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Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state
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We study the dynamics of the Lipkin-Meshkov-Glick (LMG) model with a finite number of spins. In the
thermodynamic limit, the ground state of the LMG model with an isotropic Hamiltonian in the broken phase
breaks to a mean-field ground state with a certain direction. However, when the spin number N is finite, the exact
ground state is always unique and is not given by a classical mean-field ground state. Here, we prove that when
N is large but finite, through a tiny external perturbation, a localized state which is close to a mean-field ground
state can be prepared, which mimics spontaneous symmetry breaking. Also, we find the localized in-plane spin
polarization oscillates with two different frequencies ∼O(1/N ), and the lifetime of the localized state is long
enough to exhibit this oscillation. We numerically test the analytical results and find that they agree very well
with each other. Finally, we link the phenomena to quantum time crystals and time quasicrystals.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) has been widely
studied in physics. It is related to a wide class of phenomena,
such as the magnetization of ferromagnetic material (break-
ing rotational symmetry), crystallization (breaking spherical
translational symmetry), and the Anderson-Higgs mechanism
[1,2] (breaking gauge symmetry). In 2012, Wilczek proposed
an idea of a time crystal [3,4], which spontaneously breaks
time-translational symmetry. Later, Li et al. proposed a scheme
to realized quantum space-time crystals and time quasicrystals
in a trapped ion system [5]. However, it was proven that the
original idea of a quantum time crystal in the equilibrium state
put forward by Wilczek is not possible [6–9]. In 2015, a no-go
theorem was proved to exclude the existence of quantum time
crystals near the ground states for a wide class of Hamiltonians
with short-range coupling terms [10].

The idea of time crystals stimulated further studies on
spontaneous temporal symmetry breaking in dissipative sys-
tems [11], or in the systems’ far-from-equilibrium states, for
example, Floquet or discrete time crystals [12–15]. In this way,
the no-go theorem for quantum time crystals can be bypassed. It
was found that the Floquet time crystal is a type of prethermal-
ization phenomenon [16]. The length of the prethermal regime
in time is nearly exponentially long, and time-translational
symmetry can be spontaneously broken. Soon after the theory
of a discrete time crystal was published, two experiments in
trapped ions and nitrogen-vacancy centers were performed to
verify the existence of discrete time crystals [17,18].

*yinzhangqi@tsinghua.edu.cn

The success of the experiments attracted many people to
study discrete quantum time crystals in various many-body
systems under Floquet driving [19–22]. The possibility of time
quasicrystals was also investigated in some classical systems
[23,24]. Time crystal behavior may also appear in an excited
eigenstate of Wilczek’s model [25]. This experimental success
also stimulated people to rethink how to realize time crystals
near the quantum ground state. For example, combining the
ideas of both classical and quantum time crystals, Shapere
and Wilczek proposed a model which realizes classical time
crystal Lagrangians and emergent Sisyphus dynamics around
its quantum ground state [26].

In this article, we discuss the spontaneous dynamics of
the Lipkin-Meshkov-Glick (LMG) model near its ground state
[27]. The LMG model was first proposed to describe the phase
transitions in atomic nuclei [27]. The quantum phase transition,
the SSB, and the finite-size effects in the LMG model have
been studied for many years [28–32]. Recently, it was found
that the LMG model is relevant to many quantum systems,
such as cavity QED [33], optically trapped nanodiamonds with
nitrogen-vacancy centers [34], Bose-Einstein condensation
[35], etc. In the LMG model, spin squeezing [36,37], quantum
entanglement [38,39], quantum thermodynamic cycles [40],
etc., were studied. However, there are only a few studies on
the dynamics of the finite-size LMG model. We find that there
is a deep connection between the Hamiltonians of the quantum
space-time crystal [3,5] and the LMG model. Thus we would
expect the behavior near the ground state of the LMG model
to be similar to the behavior of quantum time crystals, which
is equivalent to saying that the expectation value of some
physical observables can exhibit a nontrivial dynamics instead
of staying still.
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This article is structured as follows. Section II discusses
the link between the LMG model and space-time crystals
based on trapped ions, and the eigenenergy of the LMG
Hamiltonian [27]. SSB and the dynamics under a mean-field
approximation of the LMG model are discussed in Sec. III.
For the LMG model with a finite but large number of spins,
mean-field approximated results show that for localized states
near the ground state there are oscillations of the in-plane
polarizations Sx,y with small but nonzero angular frequencies
∼O(1/N ). We construct a trial wave function with lifetime
∼O(N3) and localization ∼O(

√
N ), which can demonstrate

the frequency ∼O(1/N) oscillation behavior. In the ther-
modynamic limit, SSB would localize the ground state but
cease the oscillation, which is similar to Wilczek’s model. In
Sec. IV, the analytical result of the dynamics of the LMG
model with finite spins is demonstrated. We find that there
are two intrinsic frequencies for the oscillation of localized
states near the ground state. To understand the spontaneous
property of this symmetry-breaking oscillation, we investigate
the time correlation function of the finite-size LMG model in
Sec. V. The analytical result shows two frequency components
in the correlation function match the two intrinsic frequencies
just computed in Sec. IV. We numerically test the theoretically
predicted oscillating behavior in Sec. VI by introducing a tiny
perturbation. It is found that the numerical curve agrees very
well with the theory. We also discuss the connection between
the oscillation in the LMG model and quantum time crystals
or quasicrystals. In the last section, we compare our results
to the time crystal behavior found in the excited eigenstates
of Wilczek’s model described by Syrwid et al. [25], briefly
discuss the experimental feasibility, and give a conclusion.

II. THE LIPKIN-MESHKOV-GLICK MODEL

The original proposals for both time and space-time crystals
considered charged particles trapping along a ring trap, under
a external magnetic flux α [3,5]. The Hamiltonian is in
the form of H = 1

2

∑N
i (pi − α)2 + particle interaction terms

[41]. As the ring trap is finite, the value of angular momentum
is discrete. As long as α is neither an integral nor a half
integral, the ground-state momentum is not zero. Once the
wave function of the system is localized, it may start to rotate.
However, the spontaneous localization in this system is not
well understood.

On the other hand, we have a highly developed theory
for SSB in the spin-based models. If the angular momentum
operatorpi is replaced with the spin operatorSz with dimension
N + 1, and the particle interaction terms are neglected, we
find that the original Hamiltonian becomes similar to the
Hamiltonian in the isotropic LMG model. Therefore, we
anticipate that for the LMG model with a large spin number N ,
its ground state may be localized and the in-plane polarization
will oscillate spontaneously. In other words, a quantum time
crystal may appear in this model.

The Hamiltonian of a general LMG model is

H = λ

N

(
S2

x + γ S2
y

) − hSz, (1)

where Sα = ∑
i σ

i
α/2 is the total spin operator summing over

N spins, where σα is the Pauli matrix. In this article, we

adopt a natural unit with h̄ = 1. The reason why N is in
the denominator is to ensure a finite energy per spin in the
thermodynamic limit. The parameter space we are interested
in is λ < 0 standing for a ferromagnetic interaction, γ ∈ (0,1]
describing the anisotropic in-plane coupling, and the magnetic
field along the z direction with h � 0. Also, we confine the
following discussion to λ = −1 for simplicity. In this case, it is
well known that a quantum phase transition happens at h = 1.
We adopt the convention introduced by Dusuel and Vidal [29]
to distinguish two phases in the LMG model: a symmetric
phase featured by h � 1 and a broken phase characterized by
0 � h < 1.

The magnitude of the total spin is conserved,

[H,�S2] = 0. (2)

S(S + 1) is the eigenvalue of �S2, and we are only concerned
with the S = N/2 sector, where the lowest-energy states
locate. In addition, H is invariant under the following transfor-
mation, σx → −σx , σy → −σy , and σz → σz, which indicates
a Z2 symmetry (spin-flip symmetry). In other words, eiπ(Sz−S)

or
∏

i σ
i
z is also conserved,

[H,eiπ(Sz−S)] =
[
H,

∏
i

σ i
z

]
= 0. (3)

This Z2 symmetry leads to several consequences such that any
eigenstate satisfies

〈Sx〉 = 〈Sy〉 = 0. (4)

Furthermore, we focus our interest on the isotropic Hamil-
tonian where γ = 1, and we expect the rotational symmetry
in the x-y plane will make this model exhibit some interesting
properties. The Hamiltonian reads

H = − 1

N

(�S2 − S2
z

) − hSz. (5)

H thus commutes both with �S2 and Sz so that H is diagonal
in the standard eigenstate basis {|S,M〉} of �S2 and Sz. The
eigenenergies are

E(S,M) = − 1

N
[S(S + 1) − M2] − hM. (6)

For the broken phase, the ground state satisfies

M0 =
{

Int
[

Nh
2 + 1

2

] − 1
2 , when N is odd,

Int
[

Nh
2

]
, when N is even,

(7)

where Int[x] gives the integer part of x. For the symmetric
phase,

M0 = N/2. (8)

Since there is a very small amplitude of in-plane polariza-
tion in the symmetry phase, in the next section we will focus
on the dynamics in the broken phase (ferromagnetic phase).

012115-2



SYMMETRY-BREAKING DYNAMICS OF THE FINITE-SIZE … PHYSICAL REVIEW A 97, 012115 (2018)

III. SPONTANEOUS SYMMETRY BREAKING
IN THE LMG MODEL

According to the Ehrenfest theorem, the equations of
motion read

d �S
dt

= i[H,�S], (9)

⇒ dSx

dt
= i

N

[
S2

z ,Sx

] − ih[Sz,Sx]

= − 1

N
(SzSy + SySz) + hSy = −

(
2Sz

N
− h

)
Sy,

(10)

⇒ dSy

dt
= i

N

[
S2

z ,Sy

] − ih[Sz,Sy]

= 1

N
(SzSx + SxSz) − hSx =

(
2Sz

N
− h

)
Sx.

(11)

The last equality of Eqs. (10) and (11) holds under the mean-
field approximation 〈SαSβ〉 ≈ 〈Sα〉〈Sβ〉. If we take second
derivatives for Eqs. (10) and (11) with respect to time, the
resulting mean-field dynamics implies a possible oscillation in
the x-y plane. The oscillation frequency ω = 2〈Sz〉/N − h �=
0 if 〈Sz〉 �= Nh/2, in other words, ω ∼ O(1/N) if the ground-
state energy deviates from the classical minimum point.

However, for a LMG model with rotational symmetry, every
eigenstate has 〈Sx,y〉 = 0 [29] and thus the exact ground state
cannot exhibit the above mean-field dynamics. One may con-
sider that an external perturbation breaks rotational symmetry
in the x-y plane such that 〈Sx,y〉 �= 0. The key point is to judge
if this symmetry breaking happens spontaneously. Here, we
adopt the method presented by Bogoliubov [42] to deal with
the SSB of spin polarization in the LMG model, and we leave
the discussion of the time correlation function according to
Watanabe’s definition [10] to Sec. V. Assume we compute an
order parameter O(N,V ) when both the number of particles
N and the external perturbation V we are interested in are
finite; then we take the thermodynamic limit in this order: first
N → ∞, next V → 0. If O vanishes in the thermodynamic
limit, there is no SSB, while nonzero O indicates an SSB in
the thermodynamic limit. By this definition, if we choose the
in-plane polarization m�n = 2〈S�n〉/N as the order parameter,
where �n = (cos φ, sin φ,0) in the x-y plane is the direction of
an external magnetic field, the isotropic LMG model would
spontaneously break infinite degeneracy and select a mean-
field ground state with m�n �= 0 (see Fig. 1) in the thermo-
dynamic limit. For example, under the symmetry-breaking
potential V = −gSx where g > 0, the perturbed Hamiltonian
reads

H = − 1

N

(
S2

x + S2
y

) − hSz − gSx, (12)

Assuming we find the ground state |ψ〉 of the perturbed
Hamiltonian, then we can compute the ground-state energy

E0 = − 1

N

(〈
S2

x

〉 + 〈
S2

y

〉) − h〈Sz〉 − g〈Sx〉, (13)

x

y

z

φ

θ

FIG. 1. Semiclassical picture of infinite degeneracy of the
isotropic LMG model in the broken phase (N → ∞).

and the order parameter is mx . Then we take the limit N →
∞ to see the value of E0 and mx . When N → ∞, the result
should converge to the one computed through a mean-field
(variational) approach. The mean-field wave function [29],

|θ,φ〉 =
N⊗

l=1

[cos(θ/2)e−iφ/2|↑〉l + sin(θ/2)eiφ/2|↓〉l],

(14)

where kets |↑〉l and |↓〉l are eigenstates of σ l
z with eigenvalues

+1 and −1 separately. Besides, |θ,φ〉 is a coherent spin state
with localized semiclassical polarization,

〈�S〉 = N

2
(sin θ cos φ, sin θ sin φ, cos θ ). (15)

The ground state is thus determined by minimizing the
energy,

E0 = −N

4
(sin2 θ + 2h cos θ + 2g sin θ cos φ). (16)

One sets derivatives with respect to θ and φ equal to zero and
obtains

sin θ0(cos θ0 − h) + g cos θ0 cos φ0 = 0, (17)

sin φ0 = 0. (18)

The semiclassical minimum point is at (θ0,φ0). Then we take
the limit g → 0, and solve Eqs. (17) and (18) analytically
with the solution θ0 = arccos h and φ0 = 0. Thus the order
parameter mx = sin θ0 �= 0 in the thermodynamic limit, which
confirms the existence of SSB of spin polarization in the LMG
model.

Let us see how close the energy splitting is between a
localized state and the exact ground state when N is fi-
nite. When the ground state is localized by an infinitesimal
symmetry-breaking potential, there exists an exponentially
small energy splitting between the mean-field ground states
∼exp(−cN ) [43,44] (see the Appendix), which can be seen as
the energy gap opened by tunneling between degenerate states.
Based on Newman’s calculation [43], some people believe the
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energy splitting resulting from an infinitesimal perturbation
is exponentially small between the first excited state and the
ground state [29,44], but they take for granted that both the
first excited state and the exact ground state are mean-field
localized, which is not true. Calculations of the energy elevated
by a mean-field ground state relative to the exact ground state,
which depends on the trial wave function for the mean-field
ground state, are lacking. If we adopt Newman’s approximate
mean-field ground state, the result is full of small d-matrix
elements such that it is difficult for a precise estimation.

However, we can construct a trial wave function whose
energy is O(1/N2) higher than the ground state,

|0′
loc〉 ≈

(
1 − 2

N

)1/2

|0〉 + 1√
N

|1〉 + 1√
N

|2〉. (19)

Thus the energy gap �E = 2/N2 ∼ O(1/N2) and the lo-
calized spin polarization 〈Sx〉 ∼ O(

√
N ). According to the

uncertainty relation between the lifetime and the energy per
spin,

�E

N
�t � h̄

2
, (20)

the lifetime of this localized state is roughly O(N3).
Next, we look into the size dependence for the oscillation

frequency derived from Eqs. (10) and (11). Because ω ∼
O(1/N ) vanishes if N → ∞, the selected mean-field ground
state sticks there forever, which is similar to the well-known
superselection in the Ising model. But if N is finite, would
the spin polarization oscillate “spontaneously”? To study the
spontaneous property of the finite-size LMG model, in Sec. V
we will calculate the spin-spin correlation function in the time
domain. Since the exact spin polarization dynamics and the
spin-spin time correlation function share a common nature
in their characteristic frequencies, we decide to derive the
dynamics first in the next section, and then we go back to
discuss the correlation function.

IV. DYNAMICS OF THE FINITE-SIZE LMG MODEL

Just as in the case of a finite-size Ising model, although the
SSB and the superselection are imperfect in a finite crystal, a
tiny perturbation or fluctuation (which is also finite instead
of infinitesimal) can still break the symmetry of the exact
ground state and map it to a localized state which is close
to the corresponding mean-field ground state. In this section,
we will solve the dynamics of the localized states of the LMG
model with a finite number of spins.

The exact equations of motion beyond the mean-field
approximation,

dSx

dt
= −

(
2Sz

N
− h

)
Sy − i

1

N
Sx, (21)

dSy

dt
=

(
2Sz

N
− h

)
Sx − i

1

N
Sy. (22)

In the derivation we use the commutation relation among the
total spin operators,

[Sα,Sβ] = iεαβγ Sγ . (23)

Notice that the differential equations are only defined being
sandwiched by a pair of bras and kets. In order to solve
the equations exactly, we have to separate two-spin operators
〈SzSx,y〉 into a product of one-spin operators 〈Sz〉〈Sx,y〉. For the
eigenstates when γ = 1, 〈SzSx,y〉 = 〈Sz〉〈Sx,y〉 exactly, so we
consider “projecting” the original equations into the subspace
of each eigenstate.

Here, we use two eigenstate bases: {|m〉|m ∈ Z+} in the
representation of Sz, and {|k〉|k ∈ Z+} in the representa-
tion of H . The convention we adopt here is as follows:
{m = 0,1,2, . . . ,N} is a sequence arranged in descending
order with respect to the corresponding eigenvalues of Sz,
such that 〈0|Sz|0〉 = N/2 is the highest eigenvalue; {k =
N,N − 1, . . . ,0} is another sequence but arranged in as-
cending order with respect to the corresponding eigenvalues
of H , such that 〈0|H |0〉 = E0 is the lowest eigenvalue.
Since [Sz,H ] = 0, {|m〉} and {|k〉} are the same basis up to
a permutation |m〉 = Pmk|k〉. The advantage in using these
two bases is to keep track of the matrix elements of Sx,y

and the near-ground-state behavior simultaneously. Given a
state |�〉 = ∑

m cm|m〉 = ∑
k bk|k〉, we sandwich the whole

differential equation between the brackets of this state, and it
is necessary to compute the expectation value of the two-spin
operators. Taking a look at 〈SzSx〉,

〈SzSx〉 =
(∑

m

c∗
m〈m|

)
SzSx

(∑
m′

cm′ |m′〉
)

=
∑
m,m′

Mkc
∗
mcm′ 〈m|Sx |m′〉 =

∑
k

MkSxk
, (24)

where

Sxk
= c∗

m(cm+1Sxm,m+1 + cm−1Sxm,m−1 ) (25)

denotes the projected solution contributed by Mk = 〈k|Sz|k〉.
In addition, Syk

has the same form as Sxk
by simply changing the

subscript from x to y. Thus the original differential equations
reads

d

dt

∑
k

(
Sxk

Syk

)
=

∑
k

( − i
N

h − 2Mk

N

2Mk

N
− h − i

N

)(
Sxk

Syk

)
, (26)

which can be decomposed into the sum of the projected
equations,

d

dt

(
Sxk

Syk

)
=

( − i
N

h − 2Mk

N

2Mk

N
− h − i

N

)(
Sxk

Syk

)
. (27)

The projected solutions are

Sxk
= e−iνt

[
S0

xk
cos(ωkt) + S0

yk
sin(ωkt)

]
, (28)

Syk
= e−iνt

[
S0

yk
cos(ωkt) − S0

xk
sin(ωkt)

]
, (29)

where S0
xk

= Sxk
(t = 0), S0

yk
= Syk

(t = 0) are constants de-
termined by the initial conditions. Notice that each pro-
jected solution is oscillating with two coupling intrinsic
frequencies: ν = 1/N is universal for any subspace, while
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TABLE I. Parity of N and Nh and the corresponding ω0. “Deg.”
is the abbreviation for degeneracy and “g.s.” stands for the ground
state at each case.

N Nh M0 Deg. of g.s. ω0

Even Even Nh/2 Nondeg. 0
Odd Odd Nh/2 Nondeg. 0
Even Odd (Nh ± 1)/2 Deg. ν

Odd Even (Nh ± 1)/2 Deg. ν

ωk = h − 2Mk/N depends on k. The complete solution is
simply the superposition of every projected solution,

〈Sx(t)〉 =
N∑

k=0

Sxk
(t), (30)

〈Sy(t)〉 =
N∑

k=0

Syk
(t). (31)

As N → ∞, both ν and ωk go to zero, which coincides
with the result given by Botet and Jullien [44], and thus there
is no oscillation behavior in the thermodynamic limit. Recall ν
comes from the commutator of the total spin operators and
ω0 �= 0 when the ground state energy is not exactly at the
classical minimum point of the Hamiltonian, and therefore this
kind of oscillation is attributed to a purely quantum effect, i.e.,
a finite-size effect.

Here, we discuss a special case when Nh is also an integer.
We show the parity of N and Nh classifies two modes of
oscillation near the ground state with distinguished behaviors.
Suppose through SSB we have already prepared a localized
state which is really close to the exact ground state with 〈S�n(t =
0)〉 �= 0, then we focus on its dynamics at k = 0 subspace.

Two modes are classified by the parity of N and Nh (see
Table I):

(1) Round mode: If N and Nh share the same parity, then
the ground state is unique, and ω0 = 0, so that the oscillation
will be dominated by one frequency, which is ν. To emphasize,
ω0 = 0 means the ground-state energy is exactly at the classical
minimum point, however, there is still a nontrivial oscillation
with frequency ν in the round mode, which is contributed by
the commutator relation Eq. (23). Thus ν reflects the quantum
nature of spins.

(2) Crescent mode: If the parities of N and Nh are different,
then there exists a twofold degeneracy at the ground state,
and ω0 = ν. The coupling between ν and ω0 generates an
oscillation with frequency equal to 2ν.

Figure 2 shows the two modes of 〈Sx(t)〉 with the initial
conditions 〈Sx(t = 0)〉 = N/2 and 〈Sy(t = 0)〉 = 0. Here, we
define a polarization mx(t) = 2〈Sx(t)〉/N . For 〈Sy(t)〉, it is
the same as 〈Sx(t)〉 up to a π/2 phase difference, and thus
the physical picture here is the expectation value of the total
spin is precessing along the z axis. Notice that both modes
have a single frequency, but the crescent mode oscillates twice
as fast than the round mode if N is the same. In addition,
another interesting difference is that the round mode can rotate
a full circle, while the crescent mode bounces back and forth,
restricted in half a circle.

0 1 2 3 4
-1

0

1

0
 = 0

0
 = 

FIG. 2. Two modes of oscillation related to the parity of N and
Nh. mx = 2〈Sx〉/N is the in-plane polarization along the x axis.
ω0 = 0 specifies the round mode; ω0 = ν identifies the crescent mode.

However, if the external perturbation is too small, it may
be hard to observe the crescent mode. The exact ground states
of the crescent mode are twofold degenerate (see Table I),
and we label them with |↑〉 and |↓〉 in the representation
of Sz. From degenerate perturbation theory, we can easily
compute the energy gap opened by the symmetry-breaking
perturbation V = −gSx . The perturbed Hamiltonian in the
subspace spanned by |↑〉 and |↓〉 is

V = −gSx↑,↓

(
0 1
1 0

)
. (32)

The eigenvalues are ε± = ±gSx↑,↓ , where Sx↑,↓ = 〈↑ |Sx |↓〉,
and the corresponding eigenstates are (|↑〉 ± |↓〉)/√2. Since
the energy difference vanishes at g = 0, states (|↑〉 ± |↓〉)/√2
with nonzero 〈Sx〉 have exactly the same energy as the ground
state, so it seems as if the crescent mode under this super-
position state should last forever with frequency 2ν = 2/N .
However, since states (|↑〉 ± |↓〉)/√2 are still the exact ground
state, 〈eiHtSxe

−iH t 〉 = Sx↑,↓ is just a constant without any time
dependence.

In general, Nh is not an integer and thus there is more than
one frequency component of the oscillation. Through Fourier
analysis, each Sxk,yk

has two frequency components ν ± ωk .
Furthermore, if we look at a localized state near the ground
state, since |c0|2 ≈ 1 and |ck|2 ≈ 0 for k �= 0, then 〈Sx,y(t)〉 ≈
Sx0,y0 (t) and ν ± ω0 will dominate the oscillation behavior.

V. CORRELATION FUNCTION AND RELATION
WITH TIME CRYSTALS

In this section we will calculate the correlation function
according to the definition given by Watanabe et al. [10]
in order to answer if time-translational symmetry would be
broken “spontaneously” in the finite-size LMG model. The
correlation function corresponding to the order parameter
m̂x = 2Ŝx/N is

〈m̂x(t)m̂x(0)〉 = 〈eiĤ t m̂xe
−iĤ t m̂x〉 = fN (t). (33)

The correlation function is sandwiched by the ground state. The
condition by which we believe time-translation symmetry to be
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broken is read limN→∞〈eiĤ t m̂xe
−iĤ t m̂x〉 = limN→∞fN (t) =

F (t), where F (t) is a periodic function in time, and such a
condition defines a time crystal. However, for any physical
system in the equilibrium state, time crystal behavior is
impossible, which has been proven by the no-go theorem
[7,10]. Therefore, we decide to lose the condition somehow
and define a condition for “effective” time crystal behavior in
a finite-size system: Although F (t) has no time dependence,
if fN (t) shows nontrivial periodic oscillation when N is finite,
the frequency component ν of fN (t) is a function of N and has
the form

ν(N ) = ν0φ(N ) = ν0(N−1 + a2N
−2 + · · · + alN

−p), (34)

where φ(N ) is expanded near the infinity, and the lifetime
of a oscillating state should be longer than O(Np). If we
do a variable substitution such that u → 1/N , then φ(u) is
a polynomial of finite order p. The lower the p, the slower the
frequency decreases, and the property of long-range order in
this finite system is better.

We now can go back to calculate fN (t) when N is large
but finite. By convention, according to Sec. IV, supposing the
ground state |0〉 in the H representation is the state |m0〉 in the
Sz representation, then we compute the correlation function
explicitly,

N2

4
fN (t) = 〈0|eiĤ tSxe

−iĤ t Sx |0〉

= eiE0t 〈m0|
∑
m′

k

∑
mk

e−iEktSxm′
k
,mk

Sxmk,m0
|m′

k〉

= |Sxm0 ,m1
|2(ei(E0−E1)t + ei(E0−E2)t ), (35)

where |E1,2 − E0| = 1/N ± (2M0/N − h) actually equals
ν ± ω0, and since m1,2 = m0 ± 1 are defined in the Sz rep-
resentation, so Sxm0 ,m1

�= 0. This result is surprisingly simple,
which shows the ground-state coupling with the first and the
second excited states and produces two oscillating modes.
But notice that Sx = (S+ + S−)/2 can only raise or lower the
angular momentum quantum number by 1 for Sz’s eigenstates,
therefore this coupling in Eq. (35) is expected. Some may argue
that this computation is operated in the subspace of S = N/2
sector instead of in the direct product space of N spin 1/2,
and the result may be in doubt. However, Eq. (35) is indeed
correct, and the proof is as follows. The whole direct product
space can be decomposed into a direct sum of different total
angular momentum sectors,

N⊗
n=1

Hn 1
2

=
⎧⎨
⎩

⊕ N
2
n=1 H (S = n), if N is even,⊕ N−1

2
n=0 H

(
S = n + 1

2

)
, if N is odd.

(36)

Since the ground state is certainly located in the S = N/2
sector due to a ferromagnetic interaction, the projection of the
ground state in other S �= N/2 sectors is zero vector �0, and thus
when operator Sx = S

S=N/2
x

⊕
S

S �=N/2
x hits the ground state

|0〉 = |0〉S=N/2 ⊕ �0S �=N/2, there is no chance for the result to
be mapped into other S �= N/2 sectors. Therefore it is safe to
do a calculation of the correlation function only in the S =
N/2 sector. Referring to our discussion of the properties of
ν ± ω0 in Secs. III and IV, the frequency components of fN (t)
decrease as 1/N , and the lifetime of the oscillation near the
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FIG. 3. Frequency spectra in an N = 100 and h = 0.714 sys-
tem with different magnitudes of the symmetry-breaking poten-
tial V = −gSx . (a) g = 1 × 10−4. The energy difference between
this localized state and the exact ground state �E = 6.60 × 10−4.
(b) g = 1 × 10−3, with �E = 5.10 × 10−3.

ground state increases as N3. Thus we may link the oscillating
dynamics in the finite-size LMG model to the effective time
crystal behavior.

VI. NUMERICAL SIMULATION

The numerical simulation is built upon the S = N/2 sub-
space (ferromagnetic phase) because we are only interested
in the low-energy states. The dimension of this subspace is
N + 1, which is much smaller than the dimension of the
total direct-product space 2N , so we can compute the exact
evolution of quite a large system. To select a localized state,
we add an instantaneous symmetry-breaking potential into the
Hamiltonian,

H = H 0 + H ′, (37)

where H 0 is the Hamiltonian in Eq. (1) and H ′ = gS�n rep-
resents an instantaneous symmetry-breaking magnetic field
along �n at t = 0. Diagonalizing H in Eq. (37) numerically
and choosing its ground state as the approximate localized state
|0′

loc〉, we should see the in-plane oscillation behavior predicted
by Eqs. (30) and (31) as |0′

loc〉 evolves under H 0. Since H 0 is
time independent, the time evolution is simply calculated as
e−iH 0t |0′

loc〉. In our numerical simulation we set H ′ = gSx with
N = 100 and g = 1/1002 as an example. The results are shown
in Figs. 3–6, which agree with the theoretical prediction.

In fact, this symmetry-breaking potential cannot be too
large. Figure 3(b) shows more higher-frequency modes are ex-
cited, which means the energy difference is relatively large and
thus the lifetime of this state may be too short to demonstrate
the low-frequency dynamics.

Here, we use the first three terms in Eqs. (30) and (31)
as our theoretical prediction of the in-plane oscillation since
projected solutions with smaller k play a more important role
in the whole solution if the initial state is really close to the
ground state,

〈Sx(t)〉 ≈
3∑

k=0

Sxk
(t), 〈Sy(t)〉 ≈

3∑
k=0

Syk
(t). (38)

From Fig. 4(a), we see that, in the case of N = 100 and
g = 1/1002, the theoretical prediction of the wave form almost

012115-6



SYMMETRY-BREAKING DYNAMICS OF THE FINITE-SIZE … PHYSICAL REVIEW A 97, 012115 (2018)

-0.4

-0.2

0   

0.2 

0.4 

theoretical
numerical

0 5 10 15 20 0 1 2 3 4 5 6
0

0.5

1

1.5

2

am
pl

itu
de

(a) (b)

FIG. 4. (a) An example of mx(t) oscillation with N = 100,
h = 0.716. The localized state is obtained by bringing into it an
instantaneous symmetry-breaking field V = −gSx at t = 0, where
g = 1/N 2. (b) The frequency spectrum of the oscillation in (a).

matches exactly the numerical simulation. The spectrum in
Fig. 4(b) is dominated by two frequencies 0.6ν and 1.4ν which
are exactly the two frequencies |ν ± ω0| contributed by Sx0 ,
and the third tiny peak is at 2.6ν, which is one of |ν ± ω1|
provided by Sx1 . This result confirms that Sx0 reveals the most
important component of 〈Sx(t)〉, which makes Eq. (38) a very
good approximation.

Recall in Sec. IV, we specify two single-frequency modes
according to the parities of N and Nh, and they are also
substantiated by the numerical simulation, which are a crescent
mode with frequency 2ν [Fig. 5(a)] and a round mode with
frequency ν [Fig. 5(d)]. In addition, as shown in Fig. 5, the
lower the frequency locates, the higher it peaks. A physically
intuitive interpretation is that those lower-frequency modes
have lower energies, so they must be excited first. When the
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FIG. 5. The above frequency spectra are computed from an N =
100 system with different h. (a) h = 0.710; since Nh = 71 is odd,
(a) characterizes a crescent mode. (b) h = 0.713. (c) h = 0.719.
(d) h = 0.720; both N and Nh are even, so (d) represents a round
mode. See Table I.
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FIG. 6. (a) An example of aperiodic oscillation (Sx0 component)
in an N = 100 and h = 52ν + ω0 system, where ν = 1/100 and
ω0 = (

√
5 − 2)ν. Two frequency components for this oscillation:

f1 = ν − ω0 and f2 = ν + ω0. f1/f2 = (
√

5 − 1)/2 is the golden
ratio, and thus it is related to the Fibonacci quasicrystal [23,45]. (b)
Generating 1D quasicrystals by the intersection method. An irrational
slice, whose slope is equal to the golden ratio (

√
5 − 1)/2, cuts

through a 2D lattice. We label U (up triangles) or D (down triangles)
when horizontal or vertical lines are crossed.

two lowest frequencies are close, one finds their peaks also
approach equally high, and this can be explained by their
near-degenerate energies.

One of the most fascinating natures of the finite-size LMG
model is there are two intrinsic frequencies at its ground
state, so it is natural to consider the possibility to realize a
one-dimensional (1D) quasicrystal in the time domain. Qua-
sicrystals in the time domain, or so-called “time quasicrystals,”
were proposed by Li et al. in space-time crystals of trapped ions
[5]. Recently, they were investigated in open systems with and
without Floquet driving [23,24,46].

Generally speaking, a quasicrystal is defined as a system that
is simultaneously quasiperiodic and has crystallographically
forbidden rotational symmetry, but this requires at least two
dimensions. For a time series which is one dimensional,
quasiperiodicity with a higher-dimensional counterpart in the
Penrose tiling can be viewed as quasicrystals.

In our finite-size LMG model, if h is irrational, the ratio of
the two intrinsic frequencies will also be irrational and thus this
ensures a quasiperiodic oscillation in the time domain. What is
more, if the irrational frequency ratio is related to the Penrose
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tiling, then we may think of this quasiperiodic oscillation as
an effective time quasicrystal. For instance, the golden ratio
(
√

5 − 1)/2 defines a Fibonacci quasicrystal [23] (see Fig. 6).
Here is one way to construct any ratio κ ∈ (0,1) by tuning h.
Referring to our previous result in Sec. IV, the frequency ratio
reads κ = (ν − ω0)/(ν + ω0), and for a given κ we solve for
ω0(κ) = ν(1 − κ)/(1 + κ). According to Eqs. (7), (28), and
(29), ω0 is also a function of h, so eventually we can write
h(κ) explicitly,

h =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
(
2ζ + 1−κ

1+κ

)
, when N is even,

ζ = 0,1, . . . ,(N − 2)/2,

ν
(
2η + 1 + 1−κ

1+κ

)
, when N is odd,

η = 0,1, . . . ,(N − 3)/2.

(39)

In other words, by controlling h, which is the external magnetic
field along z axis, one may get quasicrystal behavior sponta-
neously.

VII. DISCUSSION AND CONCLUSION

Recently, Syrwid et al. proposed that time crystal behavior
could be found in the excited eigenstates of Wilzeck’s model
[25]. There are some similarities between Syrwid’s results
and ours, and we make a short comparison. For both cases,
the thermal influence has to be sufficiently weak in order to
preserve the localized state. In Wilczek’s model, the lifetime
of a state is defined by the contrast in the density-density
correlation function. Numerical calculation shows the time
crystal behavior lifetime of an excited state is linearly increased
with N . In our model, we defined the lifetime directly from
the uncertainty relation between energy and time. We give a
theoretical trial wave function near the ground state whose
lifetime increases as N3.

Before concluding, we briefly discuss how to realize the
LMG model and test the symmetry-breaking dynamics in
experiments. In order to observe the dynamics of the LMG
model near the ground state, the number of spins should be
much larger than 1. As shown in the numerical results, when
N = 100, the exact dynamics of the system is very close
to the theoretical predictions. Besides, the dynamics of the
LMG model will be greatly affected by the number of spins.
Therefore, in experiments, the ability to precisely control or
maintain the spins is necessary. In superconducting circuit
systems, more than ten superconducting qubits have been
coupled with the same resonator [47], which may be used
for realizing the LMG model and testing the predictions in
this article. Besides, as some of us discussed in Ref. [34], NV
centers in an optically trapped nanodiamond may also be used
for simulating the LMG model.

In conclusion, we studied the nearly spontaneous dynamics
of the finite-size LMG model. We found that the ground state
of the finite-size LMG model can be localized with a tiny
perturbation. The localized state would oscillate with two
different intrinsic frequencies, both of which are ∼O(1/N ).
Taking the trial wave function in Sec. III as an example, its
lifetime is proportional to N3, so the dynamics of the localized
state would last for a long enough time when N is large.
This phenomenon closely relates to the original definition of
the quantum time crystal. Moreover, the two frequencies are

usually irrational. Therefore, the dynamics of the localized
state is not periodic, which can be connected to a quantum
time quasicrystal.
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APPENDIX: THE EXPONENTIALLY SMALL GAP
BETWEEN MEAN-FIELD GROUND STATES

Here, we will give a brief derivation, referring to Newman
and Schulman [43], of the exponentially small gap between
mean-field ground states when an infinitesimal symmetry-
breaking potential is turned on near the thermodynamic limit
(N → ∞). Recall the LMG Hamiltonian,

H = − 1

N

(
S2

x + γ S2
y

) − hSz. (A1)

For simplicity, we set γ = 0, so that the mean-field ground
states in the broken phase (0 < h < 1) have twofold degener-
acy, as shown in Fig. 7, instead of infinite degeneracy, which
is hard to compute.

We turn on the symmetry-breaking perturbationV = −gSx ,
and divide the perturbed Hamiltonian by the spin number so
that we define the average energy per spin,

HN (g) = − S2
x

N2
− hSz

N
− gSx

N
. (A2)

To study the ground-state energy E0
N (g) near g = 0, we in-

troduce a set of states |m,θ〉 (m = −N
2 ,−N

2 + 1, . . . ,N
2 ) which

are eigenstates of Sθ = e−iθSy Sze
iθSy , Sθ |m,θ〉 = m|m,θ〉, and

try to find θ such that |m,θ〉 is approximately an eigenstate of
HN (g) when N is very large. In other words, the off-diagonal
matrix elements of HN (g) in the basis {|m,θ〉} approach zero

FIG. 7. Twofold degeneracy when γ = 0.
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when N is large,

〈m′,θ |HN (g)|m,θ〉
= −δm′,m{(1/N2)m2 sin2 θ + h(m/N ) cos θ + g(m/N ) sin θ

+ (1/N2) cos2 θ [(N/2)(N/2 + 1) − m2]}
+ [2Sz(m

′,m)/N]{sin θ cos θ [(m + m′)/N]

−h sin θ + g cos θ}
− (1/4N2) cos2 θ (S2

+ + S2
−)(m′,m), (A3)

where A(m′,m) = 〈m′,θ |A|m,θ〉. If m,m′ = N/2 − O(1) as
N → ∞, the off-diagonal matrix elements of HN (g) vanish to
order 1/N if we demand that

sin θ cos θ − h sin θ + g cos θ = 0, (A4)

For h �= 0, the two solutions of (A4), θ1 and θ2, are mean-
field locations minimizing the energy under perturbation, so we
thus consider |m,θ1〉 and |m,θ2〉 as approximately the twofold
degenerate ground states of HN (h). If |g| � 1, then θ1 + θ2 ≈
0. According to degenerate perturbation theory, we look at the
subspace spanned by |N/2,θ0〉 and |N/2, − θ0〉 for small |g|,
where θ0 = arccos h ∈ (0,π/2].

The 2 × 2 matrix approximation to the subspace of HN (g)
is as follows,[

−1 + h2

4
+ O

(
1

N

)](
1 0
0 1

)

−
(

0 α

α 0

)
− g

2

(
sin θ0 0

0 − sin θ0

)
, (A5)

where α = 〈N/2,θ0|HN (g)|N/2, − θ0〉. As N → ∞,
|N/2, ± θ0〉 are approximate ground states of HN (g)
up to an O(1/N ) correction, and we can express
|N/2, − θ0〉 = ei(2θ0)Sy |N/2,θ0〉 using a rotation matrix,
so α can be computed and is exponentially small with respect
to N ,

α ≈ HN (0)d( N
2 )

N
2

N
2

(2θ0)

∝ (cos θ0)N = exp[−(− ln h)N ] = exp [ − c(h)N ], (A6)

where d
(j )
mm′ (β) is an element of Wigner’s d matrix, c(h) =

− ln h > 0 for 0 < h < 1. Thus the energy splitting between
E0

N and E1
N near h = 0 is approximated by the eigenvalues of

W = −
(

0 α

α 0

)
− g

2

(
(1 − h2)1/2 0

0 −(1 − h2)1/2

)
. (A7)

The eigenvalues of W are ε± = ±[α2 + g2(1 − h2)/4]1/2,
so the energy gap at g = 0 is of size 2α, which is also
exponentially small with N .
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