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A. Roenko* and K. Sveshnikov†

Department of Physics, Moscow State University, Leninsky Gory, Moscow 119991, Russia

(Received 25 October 2017; published 16 January 2018)

A method for calculating the electronic levels in the compact superheavy nuclear quasimolecules, based on
solving the two-center Dirac equation using the multipole expansion of two-center potential, is developed. For the
internuclear distances up to d ∼ 100 fm, such technique reveals a quite fast convergence and allows for computing
the electronic levels in such systems with accuracy ∼10−6. The critical distances Rcr between the nuclei for 1σg

and 1σu electronic levels in the region Z � 87−100 are calculated. By means of the same technique, the shifts of
electronic levels due to the effective interaction �UAMM of the electron’s magnetic anomaly with the Coulomb
field of the closely spaced heavy nuclei are evaluated as a function of the internuclear distance and the charge of
the nuclei, nonperturbatively both in Zα and (partially) in α/π . It is shown that the levels’ shifts near the lower
continuum decrease with the enlarging size of the system of Coulomb sources, both in the absolute units and in
units of Z4α5/πn3. The last result is generalized to the whole self-energy contribution to the level shifts and so to
the possible behavior of the radiative part of QED effects with virtual photon exchange near the lower continuum
in the overcritical region.
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I. INTRODUCTION

In view of the planned experiments on heavy-ion colli-
sions at FAIR (Darmstadt) and NICA (Dubna), the study
of electronic levels and QED corrections in the compact
nuclear quasimolecules with large Z turns out to be of special
interest. The supercritical region, when the total charge of
the colliding nuclei exceeds Zcr � 170, deserves separate
attention since in this case QED predicts the nonperturbative
vacuum reconstruction, which should be followed by a series
of nontrivial effects, including the vacuum positron emission
([1–3] and references therein). However, the long-term exper-
iments at GSI (Darmstadt) and Argonne National Laboratory
did not succeed in the unambiguous conclusion of the status
of the overcritical region, which promotes the question of the
possible role of nonlinearity in the QED effects for Z > Zcr

to be quite actual [2–7]. In particular, the recent essentially
nonperturbative results for the vacuum polarization energy for
Z > Zcr confirm that in the supercritical region, the behavior
of the QED effects could be substantially different from the
perturbative case [6–8]. At the same time, the completely
nonperturbative in Zα and (partially) in α/π evaluation of level
shifts near the threshold of the lower continuum in the super-
heavy H-like atoms with Zα > 1, caused by the interaction
�UAMM of the electron’s magnetic anomaly (AMM) with the
Coulomb field of the atomic nucleus by taking into account its
dynamical screening at small distances � 1/m, has shown that
the growth rate of the contribution from �UAMM reaches its
maximum at Z ∼ 140−150, while by further increase into the
supercritical region Z � Zcr , the shift of levels near the lower
continuum decreases monotonically to zero, in agreement with
perturbative calculations [9–11].
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A closely related and even more actual problem is the
magnitude of radiative QED effects in the low-energy heavy-
ion collisions. As long as the distance between nuclei is
about the atomic scale, the QED corrections to the electronic
levels are well described by the perturbation theory (PT)
([12–14] and references therein). However, as soon as the
nuclei (adiabatically) slowly approach each other, a transition
to the supercritical region could occur, where the validity
of PT is questionable [6–8]. Therefore, the investigation of
those separate QED effects, which allow for an essentially
nonperturbative analysis, turns out to be quite important. In
particular, such an effect is the interaction �UAMM of the
electron’s AMM with the Coulomb field of external sources
with large Z, which for a single superheavy nucleus has been
considered in detail in [9–11].

Because the electronic AMM is a specific radiative ef-
fect, rather than an immanent property of the electron, for
strong external fields or extremely small distances � 1/m

the dependence of the electronic form factor F2(q2) on the
momentum transfer should be taken into account from the very
beginning [9–11,15–17]. In the general case, the calculation of
the form factors, responsible for AMM, should be implemented
via self-consistent treatment of both the external field and
the electronic wave function (WF) [16]. However, for the
stationary electronic states even in superheavy atoms or in low-
energy heavy-ion collisions, the mean radius of the electronic
WF substantially exceeds the size of the nuclear cluster, and so
the correct estimate for the corresponding form factors could
be made within PT in α/π . Since the one-loop correction to the
vertex function can be represented via electronic form factors
F1(q2) and F2(q2) in the form [18]

�μ(q2) = γ μF1(q2) + i

2m
F2(q2)σμνqν, (1)

for strong fields or extremely small distances � 1/m, the
Dirac-Pauli term in the Dirac equation (DE) should be replaced
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by the expression

�UAMM (�r ) = e

2m
σμν∂μA(cl)

ν (�r), (2)

where

A(cl)
μ (�r ) = 1

(2π )3

∫
d �q ei �q �r Ã(cl)

μ (�q )F2(−�q 2), (3)

and Ã(cl)
μ (�q ) is the Fourier transform of the classical external

field A(cl)
μ (�r ). The detailed nonperturbative analysis of the

interaction (2) between the electronic AMM and the Coulomb
field of the superheavy nucleus with Zα > 1 shows [9–11]
that the growth rate of the contribution from �UAMM reveals a
significantly nonmonotonic behavior with increasing Z. And
since �UAMM is a part of the self-energy contribution to the
total radiative shift of levels, the investigation of this effect-
ive interaction should be very useful for estimating the possible
behavior of radiative QED effects with virtual photon exchange
in the overcritical region.

In particular, it is shown in this paper that for rather
small internuclear distances, �UAMM can be quite effectively
treated at the same footing with high-accuracy calculations of
electronic levels themselves within the multipole expansion
without spoiling the convergence of the latter. Thus, it allows
one to compute nonperturbatively the shifts of the electronic
levels caused by �UAMM both in Zα and (partially) in α/π

(since α/π enters as a factor in the coupling constant for
�UAMM ), and thereby to find out the dependence of this
QED effect on the distance between nuclei and their charges.
Besides this, the significantly nonmonotonic behavior of the
growth rate, namely, the surplus over Z4 for an H-like atom,
when the electronic levels approach the threshold of the lower
continuum [9], is shown to be typical only for a very compact
nuclear quasimolecule. With the increasing distance between
nuclei, the behavior of the growth rate of the contribution
from �UAMM becomes smoother, although the discrete levels
continue to dive into the lower continuum as before, while the
levels’ shift near the lower threshold decreases monotonically
in units of Z4α5/πn3.

II. THE TWO-CENTER DE WITH �UAM M

A. Methods for dealing with two-center DE

In contrast to the case of a single nucleus, the inclusion
of the effective interaction �UAMM into the two-center DE
requires the development of a special technique. The problem
of finding the electronic levels in two-nuclei quasimolecules
occurs also in the calculation of such an important parameter
of two colliding nuclei as the critical distance Rcr between
nuclei, for which the binding energy of the electronic ground
state amounts to two electron rest masses. In general, the
determination of the critical distance requires solving the
two-center DE, which in the case of the low-energy ions
collision can be carried out in the adiabatic approximation, for
which a large number of different methods has been developed.
These are the methods based on the linear combination of
atomic orbitals (LCAO) and variational ones [19–24], as well
as various methods of numerical integration of DE using

the finite-elements techniques and lattice calculations [25–28]
(the most comprehensive review of the latter is given in
Refs. [20,29,30]). The most recent evaluations [31,32] give, for
the critical distance Rcr in the symmetric quasimolecules with
total charge Z
 ∼ 170−190, the result ∼10−50 fm, which
turns out to be of the same order as the aggregated diameter
of colliding nuclei. Therefore, most of the methods, based on
LCAO and widely used in quantum chemistry, are not appli-
cable in this case since with the decreasing quasimolecular
size they require a substantial increase of the number of basis
elements. The calculations of Rcr by various methods, using an
expansion of the electronic WF in a finite set of basis functions
combined with the variational principle, are considered in
Refs. [19,20,31–35].

At the same time, the Coulomb field of two closely
spaced nuclei differs from the spherically symmetric one only
slightly, which motivates one to solve the DE directly in the
spherical coordinates, associated with the center of mass of
the quasimolecule, by means of the multipole expansion of
the potential. The validity of this approach was demonstrated
in Refs. [36–38], where the binding-energy calculations for
pointlike nuclei have been carried out using the multipole
expansion. For very closely spaced extended nuclei, the
monopole approximation turns out to be enough for calculation
of the critical distances Rcr with an accuracy of about 5%
[38,39]. Moreover, the monopole approximation can be used
by computing the parameters of the resonances, arising by the
diving of discrete electronic levels into the lower continuum
[40,41]. However, when the internuclear distance increases, the
monopole approximation becomes too rough, and so the higher
multipoles of expansion of the two-center Coulomb potential
are required. Accounting for the higher multipoles is crucial in
evaluating the ionization probability of electronic shells in the
heavy-ion collisions [42–44]. And although the calculations of
Rcr using multipole moments up to lmax = 4 refine the results
of the monopole approximation, this multipole truncation
is not enough for the most heavy nuclei in the region,
Z ∼ 88−100 [45].

In this paper, we present the results of numerically solving
the stationary two-center DE in the spherical coordinates
by means of the multipole expansion of both the Coulomb
potential and the effective interaction due to electronic AMM
(2) combined with the computer algebra tools, which provide
the ability to analytically evaluate all the Coulomb multipole
moments in the model of nuclear charge as a uniformly charged
ball. For the example of the quasimolecule U183+

2 , the energy
of the lowest electronic levels is explored as a function of the
distance d between the nuclei and truncations in the electronic
WF expansion κmax and in the multipole expansion of two-
center potential lmax (up to κmax ∼ 50 and lmax ∼ 100). It turns
out that for the compact nuclear quasimolecules (d � 100
fm), the suggested method reveals a quite fast convergence in
lmax, κmax, which allows one to compute the electronic levels
in such a system with an accuracy of ∼10−6−10−7. Within
the developed approach, the critical distances between heavy
nuclei with charge Z ∼ 87−100 for electronic levels 1σg and
1σu are calculated. The obtained values Rcr coincide well with
other results [20,32,33,45] and significantly improve the results
of the monopole approximation [38,39].
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B. Two-center DE with �UAM M in the multipole expansion

Let us consider the simplest nuclear quasimolecule, which
consists of two identical nuclei with charge Z, spaced by the
distance d = 2a. The reference frame is chosen in such a way
that the centers of the nuclei are placed on the z axis with
coordinates (0,0,±a). The external field for the electron in
this case is given by

A(cl)
μ (�r ) = δ0,μ[
0(|�r − �a|) + 
0(|�r + �a|)], (4)

where �a = a �ez, while 
0(r) is the spherically symmetric
Coulomb field of a single nucleus, which is defined in the usual
way through the nuclear charge distribution ρ0(r), specified
later.

Taking into account that to the leading order F2(0) ≡
�gfree/2 � α/2π , upon substitution the Fourier transform of
(4) into (3) and angular integration, one obtains

A(cl)
μ (r) = −�gfree

2

e

4π
V (�r ) δμ,0, (5)

V (�r ) = Z

[
c(|�r − �a |)
|�r − �a | + c(|�r + �a |)

|�r + �a |
]
, (6)

where

c(r) = 2
∫ ∞

0
qdq sin qr

[
− 1

Ze

̃0(q)

]
1

π

F2(−q2)

F2(0)
, (7)

while 
̃0(q) is the Fourier transform of the potential 
0(r).
In the next step, the effective potential (2) should be

rewritten as the following commutator:

�UAMM (�r ) = −λ [ �γ · �p , V (�r )], (8)

where λ = α2/4πm, α = e2/4π . So the general form of DE
for an electron, taking into account the additional effective
interaction due to AMM (8), takes the form (h̄ = c = m = 1)

[�α �p + β + W (�r ) + �UAMM (�r)]ψ = εψ, (9)

where W (�r ) is the Coulomb interaction of the electron with
the nuclei. For our purposes, it is convenient to present W (�r )
in the form W (�r ) = −α U (�r ), where

U (�r ) =
∫

d�r ′ ρ(�r )

|�r − �r ′| , (10)

while ρ(�r ) = ρ0(�r − �a ) + ρ0(�r + �a ).
From Eq. (9) for the upper iϕ and the lower χ components

of the Dirac bispinor, there follows

i{�σ �p + λ[�σ �p ,V (�r)]}ϕ = [ε + 1 + α U (�r)]χ,

i{�σ �p − λ[�σ �p,V (�r)]}χ = −[ε − 1 + α U (�r)]ϕ. (11)

Since the considered system possesses axial symmetry, the
projection of the total momentum of the electron on the z axis
is conserved. Moreover, for such a choice of reference frame,
ρ(�r ) = ρ(−�r ), and hence the electronic levels can be classified
by parity. The spinors ϕ, χ , corresponding to the solution of
Eqs. (11) with definite value of mj , are seeded now as the
following expansions in spherical spinors:

ϕ =
±N∑

κ=±1

fκ Xκ,mj
, χ =

±N∑
κ=±1

gκ X−κ,mj
, (12)

where κ = ±(j + 1/2), the notations X−|κ|,mj
≡ �jlmj

and
X|κ|,mj

≡ (�σ �n) �jlmj
are used (the definition of spherical

harmonics and spinors follows Ref. [46]), while the radial func-
tions fκ , gκ can be taken real. The index κ in the expansions
(12) for an even case takes the values κ = −1,+2,−3,+4, . . . ,
while for the odd one, κ = +1,−2,+3,−4, . . . .

As a result, for the energy levels, one obtains the spectral
problem in the form of the following system of equations for
the radial functions fκ , gκ :

∂rfκ + 1 + κ

r
fκ + λ

∑
κ̄

Mκ;κ̄ (r) fκ̄

= (1 + ε)gκ + α
∑

κ̄

N−κ;−κ̄ (r) gκ̄ ,

∂rgκ + 1 − κ

r
gκ − λ

∑
κ̄

M−κ;−κ̄ (r) gκ̄

= (1 − ε)fκ − α
∑

κ̄

Nκ;κ̄ (r) fκ̄ , (13)

where the coefficient functions Nκ;κ̄ (r), Mκ;κ̄ (r) are expressed
via matrix elements of the potential U (�r ) and of the commu-
tator [�σ �p ,V (�r )] over spherical spinors,

Nκ;κ̄ (r) ≡ 〈Xκ,mj
|U (�r )|Xκ̄,mj

〉,
Mκ;κ̄ (r) ≡ i〈X−κ,mj

|[ �σ �p ,V (�r )]|Xκ̄,mj
〉. (14)

To find the matrix elements Nκ;κ̄ (r), Mκ;κ̄ (r), the multipole
expansions of the axially symmetric potentials U (�r ) and V (�r )
are used, which permits one to separate the radial and angular
variables,

U (�r) =
∑

n

Un(r)Pn(cos ϑ),

V (�r) =
∑

n

Vn(r)Pn(cos ϑ). (15)

In (15), the multipole moments Un(r) contain the complete
dependence on the nuclear charge density,

Un(r) =
∫

d�r ′ρ(�r ′) Pn(cos ϑ ′)

×
[
�(r − r ′)

r ′n

rn+1
+ �(r ′ − r)

rn

r ′n+1

]
, (16)

while the general form of the multipoles Vn(r) is the following:

Vn(r) = 2n + 1

2

∫ π

0
sin θ dθ Pn(cos θ )V (�r). (17)

In the next step, the matrix elements Mκ;κ̄ (r) can be reduced
to the form 〈Xκ,mj

|V (�r )|Xκ̄,mj
〉, where for the coefficient

functions (14) one obtains the following final expressions:

Nκ;κ̄ (r) =
∑

n

Un(r) W
ς
ς̄ (n; lκ ; lκ̄ ),

Mκ;κ̄ (r) =
∑

n

(
∂r + κ − κ̄

r

)
Vn(r) W

ς
ς̄ (n; lκ ; lκ̄ ), (18)

where

ς = sign(−κ) =
{−, κ > 0
+, κ < 0,

lκ =
{
κ, κ > 0,

|κ| − 1, κ < 0,
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while the factors

W
ς
ς̄ (n; lκ ; lκ̄ ) ≡ 〈Xκ,mj

|Pn(cos ϑ)|Xκ̄,mj
〉

for the fixed sign of κ and κ̄ are given by the following
combinations of the 3j symbols:

W+
± (n; l; s) =

√
(l + mj + 1/2)(s ± mj + 1/2) w−

n (l; s)

±
√

(l − mj + 1/2)(s ∓ mj + 1/2) w+
n (l; s),

W−
± (n; l; s) =

√
(l − mj + 1/2)(s ± mj + 1/2) w−

n (l; s)

±
√

(l + mj + 1/2)(s ∓ mj + 1/2) w+
n (l; s),

where

w±
n (l; s) = (−1)mj ±1/2

(
l n s

−(mj ± 1/2) 0 mj ± 1/2

)(
l n s

0 0 0

)
.

For the levels of definite parity, the expansions in spherical
spinors (12) and the system of equations (13) could be written
as follows. One should pass everywhere from the summation
over κ = ±1, . . . ,±N to summation over k = 0,1, . . . ,Ñ ,
Ñ = N/2 − 1, and therefore each series in κ splits into two
series in k, since κ is defined via different expressions in terms
of k for the cases κ ≷ 0. The expansion (12) contains the same
number of terms with positive and negative κ , provided the
cutoff number N is even. For the even level everywhere in
Eqs. (12) and (13), it is necessary to perform the substitution
(19a), while for the odd one, (19b):

κ → −2k − 1, κ < 0; κ → 2k + 2, κ > 0, (19a)

κ → −2k − 2, κ < 0; κ → 2k + 1, κ > 0. (19b)

The systems of equations for the levels of definite parity are
given in the explicit form in Appendix A.

Within the described method of finding the electronic
levels in two-center quasimolecules, both the pointlike and the
extended nuclei with arbitrary charge density ρ0(r) could be
considered. In the subsequent sections, we specify the nuclear
charge density, calculate the corresponding multipole moments
(16) and (17), and present the results of computation of the
energy of the electronic levels 1σq and 1σu. It should be noted
that in the case of λ = 0, Eqs. (13) describe the purely Coulomb
case, when the effective interaction �UAMM is absent, and so
the coefficient functions Mκ,κ̄ (r) do not enter the equations.

In addition, let us mention that for the Dirac-Pauli term [i.e.,
in the approximation F2(q2) � F2(0)], the multipole moments
Vn coincide with Un. Indeed, since in this case the integral in
(7) results in c(r) = r 
0(r), it turns out that V (�r ) = U (�r ),
and the expression (17) precisely coincides with (16).

III. CALCULATION OF THE MULTIPOLE
MOMENTS Un, Vn

A. The pointlike nuclei

For a symmetric two-nuclei quasimolecule, the charge
density ρ(�r ) and the function V (�r ) are even; hence, the
multipole moments (16) and (17) do not vanish for even n only
due to the symmetric properties of the Legendre polynomials.

In the case of a pointlike nuclei, ρ0(�r ) = Z δ(�r ), and so the
multipoles (16) take the simplest form,

Un(r) = 2Z

[
�(r − a)

an

rn+1
+ �(a − r)

rn

an+1

]
. (20)

The function c(r), which modulates the behavior of the
electronic AMM at small distances from the Coulomb source,
for the pointlike nucleus is given by [9,15]

c(r) = 1 −
∫ ∞

4m2

dQ2

Q2
e−Qr 1

π

Im F2(Q2)

F2(0)
, (21)

where for the one-loop form factor in (1), one gets [47]

1

π
Im F2(Q2) = 2F2(0)

m2

Q2

1√
1 − 4m2/Q2

.

Upon taking into account both the expansion

eik|�r−�a|

|�r − �a| = iπ

2
√

ra

∞∑
l=0

(2l +1)Jl+1/2(kr<)H (1)
l+1/2(kr>)Pl(cos θ ),

where r< = min(r,a), r> = max(r,a), and the orthogonality
properties of the Legendre polynomials, the final answer for
the multipole moments (17) of the pointlike nuclei for even n

could be written in the form

Vn(r) = 2Z

[
rn
<

rn+1
>

− 2n + 1

2
√

ra

∫ ∞

4m2

dQ2

Q2

Im F2(Q2)

F2(0)

× i Jn+1/2(iQr<) H
(1)
n+1/2(iQr>)

]
, n = even. (22)

B. The extended nuclei

The extended nuclei are treated as uniformly charged
balls with the radius R, which is defined via Z by means
of the (simplified) expression R = 1.228935 (2.5Z)

1/3 fm, as
in Ref. [9]. In this case, as shown below, the multipole
moments (16) and the coefficient functions Nκ;κ̄ (r) (14) can
be evaluated analytically, which significantly simplifies the
further calculations. The charge density of a nucleus in this
model is defined as ρ0(�r ) = �(R − r) 3Z/(4πR3), while the
multipoles Un for even n are given by the following expression:

Un(r) = 6Z

2R3

∫ a+R

a−R

r ′2dr ′ ζn(r ′)

×
[
�(r − r ′)

r ′n

rn+1
+ �(r ′ − r)

rn

r ′n+1

]
, (23)

where

ζn(r ′) =
∫ 1

−1
dx ′Pn(x ′)�(R −

√
a2 − r ′2 − 2ar ′x ′)

= Pn−1(x ′
0) − Pn+1(x ′

0)

2n + 1
, (24)

and x ′
0 = (a2 + r ′2 − R2)/(2ar ′). Since the the following in-

tegrals (25) can be easily calculated analytically for any n:∫ a+R

a−R

dr ′r ′n+2ζn(r ′) = 2anR3

3
,

∫ a+R

a−R

dr ′r ′−n+1ζn(r ′) = 2R3

3an+1
, (25)
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as a result, one obtains

Un(r) = 2Zan

rn+1
, r < a − R,

Un(r) = 3Z

R3

[ ∫ r

a−R

dr ′ r
′n+2

rn+1
ζn(r ′)

+
∫ a+R

r

ar ′ rn

r ′n−1 ζn(r ′)
]
, |r − a| � R,

Un(r) = 2Zrn

an+1
, r > a + R. (26)

It should be noted that in the intermediate region |r−a| �
R, it is also possible to calculate the integral over r ′ in (26) ana-
lytically for any given n by means of computer algebra since the
integrand turns out to be a rational function. However, unlike
the integrals (25), in the intermediate region |r − a| � R, the
answer cannot be obtained in the general form for arbitrary n.
The analytical expressions of the multipole moments (26) in
the intermediate region are presented in Appendix B for a set
of initial n , 0 � n � 12.

For the considered model of the extended nucleus with the
radius R, the function c(r) has been calculated in Ref. [9] and

equals

c(r) = 1 −
∫ ∞

4m2

dQ2

Q2

3QR cosh QR − 3 sinh QR

R3Q3

× e−Qr 1

π

Im F2(Q2)

F2(0)
, r > R, (27a)

c(r) = (3R2 − r2)

2R3
r − r

2m2R3
+

∫ ∞

4m2

dQ2

Q2

3(QR + 1)

R3Q3

× sinh Qr e−QR 1

π

Im F2(Q2)

F2(0)
, r < R. (27b)

The multipole moments Vn are evaluated numerically using
the expression (27) directly from the definition (17).

In the external regions |r − a| > R, the multipoles Un of
the extended nuclei (26) reveal the same power-law behavior
as the multipoles of the pointlike nuclei (20), but inside the
nuclei their behavior turns out to be highly nontrivial. The
behavior of the first multipoles Un of two uranium nuclei
separated by the distance d = 30 fm in this region is shown
in Figs. 1(a) and 1(b). Unlike the multipole moments of the
pointlike nuclei, which possess a jump in the derivative at the
point r = a, that is the sharper, the greater n, the multipoles
(26) and their derivatives behave smoother, but from some n

(depending on Z and a) begin to oscillate in the intermediate

FIG. 1. The multipoles (a),(b) Un and (c),(d) Vn of the U − U system (the nuclear radius is R � 7.54 fm) for the distances between the
centers of the nuclei d = 30 fm in the interval (a − R,a + R). The multipoles of (a),(c) order n = 0,2,4,6 (the multipole moment V0 is scaled
by a factor 1/50) and (b),(d) order n = 8,10,12,14 (in units of inverse Compton wavelength for the electron 1/−λe = mc/h̄).
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TABLE I. The electronic levels 1σg and 1σu in dependence on κmax = N in WF expansion (12) (d = 38.5, d = 77, and d = 100 fm, Z = 92,
extended nuclei). The monopole approximation is denoted by κmax = 1. For comparison, the values from Ref. [29] are given (in units of mc2).

d = 38.5 fm d = 77 fm d = 100 fm

κmax ε1σg
(extend) ε1σu

(extend) ε1σg
(extend) ε1σu

(extend) ε1σg
(extend) ε1σu

(extend)

1 − 0.88068503 −0.04750302 −0.46966445 0.26473979 −0.34300642 0.34750011
4 −0.92053834 −0.08215949 −0.50408585 0.23907531 −0.37520439 0.32494307
6 −0.92726296 −0.08813156 −0.51257777 0.23251593 −0.38349391 0.31892112
8 −0.92846235 −0.08916654 −0.51541712 0.23031937 −0.38651976 0.31672205
10 −0.92865404 −0.08936985 −0.51653404 0.22945558 −0.38785684 0.31575183
12 −0.92867529 −0.08938885 −0.51700152 0.22909414 −0.38850518 0.31528208
14 −0.92867675 −0.08939018 −0.51719901 0.22894143 −0.38883402 0.31504405
16 −0.92867746 −0.08939083 −0.51728014 0.22887865 −0.38900366 0.31492131
18 −0.92867786 −0.08939118 −0.51731141 0.22885441 −0.38909093 0.31485817
20 −0.92867793 −0.08939125 −0.51732219 0.22884603 −0.38913499 0.31482628
22 −0.92867795 −0.08939126 −0.51732521 0.22884364 −0.38915645 0.31481072
24 −0.51732577 0.22884324 −0.38916634 0.31480354
26 −0.51732578 0.22884321 −0.38917052 0.31480049
28 −0.51732579 0.22884320 −0.38917206 0.31479937
30 −0.38917250 0.31479904
32 −0.38917254 0.31479900

Others [29] −0.92831 −0.08908

region. Thus, in the case of the extended nuclei, the coefficient
functions Nκ;κ̄ (r) (14) turn out to be the smooth and, in general,
oscillating, rational functions.

The behavior of the multipoles Vn in the same region
is shown in Figs. 1(c) and 1(d). In comparison with the
Coulomb multipoles Un, the moments Vn also oscillate in the
intermediate region, but their magnitudes decrease much faster
with growing n. So the inclusion of the high-order multipoles

of the Coulomb potential is more important compared to those
from �UAMM . Consideration of the multipoles Un, Vn for other
parameters Z and d leads to the same conclusion.

The more detailed nuclear charge densities ρ0(�r ) (for
example, the Fermi distribution) could also be considered
within our approach, but in these cases all the multipole
moments (16) and (17) should be evaluated numerically. This
circumstance insignificantly complicates the problem, but the

TABLE II. The electronic levels 1σg and 1σu in dependence on κmax = N in WF expansion (12) (d = 38.5 fm and d = 2/Z a.u. � 1150 fm,
Z = 92). The monopole approximation is denoted by κmax = 1. For comparison, the values from Ref. [29] are given (in units of mc2).

d = 38.5 fm d = 2/Z � 1150 fm

κmax ε1σg
(pointlike) ε1σu

(pointlike) ε1σg
(extend) ε1σg

(pointlike)

1 −0.90914697 −0.07115473 0.53072585 0.53071572
4 −0.96368764 −0.11864261 0.49199067 0.49196287
8 −0.98633523 −0.13883316 0.47813668 0.47808456
12 −0.99193745 −0.14381799 0.47433742 0.47426618
16 −0.99427829 −0.14589479 0.47268968 0.47260245
20 −0.99551260 −0.14698746 0.47180521 0.47170405
24 −0.99625625 −0.14764470 0.47126790 0.47115429
28 −0.99674496 −0.14807607 0.47091394 0.47078901
32 −0.99708640 −0.14837716 0.47066706 0.47059171
36 −0.99733608 −0.14859715 0.47048741 0.47034236
40 −0.99752520 −0.14876368 0.47035233 0.47018184
44 −0.99767358 −0.14889334 0.47024810 0.47009245
48 0.47016598 0.46999902

Extrap.
50 −0.997840(03) −0.149040(66) 0.470131(31) 0.469956(69)
60 −0.998030(05) −0.149207(67) 0.470002(53) 0.469809(87)
80 −0.99824(252) −0.14939(420) 0.46986(785) 0.46964(458)
100 −0.99835(504) −0.14949(279) 0.46980(489) 0.46955(640)
140 −0.9984(6794) −0.1495(9134) 0.4697(5506) 0.4694(6723)
200 −0.9985(4010) −0.1496(5401) 0.4697(3875) 0.4694(0958)

Others [29] −0.99842 −0.14956 0.4697339 0.4693303
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TABLE III. The shift of the levels 1σg and 1σu due to �UAMM for a various total charge of nuclei Z
 = 2Z and internuclear distances d

in dependence on κmax = N in WF expansion (12) (in units of mc2). The monopole approximation is denoted by κmax = 1.

Z = 88, d = 20 fm Z = 92, d = 38.5 fm Z = 92, d = 77 fm

κmax �ε1σg
�ε1σu

�ε1σg
�ε1σu

�ε1σg
�ε1σu

1 0.00202849 −0.00154317 0.00178063 −0.00129326 0.00126513 −0.00082044
2 0.00202875 −0.00154161 0.00178522 −0.00129216 0.00127530 −0.00081906
4 0.00204843 −0.00156428 0.00182311 −0.00133177 0.00131916 −0.00085585
6 0.00204919 −0.00156516 0.00182822 −0.00133724 0.00132841 −0.00086363
8 0.00204921 −0.00156519 0.00182909 −0.00133818 0.00133140 −0.00086616
10 0.00182937 −0.00133833 0.00133173 −0.00086679

consideration of the other models of charge distribution in the
extended nuclei lies beyond the scope of this paper.

IV. APPLICABILITY AND ACCURACY OF THE METHOD

As discussed in Sec. I, the choice of the spherical coordi-
nates is the more justified, the closer the symmetry of a system
is to the spherical one, which means the smaller the distance
between nuclei. The whole set of the spherical spinors Xκ,m,
which is used in the WF expansion (12), forms a complete
orthogonal basis, but for the numerical calculation, one should
truncate it. Thus, the number of harmonics N used in the
expansion (12), which suffices to determine the electronic level
with the given accuracy, appears to be the natural parameter,
characterizing the applicability of the method. It should be
noted that for the given cutoff κmax = N in the WF expansion
(12), the system of equations (13) includes the multipoles Un,
Vn of the order of n � lmax = 2N , and all of them are involved
in further calculations.

In the first step, let us consider the pure Coulomb case
[Eqs. (13) with λ = 0]. The energies of the lowest even and odd
electronic levels (1σg and 1σu) in the quasimolecule U183+

2 are
presented in Tables I and II for various truncations in the WF
expansion (12), including the monopole approximation, and
for certain distances between nuclei. In the case of d = 2a =
38.5 fm, which is the critical distance for the pointlike uranium
nuclei, the values from Ref. [29] are given for comparison, and
the difference between the results for the extended nuclei (in
the fourth digit) originates from the different nuclear charge
distributions. To achieve the accuracy 10−5 for the extended
nuclei spaced by d = 38.5 fm, the cutoff κmax ∼ 12−14 turns
out to be enough. However, for the pointlike nuclei, the
method converges too slowly, and the accuracy 10−4 is not
achieved even with κmax ∼ 40 since the configuration is far
from the spherical-symmetric one. The results of extrapolation
to the region κmax ∼ 50−200 are also listed in Table II, which
confirm the slow convergence of this technique for the pointlike
nuclei. When the extended nuclei move away from each other,
the number of harmonics needed to achieve the specified
accuracy increases (see Table I), but up to d � 100 fm, it
remains acceptable. It also follows from the presented data that
the monopole approximation shows an error of ∼0.05 mc2 in
this region. The accuracy of computing the energy of electronic
levels does not change when the effective potential �UAMM is
taken into account. Moreover, since the ratio |Vn/V0| decreases
with the growing n much faster than |Un/U0|, a fewer number

of harmonics is needed to determine the levels’ shift due to
�UAMM with the given accuracy than is required to find the
Coulomb binding energy (see Table III).

This technique is much less effective for the internuclear
distances of atomic scale because too much harmonics in the
expansion (12) are required. The energy of the 1σg level in
the quasimolecule U183+

2 with the distance d = 2/Z a.u. �
1150 fm is listed in Table II for the cutoff up to κmax < 50. The
results of extrapolation into the region κmax < 200 coincide
with the results of Refs. [20,26,29,32] within the achievable
accuracy of the four-decimal digits. Thus, the method can
be successfully applied for the internuclear distances up to
d ∼ 100 fm, which is enough for describing the critical
phenomena; however, for larger d, the convergence of the
method turns out to be too slow.

V. RESULTS FOR THE PURE COULOMB PROBLEM

The energy of the lowest even 1σg and odd 1σu electronic
levels in the compact two-nuclei quasimolecules U183+

2 and
Cm191+

2 in dependence on the internuclear distance d for the
cases of pointlike and extended nuclei are plotted in Fig. 2.
For the system U − U , the electronic level 1σg reaches the
threshold of the lower continuum at d = Rcr � 34.75 fm,
while the lowest odd level 1σu dives only for the pointlike
nuclei and remains in the discrete spectrum for the minimal

FIG. 2. The electronic levels 1σg and 1σu in dependence on the
internuclear distance d = 2a in two-nuclei quasimolecules U183+

2

(blue) and Cm191+
2 (red) in the pure Coulomb problem for the pointlike

(dashed) and extended (solid) nuclei.
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TABLE IV. The critical distances Rcr in the symmetric two-nuclei
quasimolecules for the electronic levels 1σg and 1σu (in fm).

Z Rcr (1σg) Rcr (1σg , other) Rcr (1σu)

87 16.20 16.42a 16.0b

88 19.69 19.89a 19.4b 19.88c

89 23.27 23.38a 22.9b

90 26.96 26.96a 26.5b 26.88c

91 30.78 30.90a 30.3b

92 34.75 34.72a 34.3b 34.38c

93 38.85 38.93a 38.4b

94 43.10 43.10a 42.6b 42.52c 15.42
95 47.49 47.47a 47.0b 17.82
96 52.01 52.06a 51.6b 51.07c 20.25
97 56.68 56.77a 56.3b 22.73
98 61.48 61.56a 61.0b 60.08c 25.26
99 66.41 66.50a 66.0b 27.86
100 71.46 71.57a 71.1b 30.53

aFrom Ref. [32].
bFrom Ref. [33].
cFrom Ref. [45].

achieved distance between the extended nuclei (within the used
nuclear charge distribution). For heavier nuclei (for example,
Z = 96 in Fig. 2), starting from some distance, both levels dive
into the negative continuum.

The calculated critical distances Rcr in the symmetric
quasimolecules for the lowest even and odd electronic levels
1σg and 1σu are presented in Table IV for the nuclear charge
Z ∼ 87−100, as well as the results from Refs. [32,33,45]. The
difference between these results is caused by using various
nuclear charge distributions and nuclear radii. In Ref. [33],
the calculations have been performed by the variational
method, while the finite size of the nuclei has been taken
into account in the quasiclassical approximation. The most
precise computations [32] have been carried out within the

approach based on the two-center WF expansion by means
of the experimental values for the nuclear radii. The results
of Rcr for the 1σg and 1σu electronic levels in Refs. [38,39]
have been presented as a plot, and hence the corresponding
values are not included in Table IV. In Ref. [45], the critical
distances have been calculated via the multipole expansion of
the Coulomb potential only up to the order of lmax = 4 and
the same truncation κmax = 4 in the WF expansion, which, as
follows from Sec. IV and Tables I and II, is not enough to
determine the energy of the electronic levels and Rcr with high
accuracy, especially for the most heavy nuclei in this region
(see the third column in Table IV).

VI. THE LEVELS’ SHIFT DUE TO �UAM M

By comparing the solutions of Eqs. (13) with the pure
Coulomb case [Eqs. (13) with λ = 0], one obtains the shift
of the electronic levels in a two-nuclei quasimolecule due to
�UAMM . This shift is calculated completely nonperturbatively
in Zα and (partially) in α/π since the latter enters as a factor
in the coupling constant for �UAMM . It should be underlined
that this kind of nonlinearity in α/π has nothing to do with
the summation of the loop expansion for AMM since the
initial expression for the operator (3) is based on the one-loop
approximation for the vertex [9]. The shifts of the 1σg and
1σu levels are presented in Table V for various nuclear charges
Z, when the internuclear distance d is fixed. The empty cells
in Table V mean that for the corresponding values of Z and
d, the level has already sunk into the lower continuum. The
shift of the lowest even level turns out to be positive and the
shift of the lower odd one is negative; their absolute magnitude
is about 1 keV, when the electronic level lies near the lower
threshold with ε � −1 (i.e., when Z � Zcr ), as in the case
of an H-like atom (see Ref. [9]). It should be mentioned that
the calculations of the total self-energy shift of the 1s1/2 level
for an H-like atom with nuclear charge Zcr � 170, performed

TABLE V. The shift of the levels 1σg and 1σu due to �UAMM for a various total charge of nuclei Z
 = 2Z and internuclear distances d .
The shift of the levels 1s1/2 and 2p1/2 in an H-like atom from Ref. [9] is shown for comparison (in keV).

Level Z
 H-like atom d = 15.5 fm d = 20 fm d = 30 fm d = 40 fm

140 0.495 0.465 0.448 0.413 0.385
150 0.690 0.635 0.603 0.545 0.500
160 0.912 0.828 0.779 0.692 0.626

1σg 170 1.118 1.017 0.953 0.840 0.755
(1s1/2) 173 1.068 1.002 0.883 0.793

176 1.047 0.924 0.830
181 0.987 0.888
186 0.942

150 −0.373 −0.329 −0.304 −0.264 −0.234
160 −0.632 −0.546 −0.497 −0.417 −0.361
170 −0.875 −0.763 −0.696 −0.580 −0.498
180 −1.052 −0.937 −0.861 −0.725 −0.625

1σu 183 −1.090 −0.978 −0.901 −0.763 −0.659
(2p1/2) 188 −1.034 −0.960 −0.819 −0.711

191 −0.989 −0.848 −0.738
195 −0.883 −0.773
199 −0.912 −0.802
206 −0.843
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FIG. 3. The function F AMM
nj and the rate of growth n(Z) for the shift due to �UAMM of the (a),(c) 1σg and (b),(d) 1σu levels in a symmetrical

two-nuclei quasimolecule as a function of the total charge Z for the fixed internuclear distances d = 15.5,20,30,40 fm. For comparison, the
same functions for the 1s1/2 and 2p1/2 levels in an H-like atom from Ref. [9] are shown.

in Refs. [48,49] to the leading order in α/π with complete
dependence on Zα, give �ESE(1s1/2) � 11.0 keV. So the shift
due to AMM in H-like atoms turns out to be about the tenth
part of the self-energy contribution to the full radiative shift
(for 1s1/2) and its magnitude is comparable to the higher-order
corrections to vacuum polarization effects [50,51]. However,
the most important point here is not the magnitude, but
the observation that the behavior of the shift due to AMM
qualitatively reproduces the behavior of the whole self-energy
contribution for the lowest electronic levels [9–11].

Another valuable characteristic of QED effects is their
growth rate as a function of Z. The shift due to �UAMM for
an atomic electron is a part of the self-energy contribution to
the Lamb shift, which in the perturbative QED is proportional
to Z4/n3 and is usually represented through the function
Fnj (Zα), defined via [52]

�ESE
nj (Zα) = Z4α5

πn3
Fnj (Zα). (28)

The function Fnj (Zα) is approximated via known data for
a number of Z � 100 as a slowly varying function of Zα

[52–56]. The calculation of the atomic levels’ shift, stipulated
by the Dirac-Pauli term, has been performed in Refs. [5,57,58],
but in the case of strong fields this approximation is too rough,
and accounting for the dependence of F2(q2) on the momentum
transfer [as in Eq. (8)] in this case is crucial [9].

It would be convenient to compare the shift of the electronic
levels in a very compact quasimolecule with the shift for a
single nuclei with Z � Zcr . The function FAMM

nj (Z
α) (where
Z
 is the total charge of the Coulomb sources) for the lowest
even and odd levels in the quasimolecule for a range of
internuclear distances d and large Z is plotted in Figs. 3(a)
and 3(b), combined with the case of an H-like atom from
Ref. [9]. It follows from Figs. 3(a) and 3(b) and Table V
that in the quasimolecule, the shift due to �UAMM decreases
with the growing internuclear distance quite rapidly. Moreover,
the shift of the electronic levels near the threshold of the
lower continuum also falls down with the increasing critical
charge Zcr , as well as with the corresponding size of the
quasimolecule Rcr (see the lowest values in each column in
Table V).

In Figs. 3(c) and 3(d), the powerlike approximation n(Z
)
of the growth rate for the shift of the 1σg and 1σu levels in the
quasimolecule is shown as a function of the total charge Z
 ,
determined via logarithmic derivative

n(Z
) = Z


∂

∂Z


ln (�εAMM ). (29)

All the curves in Fig. 3 for the quasimolecule become
closer and closer to the case of a single nuclei, when the
internuclear distance tends to zero. The growth rates in
Fig. 3 reveal their maximums for Z ∼ 140−150, while their
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magnitude decreases rapidly with the increasing size of the
quasimolecules. However, the further decline in n(Z) in the
region Z > 150 still remains pronounced. At the same time,
for d = 40 fm, the function FAMM

1σg (Z
α) shows up already
an almost monotonic behavior.

The functions, which are shown in Fig. 3, depend weakly
on the truncation used in the expansion (12), and so look like
those in the monopole approximation, when only the spherical-
symmetric part of the two-center potential is taken into account,
which corresponds to the charge distribution over the sphere
with diameter d. This circumstance does not contradict the
fact that the multipole moment V0 is much bigger than the
other multipoles Vn, as noted in Sec. III. At the same time, for
the general properties of the levels’ shift due to AMM, the size
of the source, which produces the critical field, is much more
important than the particular model of the charge distribution.

VII. CONCLUSION

To conclude, we have shown that the approach, based
on the multipole expansions (12) and (15) for solving
the two-center DE, can be successfully applied for the
compact nuclear quasimolecules (d � 100 fm), and allows
one to investigate the process of diving of discrete levels
into the lower continuum in heavy-ion collisions not only
qualitatively (which could be performed within the monopole
approximation), but also quantitatively. Calculated critical
distances Rcr for the levels 1σg and 1σu are in good agreement
with other computations [20,32,33,36,38,39,45]. Moreover,
the results Rcr for the 1σu level significantly improve the most
relevant values, which have been obtained early within the
monopole approximation [39].

By means of the same techniques, the effective interaction
of the electronic AMM with the Coulomb potential of colliding
nuclei is considered taking into account the dynamical screen-
ing of �UAMM at small distances due to the dependence of
the electronic form factor F2(q2) on the momentum transfer.
The performed study of the electronic levels in a compact
quasimolecule due to �UAMM as a function of the nuclear
charge and internuclear distance shows that the shift of levels
near the lower continuum decreases with the increasing Z


and the distance between nuclei (which means with enlarging
the size of the system of Coulomb sources), both in absolute
units and in terms of Z4


α5/πn3. The rate of growth of this
QED effect, defined via (29), behaves more smoothly with the
increasing internuclear distance and shows a stable decline in
the region Z
 > 150.

And although the shift due to AMM is just a part of the whole
radiative correction to the binding energy, the behavior of
FAMM

nj (Zα) qualitatively reproduces the behavior of Fnj (Zα)
for the lowest electronic levels [9–11]. Thus, there appears a
natural assumption that in the overcritical region, the decrease
with the growing Z
 and the size of the system of Coulomb
sources should also take place for the total self-energy con-
tribution to the levels’ shift near the threshold of the lower
continuum, and so for the other radiative QED effects with
virtual photon exchange.

ACKNOWLEDGMENTS

The authors are very indebted to Prof. P.K. Silaev from MSU
Department of Physics for interest and helpful discussions.
This work has been supported in part by the RF Ministry of
Education and Science Scientific Research Program, Projects
No. 01-2014-63889 and No. A16-116021760047-5, and by
RFBR Grant No. 14-02-01261.

APPENDIX A: THE SYSTEM OF EQUATIONS FOR THE LEVELS OF DEFINITE PARITY

The expansion in spherical spinors (12) and the system of equations (13) for the even level with definite mj take the form (A1)
(the notations uk = f−2k−1, vk = f2k+2, pk = g2k+2, qk = g−2k−1 are used):

ϕ =
Ñ∑

k=0

(
uk X−2k−1,mj

+ vk X2k+2,mj

)
, χ =

Ñ∑
k=0

(
pk X−2k−2,mj

+ qk X2k+1,mj

)
, (A1a)

∂ruk − 2k

r
uk + λ

∑
k̄

[M−2k−1;−2k̄−1(r) uk̄ + M−2k−1;2k̄+2(r) vk̄]

= (1 + ε)qk + α
∑

k̄

[N2k+1;2k̄+1(r) qk̄ + N2k+1;−2k̄−2(r) pk̄],

∂rvk + 2k + 3

r
vk + λ

∑
k̄

[M2k+2;−2k̄−1(r) uk̄ + M2k+2;2k̄+2(r) vk̄]

= (1 + ε)pk + α
∑

k̄

[N−2k−2;2k̄+1(r) qk̄ + N−2k−2;−2k̄−2(r) pk̄],

∂rpk − 2k + 1

r
pk − λ

∑
k̄

[M−2k−2;2k̄+1(r) qk̄ + M−2k−2;−2k̄−2(r) pk̄]

= (1 − ε)vk − α
∑

k̄

[N2k+2;−2k̄−1(r) uk̄ + N2k+2;2k̄+2(r) vk̄],
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∂rqk + 2k + 2

r
qk − λ

∑
k̄

[M2k+1;2k̄+1(r) qk̄ + M2k+1;−2k̄−2(r) pk̄]

= (1 − ε)uk − α
∑

k̄

[N−2k−1;−2k̄−1(r) uk̄ + N−2k−1;2k̄+2(r) vk̄], (A1b)

and for odd, take the form (A2) (the notations uk = f−2k−2, vk = f2k+1, pk = g2k+1, qk = g−2k−2 are used):

ϕ =
Ñ∑

k=0

(
uk X−2k−2,mj

+ vk X2k+1,mj

)
, χ =

Ñ∑
k=0

(
pk X−2k−1,mj

+ qk X2k+2,mj

)
, (A2a)

∂ruk − 2k + 1

r
uk + λ

∑
k̄

[M−2k−2;−2k̄−2(r) uk̄ + M−2k−2;2k̄+1(r) vk̄]

= (1 + ε)qk + α
∑

k̄

[N2k+2;2k̄+2(r) qk̄ + N2k+2;−2k̄−1(r) pk̄],

∂rvk + 2k + 2

r
vk + λ

∑
k̄

[M2k+1;−2k̄−2(r) uk̄ + M2k+1;2k̄+1(r) vk̄]

= (1 + ε)pk + α
∑

k̄

[N−2k−1;2k̄+2(r) qk̄ + N−2k−1;−2k̄−1(r) pk̄],

∂rpk − 2k

r
pk − λ

∑
k̄

[M−2k−1;2k̄+2(r) qk̄ + M−2k−1;−2k̄−1(r) pk̄]

= (1 − ε)vk − α
∑

k̄

[N2k+1;−2k̄−2(r) uk̄ + N2k+1;2k̄+1(r) vk̄],

∂rqk + 2k + 3

r
qk − λ

∑
k̄

[M2k+2;2k̄+2(r) qk̄ + M2k+2;−2k̄−1(r) pk̄]

= (1 − ε)uk − α
∑

k̄

[N−2k−2;−2k̄−2(r) uk̄ + N−2k−2;2k̄+1(r) vk̄]. (A2b)

APPENDIX B: ANALYTIC EXPRESSIONS OF THE Un

In the intermediate region |r − a| � R, the multipole moments (26) are given by the following analytic expressions (for
n � 12):

U0(r) = 2Z

16arR3
[a4 − 4a3r − 4a(r − 2R)(r + R)2 + (r − R)3(r + 3R) + 6a2(r2 − R2)], (B1)

U2(r) = 2Z

256a3r3R3
[5a8 + 128a5R3 − 20a2(r2 − R2)3 − 20a6(r2 + 3R2)

+ (r − R)5(5r3 + 25r2R + 15rR2 + 3R3) + 30a4(r4 + 2r2R2 − 3R4)], (B2)

U4(r) = 2Z

2048a5r5R3
[21a12 + 1024a9R3 − 54a2(r2 − R2)5 − 54a10(r2 + 7R2) + 27a4(r2 − R2)3(r2 + 7R2)

+ 27a8(r4 + 10r2R2 − 35R4) + (r − R)7(21r5 + 147r4R + 210r3R2 + 142r2R3 + 49rR4 + 7R5)

+ 12a6(r6 + 9r4R2 − 45r2R4 + 35R6)], (B3)

U6(r) = 2Z

65536a7r7R3
[429a16 + 32768a13R3 − 936a2(r2 − R2)7 − 936a14(r2 + 11R2)

+ 364a4(r2 − R2)5(r2 + 11R2) + 364a12(r4 + 18r2R2 − 99R4)

+ 104a6(r2 − R2)3(r4 + 18r2R2 − 99R4) + 104a10(r6 + 21r4R2 − 189r2R4 + 231R6)

+ (r − R)9(429r7 + 3861r6R + 9009r5R2 + 10889r4R3 + 7911r3R4 + 3519r2R5 + 891rR6 + 99R7)

+ 78a8(r8 + 20r6R2 − 210r4R4 + 420r2R6 − 231R8)], (B4)

012113-11



A. ROENKO AND K. SVESHNIKOV PHYSICAL REVIEW A 97, 012113 (2018)

U8(r) = 2Z

524288a9r9R3
[2431a20 + 262144a17R3 − 4862a2(r2 − R2)9 − 4862a18(r2 + 15R2)

+ 1683a4(r2 − R2)7(r2 + 15R2) + 1683a16(r4 + 26r2R2 − 195R4)

+ 408a6(r2 − R2)5(r4 + 26r2R2 − 195R4) + 408a14(r6 + 33r4R2 − 429r2R4 + 715R6)

+ 238d8(r2 − R2)3(r6 + 33r4R2 − 429r2R4 + 715R6) + 238a12(r8 + 36r6R2 − 594r4R4 + 1716r2R6 − 1287R8)

+ (r − R)11(2431r9 + 26741r8R + 87516r7R2 + 155180r6R3 + 175450r5R4 + 133782r4R5 + 69212r3R6

+ 23452r2R7 + 4719rR8 + 429R9
) + 204a10(r10 + 35r8R2 − 630r6R4 + 2310r4R6 − 3003r2R8 + 1287R10)],

(B5)

U10(r) = 2Z

8388608a11r11R3
[29393a24 + 4194304a21R3 − 55692a2(r2 − R2)11

−55692a22(r2 + 19R2) + 18018a4(r2 − R2)9(r2 + 19R2) + 18018a20(r4 + 34r2R2 − 323R4)

+ 4004a6(r2 − R2)7(r4 + 34r2R2 − 323R4) + 4004a18(r6 + 45r4R2 − 765r2R4 + 1615R6)

+ 2079a8(r2 − R2)5(r6 + 45r4R2 − 765r2R4 + 1615R6) + 2079a16(r8 + 52r6R2 − 1170r4R4 + 4420r2R6

−4199R8
) + 1512a10(r2 − R2)3(r8 + 52r6R2 − 1170r4R4 + 4420r2R6 − 4199R8)

+ 216a14(7r10 + 385r8R2 − 10010r6R4 + 50050r4R6 − 85085r2R8 + 46189R10)

+ (r − R)13(29393r11 + 382109r10R + 1616615r9R2 + 3812195r8R3 + 5909930r7R4

+ 6450626r6R5 + 5093998r5R6 + 2916550r4R7 + 1186549r3R8 + 326417r2R9 + 54587rR10 + 4199R11)

+ 196a12(7r12 + 378r10R2 − 10395r8R4 + 60060r6R6 − 135135r4R8 + 131274r2R10 − 46189R12)], (B6)

U12(r) = 2Z

67108864a13r13R3
[185725a28 + 33554432a25R3 − 339150a2(r2 − R2)13 − 339150a26(r2 + 23R2)

+ 104975a4(r2 − R2)11(r2 + 23R2) + 104975a24(r4 + 42r2R2 − 483R4)

+ 22100a6(r2 − R2)9(r4 + 42r2R2 − 483R4) + 22100a22(r6 + 57r4R2 − 1197r2R4 + 3059R6)

+ 10725a8(r2 − R2)7(r6 + 57r4R2 − 1197r2R4 + 3059R6) + 2145a20(5r8 + 340r6R2 − 9690r4R4 + 45220r2R6

− 52003R8
) + 1430a10(r2 − R2)5(5r8 + 340r6R2 − 9690r4R4 + 45220r2R6 − 52003R8)

+ 7150a18(r10 + 75r8R2 − 2550r6R4 + 16150r4R6 − 33915r2R8 + 22287R10)

+ 5775a12(r2 − R2)3(r10 + 75r8R2 − 2550r6R4 + 16150r4R6 − 33915r2R8 + 22287R10)

+ 1925a16(3r12 + 234r10R2 − 8775r8R4 + 66300r6R6 − 188955r4R8 + 226746r2R10 − 96577R12)

+ (r − R)15(185725r13 + 2785875r12R + 14486550r11R2 + 42840682r10R3 + 84878055r9R4 + 121292265r8R5

+ 129590660r7R6 + 105101820r6R7 + 64747611r5R8 + 29914645r4R9 + 10067910r3R10 + 2335290r2R11

+ 334305rR12 + 22287R13
) + 1800a14(3r14 + 231r12R2 − 9009r10R4 + 75075r8R6 − 255255r6R8

+ 415701r4R10 − 323323r2R12 + 96577R14)]. (B7)
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