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Non-Markovian quantum processes: Complete framework and efficient characterization
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Currently, there is no systematic way to describe a quantum process with memory solely in terms of
experimentally accessible quantities. However, recent technological advances mean we have control over systems
at scales where memory effects are non-negligible. The lack of such an operational description has hindered
advances in understanding physical, chemical, and biological processes, where often unjustified theoretical
assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical
results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal
framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian
process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum
state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient
matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective
description of memory-bearing open-system evolutions.
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I. MOTIVATION

No system is isolated. Within its broadest definition, the
open-systems paradigm embraces this reality and makes use of
statistical methods and approximations to account for unknown
and uncontrollable variables. It has had tremendous success
in translating fundamental theories into real-world predictions
and has led to a multitude of technological advances. In
quantum mechanics, the conventional description of open
dynamics constitutes a mapping from one state of a system
to another. However, this approach has serious shortcomings
when it comes to describing many realistic scenarios, which
has hindered progress in describing complex quantum pro-
cesses. The reason for these shortcomings is aptly summed up
in the famous quote by Peres [1]: “The simple and obvious
truth is that quantum phenomena do not occur in a Hilbert
space. They occur in a laboratory. If you visit a real laboratory,
you will never find there Hermitian operators. All you can
see are emitters (lasers, ion guns, synchrotrons and the like)
and detectors. The experimenter controls the emission process
and observes detection events.” In this article, we embrace
Peres’s point of view and propose a way to describe arbitrary
quantum processes in terms of control operations, as opposed
to mappings from density operators to density operators. In
particular, our framework is perfectly suited to describe tem-
porally correlated, that is, non-Markovian, quantum processes.

Future quantum technologies, from quantum computers
[2,3] to artificial nanostructures [4], will have to embrace
non-Markovian dynamical effects if they are to operate un-
der realistic conditions. Our understanding of fundamental
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processes in nature, such as the dynamics of molecules [5]
and the functions of biochemical systems [4], also hinges on a
clear theory of non-Markovian quantum processes. Already,
there are many interesting physical scenarios where going
beyond the Markov assumption can be advantageous [6]. In
such instances, the characterization of the ensuing dynamics
via conventional methods poses many challenges; one often
has to relinquish either the complete positivity or the linearity
of the dynamics [7–9], leading to a mathematically consistent
but physically inapplicable description of the dynamics [10]
(see Fig. 1(a) [11]). To overcome these difficulties, one must
consider that the environment (E), as well as the system-
environment (S-E) correlations, might have some memory of
previous states of the system (S), significantly complicating
any theoretical description [12]. This is particularly true in
the quantum regime, where the time scales of the interaction
between S and E are often comparable to those of the dynamics
of the system alone [13].

In this article, we present a general operational framework
to characterize arbitrary quantum processes, including those
which are non-Markovian. Our framework closely resembles
the quantum combs program [14,15] developed to under-
stand the most general quantum circuits. In our framework,
a quantum process is defined by the relationship between
experimentally implementable controls and experimentally
measurable output states [see Fig. 1(b)]. Our approach is very
much in the spirit of Peres’s quote above. There are two main
results presented in this paper.

(1) A mapping, which we call the process tensor, from the
set of possible control operations to output states [see Fig. 1(c)]:
We show this mapping is universal, by proving that it describes
all quantum processes and can be simulated with a quantum
circuit. Our framework is free of any assumptions about the
underlying system-environment dynamics and, unlike many
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FIG. 1. (a) The conventional approach to open quantum dynamics
attempts to relate the states of the system (S) at different times
by considering system-environment (S-E) unitary dynamics and
averaging out the state of the environment (E). The averaging of
the unknown variables is denoted by the red line. This cuts through
S-E correlations, leading to issues that have hindered progress in
understanding and characterizing non-Markovian dynamics. (b) The
operational framework relates the operations an experimentalist can
perform on S, denoted by Ak−1:0 = {Ak−1, . . . ,A0}, to the state of
S at a later time. The red line here cuts between the objects the
experimentalist can control and those that they cannot. (c) This leads
to the description of a quantum stochastic process as a mapping,
encapsulated in the process tensor Tk:0, from the set of control
operations to the output state ρk of S. The process tensor contains
all the information about the S-E initial state and interactions that
can be inferred from the system’s dynamics alone.

conventional methods in open dynamics, the process tensor
naturally accounts for multitime correlations. We detail the
mathematical structure of the process tensor, showing that it
retains both linearity and complete positivity, before showing
how it can be tomographically reconstructed.

(2) A representation for the process tensor as a many-
body quantum state, which can be physically constructed
using a set of bipartite entangled states: This many-body state
encodes temporal correlations as spatial ones and has a natural
matrix-product-operator representation [16]. As such, it can
be efficiently reconstructed using tensor network techniques
developed in recent years. This is our most significant contri-
bution, as it enables an efficient and systematic way to describe
non-Markovian quantum processes and opens the door for the
wide range of tools for characterizing spatial correlations (e.g.,
entanglement) to be directly applied to temporal correlations.

Our framework single-handedly resolves the troubling is-
sues surrounding complete positivity and linearity (or lack
thereof) faced by the conventional framework when dealing
with initial correlations and memory effects. It leads to a
complete formulation of open quantum dynamics, in the sense
that it describes everything that could possibly be observed in
an experiment. Moreover, it could be used to better understand
quantum processes such exciton transport, chemical reactions,
and many more. It opens up the possibilities for systematically
developing techniques for quantum control which will be

instrumental in the development of new quantum technologies.
In an accompanying paper, we also use our framework to
derive an operationally meaningful Markov condition and
corresponding family of measures for non-Markovianity [17].

II. OPEN QUANTUM PROCESSES

Operational framework. We consider a quantum system
undergoing a process that we split into arbitrary discrete time
steps, labeled by k ∈ [0,K], where we do not assume anything
about the intermediate dynamics, nor do we assume anything
about the system’s initial state, which is a feature of the process
itself [18]. When the time steps are chosen to be closely spaced,
they will approximate a continuous-time evolution. Within this
setting, we begin by giving an operational definition of process
characterization:

Definition 1. A quantum process is said to be characterized
for K time steps when the state of the system can be predicted
at any time step 0 � k < K . The system may be subjected
to arbitrary quantum operations A at previous time steps.
The mapping from the sequence of operations Ak−1;0 :=
{Ak−1; . . . ;A1;A0} to the state ρk , given by

ρk := Tk:0[Ak−1:0], (1)

fully characterizes the process. We call Tk:0 the process tensor.
We have graphically illustrated Definition 1 in Fig. 1(c).

This definition of the process tensor, which also encodes the
average initial state of the system, forms the basic building
block of this work. Operations A (where we have omitted
the subscripts) are called control operations: they represent
all the possible manipulations of the system—measurements,
unitary rotations, etc.—that an experimentalist could perform,
and are mathematically described by completely positive (CP)
maps. When the operations can be performed deterministically
(for example, a unitary rotation), they are also trace-preserving
(CPTP) maps. Otherwise, when a control can only be applied
probabilistically, corresponding to a particular measurement
outcome, for instance, the trace of the state is decreased. In this
case, the output of the process tensor is a subnormalized density
matrix proportional to the success probability of applying the
trace-decreasing controls.

In general, the control operations may even be correlated
with one another, corresponding to classical conditioning or
multiple interactions with the same ancillary system. Their
only restriction is that they must act on S alone. An important
subset of control operations is the combination of a measure-
ment followed by a preparation. Definition 1 represents the
idea that an experimentalist can probe a system many times,
and in many different ways, as it evolves, and that the full
statistics of all possible observations constitutes the effective
process accessible to the experimentalist.

A. Properties of the process tensor

The process tensor is a mapping from the set A to a quantum
state. Thus, its output is required to be a valid density operator,
up to normalization (which depends on the probability of
applying A). Furthermore, it should satisfy the following
properties to be physically relevant:
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(P1) Linearity. T [aA + bB] = aT [A] + bT [B] for any
a,b ∈ R. This property embodies the linearity of mixing,
which must hold for any stochastic theory.

(P2) Complete positivity. If the controls act on the system
S undergoing the process and an ancilla A, the final S-A state
should still be physical. Therefore, T S ⊗ IA[ASA] = ρSA�0,
where IA is the identity process on the ancilla; this must be
true for any ASA. This is analogous to complete positivity for
quantum operations.

(P3) Containment. For k � k′ � j ′ � j , the process tensor
Tk′:j ′ is contained in Tk:j . That is, if we have the full process
tensor TK:0, then we can describe the dynamics between any
intermediate time steps, and Tk′:j ′ can be obtained from Tk:j .
This amounts to a causal ordering of time steps.

We now prove that the process tensor given in Defini-
tion 1 with these properties fully describes any quantum
process—even when it involves strong system-environment
coupling—and is guaranteed to have physical outputs. Unlike
conventional approaches, the process tensor has all of the
desired properties of a statistical-dynamical theory—linearity,
a notion of complete positivity, etc.—while accounting for
arbitrary non-Markovian behavior.

B. Representation theorem

We use the term open quantum evolution (OQE) to describe
a system S interacting with its environment E, where the joint
S-E dynamics is driven by unitary evolution, i.e., according
to the Schrödinger equation. As above, the system may be
interrogated, interrupted, or manipulated at intermediary time
steps by controls Ak−1:0 = {Ak−1, . . . ,A0}, which are simply
CP operations.

We can write the total dynamics as

ρSE
k := Uk:k−1 Ak−1 Uk−1:k−2 · · ·A1 U1:0 A0

[
ρSE

0

]
, (2)

where ρSE
0 is the initial S-E state, {U} are unitary maps on the

S-E space given by Uj :i[ρSE
i ] = Uj :iρ

SE
i U

†
j :i = ρSE

j , where

Uj :iU
†
j :i = 1, and ρSE

k is the state of S-E at time step k. The
state of the system is obtained by tracing over the environment
as ρS

k = trE[ρSE
k ]. Equation (2) is the full quantum-mechanical

description of the joint S-E evolution. We now formalize the
relationship between the process tensor and OQE with the
following theorem.

Theorem 2. The state of a system, undergoing an open
quantum evolution, at any time step k is given by contracting
a choice of control operations with a process tensor satisfying
the properties (P1) linearity, (P2) complete positivity, and (P3)
containment. Conversely, any process tensor is consistent with
an OQE of the form of Eq. (2), where the environment is
simulated by k ancillas of increasing dimension dAj

� d2(3j ).
The proof of the first statement, given in Sec. B 1 of

Appendix B, constructs Tk:0 explicitly by writing down the
matrix indices for all objects in Eq. (2). Specifically, to prove
the theorem, we show that the action of the process tensor can
be written as the operator-sum decomposition

ρ = T [A] =
∑

l

Tl A T
†
l , (3)

FIG. 2. Quantum circuit to simulate the process tensor. Any
process tensor can be simulated by the quantum circuit above. For each
time step an ancilla of dimension dj � (dS

∏j−1
n=0 dn)2 and prepared in

a state ηj is introduced. The unitary at each step can be decomposed as
Uj :j−1 = VjWj :j−1, where Wj :j−1 acts on the system and all previous
ancillas and Vj acts on all subsystems including the new ancilla. See
Sec. B 2 of Appendix B for a detailed proof of the converse statement
of Theorem 2.

with the operators {Tl} defined in Eq. (B4) in Appendix B. The
second equality implies complete positivity (and linearity) of
T . The containment property also arises naturally from our
construction.

For the proof of the converse statement, given in Sec. B 2
of Appendix B, we make use of the supermaps formalism
introduced in Ref. [19]. In a nutshell, we show that each step of
a process can be described by a supermap, and that this implies
a unitary representation for the dynamics during that step. By
induction, the unitary representation, or dilation, of the full
process tensor follows. It is also possible to represent a general
process tensor by a unitary evolution with ancillas of smaller
dimension dAj

� d2k+1 [20], albeit with a circuit that cannot
be straightforwardly extended to incorporate more time steps.

The theorem above shows that the process tensor is the
most general descriptor for a quantum process. The direct
correspondence between OQE and the process tensor proves
its universality. It additionally provides a recipe for simulating
general (discrete-time) non-Markovian dynamics. Given a
process-tensor description of the dynamics, a set of unitary
operations {Uj :j−1} and ancilla states {ηj } can be (nonuniquely)
determined which, when applied using the quantum circuit in
Fig. 2, fully simulate the reduced dynamics of the system. Since
this description is operational, it is experimentally applicable,
sidestepping issues of interpretation of all other approaches.
Nevertheless, since it can describe any quantum process, the
process tensor contains the conventional picture in the latter’s
realm of validity.

C. Conventional picture from the process tensor

In the conventional approach the dynamics of a quantum
system is most often described by a master equation or a family
of dynamical maps. The former relates the rate of change of a
system’s state (represented by a density operator) at each time
to the state itself, or more generally to the state at earlier times,
whereas in the latter approach, the future states of the system
are obtained by the action of a superoperator on the initial
state. In other words, the conventional description of a process
involves keeping track of the state of the system as a function
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of time. This limits the ability to determine the outcomes of
measurements on the system to at most two times in a given
run, failing to account for multitime correlations, which are
crucial for understanding non-Markovian effects. Moreover,
the conventional approach runs into trouble when the initial
state of S-E is correlated.

The presence of initial S-E correlations indicates one of the
simplest non-Markovian processes: the initial correlations are
a record of the past interactions between S and E. In such cases,
the CPTP description of the dynamics breaks down. Pechukas
has shown that, in order to describe the dynamics in the
presence of initial S-E correlations, we must give up something
[7,8], e.g., complete positivity or linearity [9]. Needless to say,
neither of these two options is desirable, creating a double bind.
The operational interpretation of non-CP or nonlinear maps is
not clear, and they can lead to unphysical behavior [21–23].
These troubling features remain when describing general (and
more complex) non-Markovian dynamics [24–26].

To overcome the double bind presented by the initial
correlation problem there is a a third option: to give up
altogether the notion of states of S as the inputs of the map
[27]. This is because an independent set of input states of S

is not well defined when S is correlated with E [28]. If we
recognize that, in order to prepare a desired state of S, we must,
in reality, implement some external control operation, then it is
thus natural to treat these operations as the inputs to the process
[27], which in turn yields the final state of S. This method is
an operationally sound way of describing dynamics when the
initial S-E state is correlated, and has been experimentally
implemented [29]. The resultant map is a single-step process
tensor, also known as a superchannel. As such, it is both CP
and linear, overcoming the challenge posed by Pechukas.

While the superchannel resolves the problem of initial
correlations, the more general process tensor allows for de-
scribing correlations over multiple time steps. It too maps
control operations to states, instead of initial system states to
final states, and it is fundamentally different from the con-
ventional approach to non-Markovian dynamics [24,30–34].
It also differs from non-Markovian master equations, which
seek to relate changes in the state of a system at a given
time to its initial state and the effects of a memory kernel;
this may be microscopically derived or phenomenological in
nature [12,35,36].

As it is a more general description, the process tensor
includes the same information (and more) about the dynamics
as the conventional approach. In particular, it can be used to
determine the density operator as a function of time. Let us
assume that the initial S-E state is uncorrelated. Thus, the state
of S at time step k is given by

ρk = trE
[
Uk:0 ρS

0 ⊗ ρE
0 U

†
k:0

] = �k:0(ρ0), (4)

where �k:0 is a CPTP map from the initial time to time step
k. This expression can be obtained from the process tensor
by simply choosing the identity operation (do nothing) as the
control operation at each time step after the initial preparation:

ρk = Tk:0[I; . . . ; I;A0]. (5)

This equivalence is depicted in Fig. 3.

FIG. 3. The conventional picture of open dynamics is fully con-
tained in the process tensor. When the initial system-environment
state is uncorrelated (i.e., ρSE

0 = ρS
0 ⊗ ρE

0 ), the picture of evolution
according to a CPTP map can be recovered by acting with the identity
map I (doing nothing) at all time steps but the first. The initial state
is simply given by ρ0 = A0[ρS

0 ].

Moreover, by taking time steps closer and closer together,
we can also recover the changes to the state of the system.
This allows for deriving a non-Markovian master equation
of the Nakajima-Zwanzig type [37]. While the conventional
approaches are recovered as limiting cases, the process tensor
allows for much more, including implementing temporally
correlated control operations.

D. Temporally correlated controls

The linearity property (P1) of the process tensor applies
independently to each of its arguments; that is, the process
tensor is multilinear in the applied control operations:

Tk:0[Ak−1; . . . ; (aAj + bA′
j ); . . . ;A0]

= aTk:0[{Ak−1; . . . ;Aj ; . . . ;A0}]
+ bTk:0[{Ak−1; . . . ;A′

j ; . . . ;A0}] (6)

∀j ∈ [0,k − 1] and ∀a,b ∈ R. What this means is that the argu-
ment A = {Ak−1; . . . ;A1;A0} can be seen as an element of the
tensor product space of control operations. For independent op-
erations this means we can write A = Ak−1 ⊗ · · · ⊗ A1 ⊗ A0.

Noting the tensor product structure of the process tensor’s
argument means that we can extend its action to nonproduct
operations:

A =
∑

jk−1,...,j0

cjk−1,...,j1,j0Ajk−1 ⊗ · · · ⊗ A0. (7)

These correspond to correlated operations; for example, these
could be measurements whose basis depends on the outcome
of an earlier measurement, or they could represent repeated
interactions with the same ancillary system. In fact, these
operations also have the structure of a general quantum comb
and hence can be thought of as process tensors themselves
(with an uncorrelated initial state). In Fig. 4 we depict the action
of the process tensor on a general correlated operation, and
how this could be realized in practice. Correlated operations
can be used to describe experiments with quantum or classical
feedback control. In the following section, we further use the
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FIG. 4. A process tensor acting on a correlated operation. Both
the process tensor and the sequence of control operations can be
represented as quantum combs [15]. The density operator at time
step k results from their contraction. Any correlated CPTP operation
acting on the system can be implemented by interacting the system
repeatedly with an ancillary system A, such that SA unitaries
Vj are applied at each time step. Any correlated CP operation
can be implemented with a further measurement with the correct
outcome [38].

linearity of the process tensor and the control operations to
show how it can be reconstructed tomographically.

III. LINEAR CONSTRUCTION OF THE PROCESS TENSOR

The collection of quantum operations A, which the process
tensor acts on, is itself a linear operation. That is, an operation
A, acting on the system at a given time step, is a linear map on
the density operator of the system. At each time step j , it can
be uniquely decomposed in terms of a fixed set of linearly in-

dependent operations {A(μ,ν)j
j } as Aj = ∑

(μ,ν) α(μ,ν)jA
(μ,ν)j
j ,

with real numbers α(μ,ν)j . Note that the coefficients α(μ,ν)j
are not necessarily positive, meaning the expansion above is
linear but not convex. Further, using the multilinearity of the
process tensor discussed in the previous section, any sequence
of control operations can also be expanded in terms of tensor
products of these basis elements as

Ak−1:0 =
∑
(μ,ν)

k−1⊗
j=0

α(μ,ν)jA
(μ,ν)j
j . (8)

As we now see, by determining the final state for each
basis operation, the process tensor can be reconstructed in a
process tomography [39–41] involving many time steps. As
with any quantum tomography, the scaling is not favorable.
An operation on any d-dimensional system can be expressed
in terms of O(d2) measurement operators and d2 prepara-
tions. Thus, the expansion of Ak:0 requires O(d4k) linearly
independent combinations of preparations and measurements
(or, more generally, O(d4k) linearly independent operations of
any sort). This may seem like an obstacle in characterizing

FIG. 5. Full-process tomography. In a convenient, but not unique,
scheme for full tomography, the system is measured at each time
step and then freshly prepared. That is, the preparation at step k is
independent of the previous measurements and preparations. A linear
combination of measurements and preparations, each chosen from a
set that linearly spans the operator space, is sufficient to span the space
of control operations. Having statistics for all possible measurements
and preparations at all times is sufficient to construct Tk:0.

non-Markovian processes. However, it is still possible to
tomographically reconstruct a partial process tensor with a
smaller set of controls [42].

A convenient choice {A(μ,ν)} for the basis of operations,
depicted in Fig. 5, is each of the outcomes of an informationally
complete positive operator-valued measure (POVM) {�(μ)}
followed by an update [43]. The update is a preparation of
a fresh state from the set {P (ν)}, which linearly spans the space
of system density operators: A(μ,ν)(ρ) = P (ν)tr[�(μ)ρ], with∑

μ �(μ) = 1. For convenience, we can write the operations
in terms of their Choi state [10] (see also Sec. IV), which
for the basis elements is the simple tensor product A(μ,ν) =
P (ν) ⊗ �(μ); we use this representation for the remainder
of this section. Preparation of the “fresh” state need not
involve another copy of the system, but could be achieved
by applying an outcome-dependent unitary operation after the
measurement (such that the preparation is fully independent of
the measurement outcome).

The full control set on a set of time steps can also be cast
as a linear combination of sequences of measurements and
preparations at each time step. That is, the Choi state of the
sequence can be decomposed as

Ak−1:0 =
∑
�μ,�ν

α( �μ,�ν)

k−1⊗
j=0

P
(νj )
j ⊗ �

(μj )
j , (9)

where the notation �η is shorthand for the list of indices
{ηk−1, . . . ,η1,η0} corresponding to each time step, and we

have allowed for the basis {A(μ,ν)j
j } to be different at different

time steps. When the operations applied at each time step are
independent, the coefficients can be decomposed into a product
α( �μ,�ν) = ∏

j α(μ,ν)j .
Writing the state at time step k as the action of the process

tensor on Ak−1:0, we can use the above decomposition to
express it in terms of a fixed set of basis states:

ρk(Ak−1:0) = Tk:0(Ak−1:0) =
∑

(μ,ν)k−1

· · ·
∑

(μ,ν)0

α( �μ,�ν) ρk

(
A(μ,ν)k−1

k−1 ;A(μ,ν)k−2
k−2 ; . . . ;A(μ,ν)1

1 ,A(μ,ν)0
0

)

=
∑

(μ,ν)k−1

· · ·
∑

(μ,ν)0

α( �μ,�ν) ρk

(
P

(νk−1)
k−1 ,�

(μk−1)
k−1 ; . . . ; P (μ1)

1 ,�
(μ1)
1 ; P (μ0)

0 ,�
(μ0)
0

)
. (10)
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Let us further denote output states for the input basis elements:

ρk( �μ,�ν) := ρk

(
P

(νk−1)
k−1 ,�

(μk−1)
k−1 ; P (νk−2)

k−2 ,�
(μk−2)
k−2 ; . . . ; P (μ1)

1 ,�
(μ1)
1 ; P (μ0)

0 ,�
(μ0)
0

)
. (11)

Since the basis elements correspond to nondeterministic
operations (particular measurement outcomes), these states are
subnormalized. The trace of one of these states gives the joint
probability pk( �μ,�ν) = tr[ρk( �μ,�ν)] to measure the sequence of
outcomes corresponding to POVM elements {�(μj )

j } given the

set of preparations P
(νj )
j . Quantum-state tomography on the

system after a given sequence of basis operations would give
the normalized conditional state

ρk

(
P

(νk−1)
k−1

∣∣�(μk−1)
k−1 ; . . . ; P (μ0)

0 ,�
(μ0)
0

) = ρk( �μ,�ν)

pk( �μ,�ν)
. (12)

Equation (10) tells us that reconstructing the set of states
ρk( �μ,�ν) for all possible values of ( �μ,�ν) is sufficient to construct
the state ρk for any arbitrary choice of operations Ak−1:0.
We simply need to know the expansion coefficients for the
sequence, i.e., α( �μ,�ν). This is a consequence of the linearity of
the process tensor: Given a set of operations, spanned by some
control parameters, an experimentalist can test which opera-
tions are linearly independent—this is just a more involved
version of quantum process tomography. By a linear inversion
process, using A(μ,ν)j and ρk( �μ,�ν) we can construct the map
Tk:0 which fully characterizes the process up to time step k.
Note again that the set of experiments we are prescribing here
simply involve performing a POVM �k = {�(μk)

k } followed
by an update Pk = {P (νk)

k } at each time step. It is important
to note that both �k and Pk only contain a finite number
of elements. Performing (exponentially many) experiments
with randomized measurements and preparations will sample
from all possible combinations. The states ρk( �μ,�ν) are simply
deduced from quantum state tomography of the conditional
states in Eq. (12) and the statistics of the �k while holding
all of the priors constant, since the POVM is informationally
complete. We now give a lemma (analogous to the one given
in Ref. [44]) which allows us to construct the process tensor
as a matrix.

Lemma 3. The process tensor can be constructed as

Tk:0 =
∑
�μ,�ν

ρk( �μ,�ν) ⊗ DT
�ν ⊗ �T

�μ, (13)

where {D�ν} and {� �μ} are the dual matrices to {P�ν} and {� �μ}
satisfying tr[D�ν ′ P�ν] = ∏

j δνj ν
′
j

and tr[� �μ′ � �μ] = ∏
j δμj μ

′
j
.

Proof. We first prove that for any set of linearly independent
matrices {P (ν)} there exists the dual set {D(ν)}. Write P (ν) =∑

ν ′ hνν ′
(ν ′), where hνν ′ are real numbers and {
(ν ′)} form
a Hermitian self-dual linearly independent basis satisfying
tr[
(ν)
(ν ′)] = 2δνν ′ [44]. Since {P (ν)} form a linearly inde-
pendent basis, the columns of matrix H = ∑

νν ′ hνν ′ |ν〉 〈ν ′|
are linearly independent vectors, which means H has an
inverse. Let matrix JT = H−1, then HJT = 1, implying that
the columns of J are orthonormal to the columns of H. We
define D(ν ′) = 1

2

∑
j dνν ′
(ν ′), where dνν ′ are elements of J.

The same proof applies to {�(μ)}, whose dual set is {�(μ)}:
tr[�(μ′) �(μ)] = δνν ′ . Since D�ν = ⊗

j D
(νj )
j , � �μ = ⊗

j �
(μj )
j ,

P�ν = ⊗
j P

(νj )
j , and � �μ = ⊗

j �
(μj )
j , we have tr[D�ν ′ P�ν] =∏

j δνj ν
′
j

and tr[� �μ′ � �μ] = ∏
j δμj μ

′
j
.

The action of the process tensor on a specific choice P�ν ⊗
� �μ is given as

Tk:0[P�ν ⊗ � �μ] =
∑
�μ′,�ν ′

ρk( �μ′,�ν ′) tr[D�ν ′ P�ν] tr[� �μ′ � �μ]

=ρk( �μ,�ν). (14)

Its action is then defined on any control operation Ak−1:0, by
linearly expanding the latter in terms of P�ν ⊗ � �μ and coeffi-
cients {α( �μ,�ν)}. The above decomposition therefore provides an
operational means to construct the process tensor. �

While the process tensor can be reconstructed in a finite
number of experiments this way, the complexity of the proce-
dure scales exponentially with the number of time steps. In the
following section, we discuss an alternative representation for
the process which can make its description more efficient.

IV. EFFICIENT STATE REPRESENTATION
OF THE PROCESS TENSOR

To efficiently describe a quantum process, we map the
process tensor into a many-body quantum state. For CPTP
maps, there is a remarkable relationship known as the Choi-
Jamiołkowski isomorphism [45], which can be seen as an
operational recipe for converting a process into a state. By
inserting one-half of a maximally entangled state |ψ+〉 =∑

j |jj 〉 /
√

d into the process described by CPTP map �,
a state ϒ = � ⊗ I[+] (where + = |ψ+〉 〈ψ+|) can be
constructed, whose matrix elements directly correspond to
elements of �.

A. Choi representation for multitime processes

Here, we develop an analog of the Choi-Jamiołkowski
isomorphism for more general processes. Characterizing the
corresponding state is no easier than characterizing the process
tensor from the perspective of the number of parameters.
However, a range of techniques has been developed for efficient
quantum state tomography [46,47]. Owing to the isomorphism,
such techniques are immediately available for quantum process
tomography, rendering it efficient. Our claim is formalized in
the following theorem:

Theorem 4. Any k-step process can be operationally repre-
sented by the generalized Choi state ϒk:0 of a (2k + 1)-body
system. ϒk:0 can further be written in matrix-product-operator
form [16], with a bond dimension that is bounded by the
effective dimension of the environment.

The generalized Choi state ϒk:0, corresponding to the
process tensor Tk:0, can be prepared experimentally using the
circuit presented in Fig. 6. We provide a detailed proof of
this theorem in Appendix C, where we use the dilated OQE
in Eq. (2) to demonstrate that the elements of the density
operator that result from the circuit in Fig. 6 are exactly the
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FIG. 6. Generalized Choi-Jamiołkowski isomorphism. This
quantum circuit prepares the state that represents the process ten-
sor element by element. The resources required are k maximally
entangled pairs of ancillas of dimension d , that is, k log2(d) ebits.
Correlations between pairs of ancillas in ϒk:0 correspond directly to
the memory inherent in the non-Markovian evolution. Any desired
element of this state can be sampled using the techniques of quantum
state tomography. See Appendix C for details.

elements of the corresponding process tensor. The action of the
process tensor Tk:0 on a set of operations Ak−1:0 is equivalent
to projecting the Choi state ϒk:0 onto the Choi state of Ak−1:0

(up to a transpose), i.e., Tk:0[Ak−1:0] = trS[ϒk:0(1S ⊗ Ak−1 ⊗
I ⊗ · · · ⊗ A0 ⊗ I[(+)⊗k−1])], where the partial trace is over
all subsystems except the one corresponding to the output of
the process tensor (the system S in Fig. 6).

The Choi state representation allows direct access to im-
portant properties of the process and maps temporal cor-
relations onto spatial ones. Operational and mathematical
tools, developed to understand, e.g., entanglement scaling, in
many-body quantum states can now be applied directly to
general dynamical quantum processes. This, in turn, enables
the systematic classification and bounding of memory effects.

B. Matrix-product-operator form

Our theorem also implies that many physically relevant
quantum processes will have an efficient description. In the
second part of our proof, we show that the Choi state has a
natural matrix-product-operator form; with the addition of two
extra ancillas, the process tensor can be described by a pure
matrix-product state (MPS), which arises due to the causal
nature of the process (this can also be seen in the second part
of the proof of Theorem 2).

In short, we show that the Choi state for a given OQE can
be written as the matrix-product-density operator [48],

ϒk:0 =
∑

M
rkr

′
k−1sks

′
k−1

k · · ·Mr1r
′
0s1s

′
0

1 M
r0s0
0

× |rk r ′
k−1 · · · r1 r ′

0 r0〉 〈sk s ′
k−1 · · · s1 s ′

0 s0| ,
(15)

composed of d2
E × d2

E matrices

M
rj r

′
j−1sj s

′
j−1

j =〈rj |Uj :j−1|r ′
j−1〉⊗〈sj |U ∗

j :j−1|s ′
j−1〉, (16)

j �= 0,k, and length d2
E row and column vectors

M
rkr

′
k−1sks

′
k−1

k =
∑

ε

〈rkε|Uk:k−1|r ′
k−1〉

⊗ 〈skε|U ∗
k:k−1|s ′

k−1〉 (17)

and

M
r0s0
0 =

∑
ε0γ0

ρSE
r0ε0;s0γ0

|ε0γ0〉 , (18)

respectively; note that the superscripts here are not matrix
indices.

From this representation it is clear that the number of
independent elements of the process tensor does not always
grow exponentially with the number of time steps k, but will,
in many physically relevant cases, grow linearly: the size of the
matrix-product operator and hence the process tensor grows as
O(kd2

SD2), where D is the bond dimension of the state. In
general, D � dE , the dimension of the environment. This is
reassuring, since the description should not be more complex
than the corresponding OQE. Even though the environment
dimension could be large, there is always a consistent OQE
with dE � d3k−1, and we expect the effective bond dimension
to be much smaller than this in practice; often only part of
the environment interacts with the system at any given time
and, in practice, even an infinite-dimensional environment can
be approximated by a finite one [49,50]. This comprises a
significantly more efficient representation for processes with
many time steps, and opens up the possibility to use singular-
value truncation and other techniques [46,47,51,52] to mean-
ingfully approximate the dynamics by pruning low-probability
branches of the MPS description. We now demonstrate how the
Choi state of a process tensor, defined on a set of time steps,
can be used to directly recover information about dynamics on
subsets of those time steps.

C. Intermediate dynamics from the Choi state

In a direct application of the containment property of the
process tensor, we can recover the Choi state of smaller process
tensors from ϒk:0. Taking the trace over the subsystem corre-
sponding to the final output state (S in Fig. 6) gives trS[ϒk:0] =
1 ⊗ ϒk−1:0; partial tracing over one further subsystem gives
the Choi state of the process tensor up to k − 1. By iterating
this procedure and projecting other unwanted time steps on
the maximally entangled state (corresponding to applying an
identity operation), one can recover any intermediate process
tensor. Specifically, if we split the time steps into a set we
are interested in, j1,j2, . . . jn, and a set we wish to ignore,
l0,l1, . . . lk−n, then we have

ϒjn,...,j2,j1 = trj ′
n,{li ,l′i }[(

+
lk−n

⊗ · · · ⊗ +
l1

⊗ +
l0

)ϒk:0], (19)

where the primed and unprimed subsystem labels correspond
to those in Eq. (15). (Depending on whether the final time
step k is included in the set {ji}, some of the subscripts on
the partial trace may be redundant.) Replacing the maximally
entangled states + in this equation with the Choi states of
operations other than the identity will result in the Choi state
of a conditional process tensor that corresponds to the case
where those operations were applied. An important special
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case of this is where the + are replaced by identity operators
1—the Choi state of a maximally incoherent operation (where
all inputs are mapped to the maximally mixed state). ϒjn,...,j2,j1

then simply becomes a reduced state of ϒk:0. In other words,
the reduced states of ϒk:0 are Choi states of intermediate
processes averaged over possible operations that may have
been performed at other time steps.

We can also recover the Choi states of dynamical maps �l:j

that take a freshly prepared system state at time step j to that
at a later time step l:

�l:j ⊗ I[+] = trj l′

⎡
⎣

⎛
⎝ ⊗

m�=j,l

+
m

⎞
⎠ϒk:0

⎤
⎦; (20)

here the trace is over all subsystems but those labeled by j

and l′. In the case that j = 0 and the system is uncorrelated
with its environment initially, we recover the usual dynamical
map as discussed in Sec. II C. These intermediate dynamical
maps are always guaranteed to be completely positive, and
are exactly what one would reconstruct if usual quantum
process tomography were performed between step j and step
l (assuming that the initial preparation procedure involves a
deterministic entanglement-breaking operation). Finally, when
all but the subsystem corresponding to index r0 in Eq. (15) is
traced out, we are merely left with the average initial system
state tr0[ϒk] = trE[ρSE

0 ] = ρS
0 .

V. DISCUSSION

We have presented a universal framework for characterizing
arbitrary quantum processes, including non-Markovian ones,
demonstrating that the process tensor is the most general
descriptor of a quantum process. Our framework does not rely
on any microscopic models; we only assume that experimental
control operations act solely on S and do not directly influence
E (in practice, this could be used as a definition for S). We have
also shown how this characterization could be made efficient by
casting the process tensor as a many-body state, with a matrix-
product-operator form. Moreover, in our accompanying paper
[17] we have used this framework to derive consistent, unam-
biguous, and meaningful measures of non-Markovianity, based
on an operational condition for quantum Markov dynamics.
Our methods could further be applied to continuous control by
making use of the Trotter formula for the decomposition of the
dynamics of a system.

By reconstructing, either numerically or in an experiment,
the dynamics of a system in the form of a process tensor, an
effective memory length and magnitude can be determined at
a coarse-grained level by studying the correlations and bond
dimension of the corresponding Choi state. Based on this, an
effective description of the system could be constructed—
using, for example, the transfer tensor method [37,53]—in
the form of an approximate master equation. This simpler
description would capture the essential features of a complex
system’s dynamics, while discarding those details which are
superfluous at a given time scale.

This work further opens up many other avenues for future
research. Apart from the possibility to derive non-Markovian
master equations—by taking the limit of time steps becoming
infinitesimally close—the process tensor could be used to

systematically study the properties of a typical process and ana-
lyze temporal quantum correlations [54] and structures without
causal order [55,56]. On the practical side, it could be used for
characterizing electronic dynamics in molecules using spectro-
scopic techniques, or formalizing adaptive quantum machine
learning algorithms. Also, the CP nature of the process tensor
enables the calculation of its Holevo capacity [57], which
bounds the information content carried by a non-Markovian
channel [58]. Moreover, our approach paves the way for a
general theory of non-Markovian error correction [2,3].

Related representations for general quantum stochastic
processes have appeared in the literature as early as 1979 and
1982 [59,60], albeit from a less operational starting point. More
recently, the approach to modeling quantum channels with
memory in Ref. [61] has led to a similar mathematical theory. In
other contexts, the mathematical structure of the process tensor
is also related to other formalisms which describe maps acting
on quantum operations, notably the quantum combs [14,15],
operator-tensor [62], and process-matrix [63,64] frameworks.
However, it has not hitherto been applied to the question of
open quantum dynamics per se; here we have constructed
an operationally meaningful prescription to characterize an
arbitrary open process across multiple time steps. The rep-
resentation of the process as a matrix-product operator also
provides a tool for its efficient reconstruction.
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APPENDIX A: INDEX NOTATION
FOR QUANTUM OPERATIONS

Throughout this article CPTP control operationsA are taken
to be Hermitian, positive, trace-d matrices. In the remainder
of the appendixes, we make extensive use of index notation,
which we detail here. The action of the map Aj is defined as

Aj [ρj ] =
∑
r ′
j ,s

′
j

Arj r
′
j ;sj s

′
j
ρr ′

j ;s ′
j
|rj 〉 〈sj | . (A1)

Note that index j on the left denotes a time step. On the right
we have expressed this as a subscript to matrix indices r,r ′,s,s ′;
these subscripts should not be interpreted merely as labels for
dummy indices, but also reference the time step to which the
indexed operator corresponds. Alternatively, we can write the
action of the map in the Sudarshan-Kraus form as A(ρ) =∑

l AlρA
†
l . See the “B-form” of the map in Ref. [65] for details

of this representation of the map.
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We write the action of a unitary transformation that takes the state of S-E from time step j to time step k as

ρSE
k =

∑
rkεkskγk

ρSE
rkεk,skγk

|rkεk〉 〈skγk| , (A2)

Uk:j ρ
SE
j U

†
k:j =

∑
rkεkskγk

rj εj sj γj

Urkεk,rj εj
ρSE

rj εj ,sj γj
U ∗

skγk,sj γj
|rkεk〉 〈skγk| . (A3)

Note that the input and the output indices of the unitary operators have different subscripts denoting the time steps they belong
to. We rewrite the last equation as a quantum map as

ρSE
k = Uk:j

[
ρSE

j

] =
∑

rkεkskγk

rj εj sj γj

Urkεk,rj εj ;skγk,sj γj
ρSE

rj εj ,sj γj
|rkεk〉 〈skγk| . (A4)

Finally, note that often we omit the kets and bras from such equations.
As an example consider where unitary is acting on SE and control operation is acting only on S:

ρS
2 = U2:1 A1 U1:0 A0

[
ρSE

0

]

=
∑
r2s2

Ur2ε2x1ε1;s2γ2y1ε1Ax1r1;y1s1Ur1ε1,x0ε0;s1γ1y0ε0Ax0r0;y0s0ρ
SE
r0ε0,s0γ0

|r2〉 〈s2|

=
∑
r2s2

1∏
j=0

Urj+1εj+1xj εj ;sj+1γj+1yj εj
Axj rj ;yj sj

ρSE
r0ε0,s0γ0

|r2〉 〈s2| . (A5)

Here, xy indicates that all but indices x and y should be summed over.

APPENDIX B: PROOF OF REPRESENTATION THEOREM

1. Open quantum evolution implies process tensor

To prove the first part of Theorem 2 we need to derive the process tensor from the open quantum evolution in Eq. (2) and show
that it satisfies the three properties prescribed following Definition 1. We begin by writing Eq. (2) in terms of matrix indices. The
state of the system at the time step k is ρS

k = trE[ρSE
k ] and is a function of Ak−1:0 = {Ak−1, . . . ,A0}. We can write this state in

terms of matrix indices of these maps:

ρS
rk,sk

=
∑

rk−1 · · · r0
xk−1 · · · x0

∑
sk−1 · · · s0
yk−1 · · · y0

∑
εk · · · ε0
γk · · · γ0

δεkγk

k−1∏
j=0

Urj+1εj+1xj εj ;sj+1γj+1yj γj
Axj rj ;yj sj

ρSE
r0ε0,s0γ0

=
∑

rk−1 · · · r0
xk−1 · · · x0

∑
sk−1 · · · s0
yk · · · y0

⎛
⎜⎜⎜⎝

∑
εk · · · ε0
γk · · · γ0

δεkγk

k−1∏
j=0

Urj+1εj+1xj εj ;sj+1γj+1yj γj
ρSE

r0ε0,s0γ0

⎞
⎟⎟⎟⎠

⎛
⎝

k−1∏
j=0

Axj rj ;yj sj

⎞
⎠

=
∑

rk−1 · · · r0
xk−1 · · · x0

∑
sk−1 · · · s0
yk · · · y0

Trk,xk−1rk−1···x0r0;sk,yk−1sk−1···y0s0 Axk−1rk−1···x0r0;yk−1sk−1···y0s0 , (B1)

where the δ function in the first line is the trace over the final state of E. In general, the initial state of the system can be correlated
with the environment, which is not traced out until the final time step. Note that we have denoted the time-step indices as subscripts
to matrix indices. Above, the process tensor and controls are defined as

Trk,xk−1rk−1···x0r0;sk,yk−1sk−1···y0s0 =
∑

εk · · · ε0
γk · · · γ0

δεkγk

k−1∏
j=0

Urj+1εj+1xj εj ;sj+1γj+1yj γj
ρSE

r0ε0,s0γ0
, (B2)

Axk−1rk−1···x0r0;yk−1sk−1···y0s0 =
k−1∏
j=0

Axj rj ;yj sj
. (B3)

The element-by-element product in the last equation is simply a tensor product of operations A at different times. That is, the
controls at different times are independent of each other. If these operations were correlated then we would have a more complex
entity for Eq. (B3).
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The linearity of the process tensor can be seen by substituting Atot = pA + (1 − p)B into Eq. (B1) and finding T [Atot] =
pT [A] + (1 − p)T [B]. We can interpret this linearity by considering a coin with probabilities p and 1 − p for “heads” and
“tails,” respectively. The coin is flipped and the outcome determines the choice of control operation, A(1) or A(2). Subsequently,
the process outputs state T [A(1)] or T [A(2)]. Interestingly, the value of p or 1 − p need not be positive (aforementioned example
aside); the linearity condition holds for any linear expansion of controls A, so long as their combination remains a valid set of
operations.

Complete positivity for the process tensor can be shown by casting it in the Sudarshan-Kraus-Choi form [65–68]; a linear
map � is CP if and only if it can be decomposed as �(ρ) = ∑

n LnρL
†
n. In our case, we make use of the matrix form of unitary

operations, U [ρ] = UρU †, to split their action from the left and right as

ρS
rk,sk

=
∑

rk−1 · · · r0
xk−1 · · · x0

∑
sk−1 · · · s0
yk · · · y0

∑
εk · · · ε0
γk · · · γ0

δεkγk

⎛
⎝

k−1∏
j=0

Urj+1εj+1xj εj

√
ρSE

r0ε0,s0γ0

⎞
⎠

k−1∏
j=0

Axj rj ;yj sj

⎛
⎝

k−1∏
j=0

√
ρSE

r0ε0,s0γ0
U ∗

sj+1γj+1yj γj

⎞
⎠

=
∑

rk−1 · · · r0
xk−1 · · · x0

∑
sk−1 · · · s0
yk · · · y0

(Tl)rk,xk−1rk−1···x0r0 Axk−1rk−1···x0r0;yk−1sk−1···y0s0 (Tl)
∗
sk,yk−1sk−1···y0s0

, (B4)

where we have used the positivity of the initial state to take its square root. We have achieved the desired form and thus proven
complete positivity. From Eq. (B4), we can write the operators Tl in Eq. (3) of the main text as

(Tεk ···ε0γk ···γ0 )rk,xk−1rk−1···x0r0 =
k−1∏
j=0

Urj+1εj+1xj εj

√
ρSE

r0ε0,s0γ0
, (B5)

where l = εk · · · ε0γk · · · γ0.
Containment property of the process tensor—implying Tk:j contains Tk′:j ′ for j � j ′ � k′ � k—can be seen by letting all

controls from j to j ′ be the identity map. This yields the total S-E state ρSE
j ′ . Next, we allow arbitrary controls from j ′ to k′ and

then discontinue the evolution. This is just a special case of the procedure above with specific choices of controls outside of the
interval [j ′,k′]. However, within the interval, Tk′:j ′ is fully constructed. �

2. Proof that process tensor implies open quantum evolution

The converse statement is a generalization of the Stinespring dilation theorem [69]. In order to prove that all process tensors
have a unitary representation, we first consider that, for a single time-step process, T1:0[A0] = ρ1 = $(A0)[ρ0], where ρ0 is
some initial reduced state of the system and $ is a supermap [19], which maps operations on the system to other operations:
$(A0)[ρ] = A′

0[ρ]. This description is possible due to the CP nature of the process tensor and its resulting Kraus decomposition
(see Sec. B 1).

In Theorem 1 of Ref. [19] it is proven that the action of a supermap can always be represented as

$(A0)[ρ] = trA0{W (A0 ⊗ IB)[ZρZ†]W †}, (B6)

where Z : S → S × B0 and W : S × B0 → S × A0 are isometries acting on the system and two ancillas A0 and B0, and we have
written the identity map on the ancilla explicitly. Since the processes we are considering do not change the dimension of the
system, we can take A0 and B0 to be the same and of dimension dA0 � d2. In this case W corresponds to a unitary map W on the
joint system-ancilla space. Moreover, we can rewrite ZρZ† = V [ρ ⊗ η0], where V is another unitary map on the system-ancilla
space and η0 is the initial state of the ancilla. Therefore, we have

T1:0[A0] = $(A0)[ρ0] = trA0{W1:0A0V0[ρ0 ⊗ η0]}. (B7)

Here, A0 acts on the system alone; there is an implied identity map on the ancilla.
Let us assume that for the process up to step j − 1, Tj−1:0[Aj−2;0] can be represented by unitary evolution of the form

Tj−1:0[Aj−2;0] = trEj−1{Wj−1:j−2 Aj−2 Vj−2[· · · [W1:0 A0 V0[ρ0 ⊗ η0] ⊗ η1] ⊗ . . . ⊗ ηj−2]}
= trEj−1

{
ρSE

j−1

}
, (B8)

where Ej−1 is the environment consisting of ancillas A0 to Aj−2. An additional step, with operation Aj−1, can be added to the
process by considering the evolution as another supermap $j acting on the joint operation Aj−1 ⊗ IEj−1 , the result of which then
acts on the state ρSE

j−1. In other words, Tj :0[Aj−1;0] = trEj−1{$j (Aj−1 ⊗ IEj−1 )[ρSE
j−1]}. We can then use Eq. (B6) to write

Tj :0[Aj−1;0] = trEj

{
Wj :j−1Aj−1Vj−1

[
ρSE

j−1 ⊗ ηj−1
]}

, (B9)

where the new ancilla has dimension dAj
� d2(3j ). This evolution is of the same form as Eq. (B8); thus by induction it follows

from Eqs. (B7) and (B9) that the evolution in Eq. (B8) is valid for any time step.
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If we define ρSE
0 = V0[ρ0 ⊗ η0] ⊗ η1 · · · ⊗ ηk−1 as the initial system-environment state, then the process tensor is consistent

with OQE as defined in Eq. (2) with Uj :j−1 = VjWj :j−1 for j < k and Uk:k−1 = Wk:k−1. �

APPENDIX C: PROOF THAT THE PROCESS TENSOR HAS A MATRIX-PRODUCT-STATE
REPRESENTATION (THEOREM 4)

In this proof, we make use of Theorem 2 to represent the process tensor as an OQE with some environment; we further
introduce a set of 2k ancillas for each of d dimensions, which, along with the system, will be used to encode the many-body state.
This theorem generalizes the well-known Choi-Jamiołkowski isomorphism [70] to the process tensor.

Let us label the pair of ancillas to be used at the j th time step, Aj and Bj ; these are initialized in the maximally entangled
state |ψ+〉Aj Bj

= ∑d
xj =1 |xjxj 〉 /

√
d . Let the total system-environment-ancillas state at time step j be

�j =
∑

�r ′
j εj xj−1yj−1···x1y1x0y0,s

′
j γj wj−1zj−1···w1z1w0z0 |r ′

j εj xj−1yj−1 · · · x1y1x0y0〉 〈s ′
j γjwj−1zj−1 · · · w1z1w0z0| . (C1)

Above, the indices {r ′
j ,s

′
j } and {εj ,γj } belong to S and E, respectively, and {xl,wl} and {yl,zl} belong ancillas Al and Bl ,

respectively, with 0 � l � j − 1. In each case the subscript on the index denotes the time step. Thus �j includes ancillas
{Aj−1Bj−1 · · ·A0B0}. Next we apply the SWAP operation Sj to S and ancilla Aj , defined as S |rx〉 = |xr〉. This gives us

SSA
j �j ⊗ |ψ+〉Aj Bj

〈ψ+| SSA
j = 1

d

∑
�r ′

j εj xj−1yj−1···x1y1x0y0,s
′
j γj wj zj ···w1z1w0z0

× |xj εj r
′
j xj 〉 〈yjγj s

′
j yj | ⊗ |xj−1yj−1 · · · x1y1x0y0〉 〈wj−1zj−1 · · · w1z1w0z0| . (C2)

In the last equation the first line contains SjEjAjBj and the second line contains the previous ancillas Aj−1Bj−1 · · ·A0B0. After
the SWAP gate is applied the state is evolved to the next time step by the unitary map Uj+1:j . The action of the unitary can be
written

Uj+1:j (|xj εj 〉 〈yjγj |) =
∑

Urj+1εj+1,rj εj ;sj+1γj+1,sj γj
|rj+1εj+1〉 〈rj εj | (|xj εj 〉 〈yjγj |) |sjγj 〉 〈sj+1γj+1| (C3)

=
∑

Urj+1εj+1,rj εj ;sj+1γj+1,sj γj
|rj+1εj+1〉 〈sj+1γj+1| δxj rj

δyj sj
. (C4)

Combining these equations, the total system-environment-ancilla state at the next time step is

�j+1 = Uj+1:j SSA
j �j ⊗ |ψ+〉Aj Bj

〈ψ+| SSA
j (C5)

= 1

d

∑
Urj+1εj+1,rj εj ;sj+1γj+1,sj γj

�r ′
j εj xj yj ···x1y1x0y0,s

′
j γj wj zj ···w1z1w0z0

× |rj+1εj+1r
′
j rj 〉 〈sj+1γj+1s

′
j sj | ⊗ |xj−1yj−1 · · · x1y1x0y0〉 〈wj−1zj−1 · · · w1z1w0z0| . (C6)

Iterating Eq. (C6) with �0 = ρSE
0 and taking the trace over the environment, we find for a k-step process

ϒk = trE[�k]

= 1

dk

∑
δεkγk

Urkεkr
′
k−1εk−1;skγks

′
k−1γk−1 · · ·Ur2ε2r

′
1ε1;s2γ2s

′
1γ1Ur1ε1r

′
0ε0;s1γ1s

′
0γ0 ρSE

r0ε0;s0γ0

× |rkr
′
k−1rk−1 · · · r ′

1r1r
′
0r0〉 〈sks

′
k−1sk−1 · · · s ′

1s1s
′
0s0|

= 1

dk

∑
Trk r ′

k−1···r1 r ′
0 r0;sk s ′

k−1···s1 s ′
0 s0 |rkr

′
k−1rk−1 · · · r ′

1r1r
′
0r0〉 〈sks

′
k−1sk−1 · · · s ′

1s1s
′
0s0| . (C7)

This is clearly a density operator with matrix elements corresponding to the components of the process tensor.
To prove that the state in Eq. (C7) corresponds to a matrix-product state, we first realize that we can rewrite it as the

matrix-product density operator [48]

ϒk =
∑

M
rkr

′
k−1sks

′
k−1

k · · · Mr1r
′
0s1s

′
0

1 M
r0s0
0 |rk r ′

k−1 · · · r1 r ′
0 r0〉 〈sk s ′

k−1 · · · s1 s ′
0 s0| , (C8)

composed of d2
E × d2

E matrices

M
rj r

′
j−1sj s

′
j−1

j = 〈rj | Uj :j−1 |r ′
j−1〉 ⊗ 〈sj | U ∗

j :j−1 |s ′
j−1〉 , (C9)

j �= 0,k, and length d2
E row and column vectors

M
rkr

′
k−1sks

′
k−1

k =
∑

ε

〈rkε| Uk:k−1 |r ′
k−1〉 ⊗ 〈skε| U ∗

k:k−1 |s ′
k−1〉 (C10)

012127-11



FELIX A. POLLOCK et al. PHYSICAL REVIEW A 97, 012127 (2018)

and

M
r0s0
0 =

∑
ε0γ0

ρSE
r0ε0;s0γ0

|ε0γ0〉 , (C11)

respectively—note that the superscripts here are not matrix indices. Given a decomposition of the initial state ρSE
0 =∑

λ pλ |φλ〉 〈φλ|, then the latter vector can be rewritten as M
r0s0
0 = ∑

λ pλ 〈r0|φλ〉 ⊗ (〈s0|φλ〉)∗.
Aside from the subsystems corresponding to the initial and final time steps, the state is pure. It can thus be represented as a

(pure) matrix-product state with only two ancillas, using the results of Ref. [48]:

|ψTk
〉 =

∑
pλ 〈rkε| Uk:k−1 |r ′

k−1〉 〈rk−1| Uk−1:k−2 |r ′
k−2〉 · · · × 〈r1| U1:0 |r ′

0〉 〈r0|φλ〉 |rkr
′
k−1 · · · r1r

′
0r0ε λ〉 , (C12)

which has bond dimension D = dE . However, as can be seen from the construction presented in Fig. 2, the minimal dimension
of the environment, and hence the bond dimension, for the most general process grows with the number of time steps; this leads
to a treelike structure of the MPS description. This completes the proof. �
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