[m : y] = H[m] − H[m|y] = H[m] + H[y] −
H[m,y], is the classical mutual information between
the outcomes of both measurements, {m} and {y}. The
demonstration of the inequality H[m : y] � H[y] can be
found in Ref. [1]. In addition, the inequality (12), from
Eqs. (C2) and (C3), reads∑

y

p(y)S
[
ρab

y

] −
∑
m

p(m)S
[
ρab

m

] = H[m|y] � H[m].

(C5)
The demonstration of the inequality 0 � H[m|y] � H[m]
can also be found in Ref. [1]. The previous two equations
demonstrate that the general inequalities (11) and (12) are in
fact fulfilled.

In the previous expressions the probabilities read
p(m) = Tra[〈m|ρI |m〉] [Eq. (1)]. Furthermore, p(y|m) =
Tra[M†

yMyρ
a
m] [Eq. (2)], p(y,m) = Tra[〈m|ρI |m〉M†

yMy]
[Eq. (3)], while the retrodicted probability p(m|y) [Eq. (5)]
reads p(m|y) = Tra[〈m|ρI |m〉M†

yMy]/p(y) where p(y) =∑
m Tra[〈m|ρI |m〉M†

yMy] [Eq. (4)].
Subsystems. The previous results can also be specified

for subsystem A and B. From Eqs. (17) and (18), it fol-
lows ρb

� = ∑
m p(m)|m〉〈m|, and ρb

y = ∑
y p(m|y)|m〉〈m|.

Furthermore, ρb
m = |m〉〈m|. The inequality (10), specified for

subsystem B, becomes S[ρb
�] = H[m] � ∑

y p(y)S[ρb
y ] =

H[m|y] � ∑
m p(m)S[ρb

m] = 0, because S[ρb
m] = 0. Hence,

H[m] � H[m|y] � 0, which is a well-known inequality valid
for Shannon entropies [1]. Instead for subsystem A, Eq. (10)
leads to the nontrivial relation

S
[
ρa

�

]
�

∑
y

p(y)S
[
ρa

y

]
�

∑
m

p(m)S
[
ρa

m

]
, (C6)

where ρa
� = ∑

m p(m)ρa
m and ρa

y = ∑
y p(m|y)ρa

m [see
Eqs. (17) and (18)]. This inequality tells us that, while the first
measurement is performed over subsystem B, an information
gain is also guaranteed for subsystem A.

The inequalities (11) and (12) can also be spec-
ified for each subsystem. For subsystem A they be-
come S[ρa

�] − ∑
y p(y)S[ρa

y ] � H[y], and
∑

y p(y)S[ρa
y ] −∑

m p(m)S[ρa
m] � H[m]. For subsystem B they lead to the

same classical entropic relations found previously.

2. Mutual information inequalities

The mutual information under the different measurement
schemes are characterized by Eqs. (13) and (14). Each
term appearing in these inequalities is explicitly calculated
below.

From the entropy expressions (C1)–(C3), the mutual in-
formation associated with the different measurement stages
reads

I
[
ρab

�

] = S
[
ρa

�

] −
∑
m

p(m)S
[
ρa

m

]
, (C7)

while

∑
y

p(y)I
[
ρab

y

] =
∑

y

p(y)S
[
ρa

y

]−∑
m

p(m)S
[
ρa

m

]
. (C8)

The difference of the previous two equations leads to the lower
bound of Eq. (19). On the other hand, from Eq. (16) it follows
that

∑
m p(m)I[ρab

m ] = 0, which in turn leads to the lower
bound of Eq. (20).

The upper bounds of Eqs. (19) and (20) follows from the
general inequalities (13) and (14) written in terms of Eqs. (C4)
and (C5), respectively.
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